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Abstract: Most of the fungi from the Fusarium genus are pathogenic to cereals, vegetables, and fruits
and the products of their secondary metabolism mycotoxins may accumulate in foods and feeds.
Non-ribosomal cyclodepsipeptides are one of the main mycotoxin groups and include beauvericins
(BEAs), enniatins (ENNs), and beauvenniatins (BEAEs). When ingested, even small amounts of
these metabolites significantly affect human and animal health. On the other hand, in view of their
antimicrobial activities and cytotoxicity, they may be used as components in drug discovery and
processing and are considered as suitable candidates for anti-cancer drugs. Therefore, it is crucial to
expand the existing knowledge about cyclodepsipeptides and to search for new analogues of these
compounds. The present manuscript aimed to highlight the extensive variability of cyclodepsipeptides
by describing chemistry, biosynthesis, and occurrence of BEAs, ENNs, and BEAEs in foods and feeds.
Moreover, the co-occurrence of Fusarium species was compared to the amounts of toxins in crops,
vegetables, and fruits from different regions of the world.

Keywords: phytopathogens; Fusarium; mycotoxin contamination; secondary metabolism; beauvericin; enniatin

Key Contribution: This article highlights the variability of cyclodepsipeptides mycotoxins such as
BEAs; ENNs and BEAEs; produced by Fusarium species and the characteristics of the genes involved
in the biosynthesis of these mycotoxins.

1. Introduction

Fungi belonging to the Fusarium genus produce a wide range of secondary metabolites,
including the non-ribosomal depsipeptide mycotoxins, such as beauvericins (BEAs), beauvenniatins
(BEAEs), enniatins (ENNs), and their analogues [1–4]. BEAs, BEAEs, and ENNs were included in the
cyclodepsipeptide group of compounds, often found in high concentrations in grains, crops, vegetables,
fruits, and even eggs, as a result of fungal infection [5–9]. They are involved in plant-pathogen
interaction and may lead to many plants′ diseases, which can be very dangerous for animals′ health,
including humans [10–14]. For example, ENNs produced by Fusarium species may act synergistically
as a phytotoxin complex, which causes wilt and necrosis of plant tissue [15]. Moreover, ENN B
affects mouse embryo development by inducing the dosage-related apoptosis or necrosis in mouse
blastocytes [16]. On the other hand, BEA demonstrated neurotoxic properties in mice. In higher
concentrations (7.5 and 10 µM), it affected the skeletal muscle fibers [17].

Additionally, BEA has a harmful influence on the reproductive system. The progesterone synthesis
in cumulus cells was decreased when exposed to BEA [18]. Moreover, BEA inhibited estradiol and
progesterone synthesis in bovine granulosa cells [19]. Also, ENN B reduced progesterone, testosterone,
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and cortisol secretion in human adrenocortical carcinoma cells and modulated the expression of genes
involved in steroidogenesis [20]. The cytotoxicity of cyclodepsipeptides (BEAs, BEAEs, ENNs) is
related to their ionophoric properties [21–23]. Even at low concentrations, they possess the capacity of
perforation of the cell membrane, which is associated with the induction of apoptotic cell death and
disruption of extracellular regulated protein kinase (ERK) activity [24–27]. However, this ability does not
exclude the capability of promoting the transport of cations such as K+, Na+, Mg2+, and Ca2+ through
the membranes, which leads to the disturbance of cellular ionic homeostasis [28]. This cytotoxic effect
on various human cancer cell lines also suggests the potential use of cyclodepsipeptides as anti-cancer
drugs [22,29–32]. All cyclodepsipeptides (BEAs, BEAEs, ENNs) have been shown as compounds
exhibiting numerous biological activities, such as antimicrobial, insecticidal, and antibiotic activity,
towards Mycobacterium tuberculosis and Plasmodium falciparum (human malaria parasite) because of their
potential to inhibit the cholesterol acyltransferase of microbial origin [30,33]. Furthermore, BEA can be
used as a co-drug for fungal infections in humans because the combination of BEA and ketoconazole
(an anti-fungal drug) enhances its antifungal activities [29,33–35]. BEA has been reported as a growth
inhibitor of human-pathogenic bacteria, such as Escherichia coli, Enterococcus faecium, Salmonella enterica,
Shigella dysenteriae, Listeria monocytogenes, Yersinia enterocolitica, Clostridium perfringens, and Pseudomonas
aeruginosa. The chemical properties of cyclodepsipeptides may allow for the emergence of new
pharmaceutical products with anti-inflammatory and antibiotic properties [33,36,37]. The studies
have shown the divergent impact of cyclodepsipeptides on human health; still, further studies are
needed to indicate the potential effects of BEAs, BEAEs, and ENNs on human health. Moreover, it is
imperative to study new compounds of the cyclodepsipeptide group, along with their analogues,
to better understand the relationships between their structure, diversity, and toxicity.

The aim of the review article was to highlight the diversity among Fusarium species with regard
to biosynthesis of BEAs, BEAEs, and ENNs and the characteristics of the multi-domain non-ribosomal
peptide synthase (NRPS), which catalyses the synthesis of cyclodepsipeptides mycotoxins.

2. Chemistry

BEAs, ENNs, BEAEs, and allobeauvericins (ALLOBEAs) represent a family of regular cyclodepsipeptides,
consisting of three N-methyl amino acids and three hydroxy acid groups [4,38–41]. Characterization of all
cyclodepsipeptides produced by Fusarium fungi, their elemental composition, molecular weights (used
for their identification), and chemical structures are presented in Table 1 and Figure 1. Most of the BEAs
contain three groups of N-methyl-phenylalanine, except for BEAs J, K, and L, which contain one, two,
or three groups of N-methyl-tyrosine, respectively [2,26]. However, BEA D and E have demethylated
amino acids-phenylalanine and leucine in their structures [42]. Moreover, BEAs differ in hydroxy acids
possession. BEA and BEA D, E, J, K, and L possess D-2-hydroxyisovaleric acid (D-Hiv) (Figure 2a) and
BEA A/F, B, and C possess D-2-hydroxy-3-methylpentanoic acid (D-Hmp) (Figure 2b), whereas BEA
G1 and G2 possess D-2-hydroxybutyric acid (D-Hbu) (Figure 2c) [2,3,31,33,42]. ALLOBEAs A, B, and C
are diastereomeric to BEAs A, B, and C, respectively. These compounds differ in the D-Hmp groups’
configuration [33]. Some of the BEAs, such as BEA B, C, J, K, L, G1, G2, and all ALLOBEAs, were
known from previous publications as precursor-directed compounds, detected inside in vitro cultures
of fungi belonging to Beauveria, Acremonium, and Paecilomyces genera [26,31,33]. It was proven that
phytopathogenic fungi from the Fusarium genus naturally produce all BEAs and ALLOBEAs [2,3,42].
The structures of BEAs have been described in many articles, where they were determined by a variety
of chemical methods, including liquid chromatography–mass spectrometry (LC-MS) and nuclear
magnetic resonance (NMR).

ENNs are typically composed of N-methyl-leucine, N-methyl-isoleucine and/or N-methyl-valine [1,10,41].
However, two of the ENNs: ENN P1 and P2 also possess N-methyl-tyrosine in their structures [21].
ENN J1, J2, and J3 are another group of ENNs that differ from the common ENNs. These cyclodepsipeptides
consist of one N-methyl-isoleucine, one N-methyl-valine, and N-methyl-alanine [43]. Most ENNs contain
three groups of D-2-hydroxyisovaleric acid (D-Hiv) and only three ENNs: ENN H, I, and MK 1688,
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containing one, two, or three groups of D-2-hydroxy-3-methylpentanoic acid (D-Hmp), respectively [44].
Some of the reported ENNs are isomers, with the same amino acid composition but in different positions,
e.g., ENN J1, J2, J3 or ENN A and F [39,43,45]. On the other hand, even though the ENNs are not isomers,
they share the same molecular weight. Therefore, the MS/MS technique with acid hydrolysis or NMR is
sometimes necessary during the detection of cyclodepsipeptides for their correct identification.

BEAEs possess hybrid structures between the aliphatic (enniatin-type) and aromatic (beauvericin-type)
cyclodepsipeptides [2,3,26,30]. Moieties of N-methyl-phenylalanine, N-methyl-leucine, and/or N-methyl-valine
are the parts of BEAEs’ structures. BEAE A contains one N-methyl-valine, whereas BEAE B, G1, G2, and G3

have two. BEAE L has one N-methyl-leucine in its structure. Apart from the D-2-hydroxyisovaleric
acid (D-Hiv) group, three of the BEAE isomers, namely BEAE G1, G2, and G3, contain two
D-2-hydroxy-3-methylpentanoic acid (D-Hmp) groups in different combinations. At first, all BEAEs
were described as cyclodepsipeptides from Acremonium sp., however further research revealed that
Fusarium species are also able to produce these compounds [2,3,26,30].

Table 1. Elemental composition and molecular weights of beauvericins, enniatins, and their analogues.

Compound MW MW +
NH4

+ (18)
MW +

Na+ (23)
MW +

K+ (39)
Elemental

Composition References

Beauvericin 783 801 806 822 C45H57N3O9 [2,26]

Beauvericin
A/F/Allobeauvericin A 797 815 820 836 C46H59N3O9 [2,33,42]

Beauvericin
B/Allobeauvericin B 811 829 834 850 C47H61N3O9 [3,33]

Beauvericin
C/Allobeauvericin C 825 843 848 864 C48H63N3O9 [2,33]

Beauvericin D 769 787 792 808 C44H55N3O9 [2,42]

Beauvericin E 735 753 758 774 C41H57N3O9 [3,42]

Beauvericin G1 769 787 792 808 C44H55N3O9 [3,31]

Beauvericin G2 755 773 778 794 C43H53N3O9 [3,31]

Beauvericin J 799 817 822 838 C45H57N3O10 [2,26]

Beauvericin K 815 833 838 854 C45H57N3O11 [2]

Beauvericin L 831 849 854 870 C45H57N3O12 [2]

Beauvenniatin A 735 753 758 774 C41H57N3O9 [2,26]

Beauvenniatin B 687 705 710 726 C37H57N3O9 [3,26,30]

Beauvenniatin G1/G2/G3 715 733 738 754 C39H61N3O9 [3,30]

Beauvenniatin L 749 767 772 788 C42H59N3O9 [2]

Enniatin A/F/MK 1688 681 699 704 720 C36H63N3O9 [25,39,44,45]

Enniatin A1/E/I 667 685 690 706 C35H61N3O9 [25,39,44,45]

Enniatin A2 681 699 704 720 C35H61N3O9 [46]

Enniatin B 639 657 662 678 C33H57N3O9 [25,39]

Enniatin B1/B4/D/H 653 671 676 692 C34H59N3O9 [25,39,44,45,47]

Enniatin B2/J2/J3/K1 625 643 648 664 C32H55N3O9 [25,43]

Enniatin B3/J1 611 629 634 650 C31H53N3O9 [25,43,47]

Enniatin P1 641 659 664 680 C33H57N3O10 [21]

Enniatin P2 655 673 678 694 C34H59N3O10 [21]
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Figure 1. Cont.
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Figure 2. Chemical structures of D-2-hydroxyisovaleric acid (D-Hiv) (a), D-2-hydroxy-3-methylpentanoic
acid (D-Hmp) (b), and D-2-hydroxybutyric acid (D-Hbu) (c) groups.

3. Biosynthesis

Cyclodepsipeptides are biosynthesized by a multi-domain non-ribosomal peptide synthase (NRPS)
that is composed of enzymatic modules used to elongate the proteinogenic and non-proteinogenic
amino acids, as well as carboxyl and hydroxy acids [48,49]. The modules respond to the order and
number of the precursors incorporated into the chain. Separate NRPS modules are required to assemble
the product and a minimal module consists of the three core domains: adenylation (A) domain,
thiolation or peptidyl-carrier protein (T or PCP) domain, and condensation (C) domain. Moreover,
each module and each active site domain is used only once for the recognition and activation of
the precursors through adenylation with ATP (A: adenylation domain), covalent thioester tethering
(T: thiolation or PCP: peptidyl carrier protein domain), which tethers the activated precursor to a
4′-phosphopantetheine (PP) cofactor through a thioester bond and transport substrates to the active
sites of the domains, and condensation (C domain) of the precursors via catalyzing the peptide bond
(C-N) formation between the elongated chain and the activated amino acid. The main domains may be
supported by additional domains of the NRPS, such as the epimerization (E) domain, which catalyzes
the transformation of an L-amino acid into a D-amino acid or the dual/epimerization (E/C) domains,
which catalyze the epimerization and condensation. NRPSs contain an additional reductase (R) domain,
which is responsible for reducing the final peptide, the methylation (MT) domain, which catalyzes
N-methylation of the amino acid substrate, the cyclization (Cy) domain that catalyzes the formation of
oxazoline or thiazoline rings by internal cyclization of cysteine, serine, or threonine residues, and the
oxidation (Ox) domain, which catalyzes the formation of an aromatic thiazol through oxidation of a
thiazoline ring. The last domains (TE–thioesterase domains), mostly located at the final NRPS module,
are responsible for releasing the full-length NRPS product from the enzyme through cyclization or
hydrolysis [48–52].

Enniatin biosynthesis is catalyzed by the 347 kDa multienzyme enniatin synthase (ESYN1) purified
for the first time from Fusarium oxysporum and further characterized by Zocher and coworkers [53].
Extensive molecular research revealed the basis of cyclic oligopeptide biosynthesis and allowed
us to identify esyn1, a gene encoding enniatin synthase, as the essential enzyme of the metabolic
pathway [39,54–57]. The biochemical characterization revealed that the enzyme possesses two substrate
activation modules EA and EB, composed of approximately 420 amino acid residues. The EA module
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activates and participates in binding the α-D-hydroxy acids, while the EB module activates the
amino acids. These two modules consist of a conserved 4-phosphopantetheine binding site at the
C-terminus, with a highly conserved serine residue. An additional 4-phosphopantetheine group and
N-methyltransferase domain M are present in the EB module. Also, a putative condensation (C) domain
exists between the EA and EB modules. The M domain is highly conserved among N-methyl peptide
synthases of prokaryotic and eukaryotic origin, thus it represents only local sequence similarities to the
structural elements of other AdoMet-dependent methyltransferases. A dipeptidol unit is formed due
to the interaction between the EA and EB modules and later, it is transferred and condensed into a
thiol group. Three such successive condensations of the enzyme-bound dipeptidols are followed by
the ring′s closure into the enniatin (ENN) molecule [4,58–61] (Figure 3A,B).
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Figure 3. Mechanism of enniatin B formation according to Hornbogen et al. [4]. (A) Scheme of partial
reactions leading to the formation of ENN B, P1, P2, P3 = 4′-phosphopantetheine. (B) Model of
arrangement of catalytic sites in enniatin synthase; Cy: cyclization cavity; EA: D-Hiv-activation module;
EB: L-valine-activation module; M: N-methyltransferase domain.

The primary precursors of the ENNs are valine, leucine or isoleucine, D-2-hydroxyisovaleric acid,
and S-adenosylmethionine and their synthesis is entirely dependent on the cyclization reaction of linear
hexadepsipeptide. The amino acid specificity of ESYN1 contributes to the chemical diversity of ENNs
and this is why different types of ENNs are produced by Fusarium scirpi, F. lateritium, and F. sambucinum.
The Esyn domains activating L-valine in F. scirpi and preferably activating L-isoleucine in F. sambucinum
are nearly identical, with an exception of the three regions showing significant differences in their
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structures. This difference in the activation can be accredited to the mutations that eventually occurred
in the amino acid recognition sites of various enniatin synthases. In spite of the variability in amino
acid units, certain ENNs can only be isolated from specific Fusarium strains, in which the enniatin
synthase prefers some amino acids over others during biosynthesis [4,53,62–65].

BEAs are also formed as cyclic trimers assembled from three D-Hiv-N-methyl-L-amino acid
dipeptidol monomers (Figure 4A) [50,51]. Similarly, they are also produced by a thiol template
mechanism and synthesized by beauvericin synthase (BEAS) enzyme, which consists of a single
polypeptide chain of about 351 kD [41,50]. For the first time, the 250 kDa BEAS enzyme was
characterized by Peeters et al. [66] from the entomopathogenic fungus Beauveria bassiana, although
Xu et al. [50], who conducted a more in-depth analysis, described a 33,475 bp beauvericin gene cluster
including a 9570 bp bbBeas gene. Five years later, Zhang and coworkers [51] cloned and characterized
9413 bp beauvericin synthase gene (fpBeas) from Fusarium proliferatum.

The C1, A1, and T1 domains within the first module of FpBEAS and ESYN (EA module) synthases
have the same role in cyclodepsipeptide formation [51]. Nevertheless, the two depsipeptide synthases
differ in A2 domain substrate specificity within module 2 (ESYN EB module), i.e., apart from that of
enniatin synthase, beauvericin synthase preferably accepts N-methyl-L-phenylalanine and some other
aliphatic hydrophobic amino acids (e.g., leucine or isoleucine) [50]. Furthermore, their incorporation
efficiency reduces with the length of side chains, where ortho-, meta-, and para-fluoro-substituted
phenylalanine derivatives and N-methyl-L-leucine, N-methyl-L-norleucine, and N-methyl-L-isoleucine
residues could replace N-methyl-L-phenylalanine. Domains C2, T2a;b, M2, and C3 within module 2 of
BEAS and ESYN play the same role in both synthases (Figure 4B) [50,66].

The depsipeptides, including BEAs, have a common 2-hydroxycarboxylic acid ingredient–D-2
-hydroxyisovalerate (D-Hiv) that is formed from 2-ketoisovalerate (2-Kiv) by a highly specific
chiral reduction reaction catalyzed by 2-ketoisovalerate reductase (KIVR) enzyme [50,52,67–70].
KIVR has a significant role in the biosynthesis of BEAs as was clearly understood when BEA
production was inhibited in a KIVR knock-out B. bassiana mutant [67]. Kiv is formed from
pyruvate during the biosynthesis of valine and it is the key intermediate in several metabolic
pathways, including pantothenate biosynthesis in fungi, bacteria, and plants. It is also involved in
producing phosphopantetheinyl prosthetic groups of acyl or peptidyl carrier proteins and co-enzyme
A (Figure 5) [50,52,67,69,70].
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Figure 5. Synthesis of 2-ketoisovalerate (Kiv), a substrate used in the formation of D-2-hydroxyisovaleric
acid (D-Hiv) moiety by 2-ketoisovalerate reductase (KIVR) according to Xu et al. [67]. BCAAT:
branched-chain amino acid aminotransferase.

Significant sequence homologies were identified for certain Fusarium enzymes, which shows a
common genetic background for the synthesis of both depsipeptide compounds. Zhang et al. [51]
revealed in their analysis that FpBEAS (GenBank acc. no. JF826561.1) has 64% identity to ESYN
(GenBank acc. no. CAA79245) as it was proven that some Fusarium species, like F. poae, F. proliferatum, or
F. oxysporum were found to produce ENNs and BEA simultaneously. This is justified by the fact that both
toxins share a metabolic pathway [1,44,71,72]. Reports suggest that there is a high probability that the
single PCR based esyn1- and/or BEAS- specific marker can detect potential BEAs and ENNs-producing
fungi from contaminated soil and plant material [39,55,73].

4. Fusarium Species and Cyclodepsipeptide Mycotoxins in Food and Feed

Plant crops are critical mainly in terms of yield and diverse use for foods and feeds. They suffer
from a range of fungal diseases and Fusarium species are among the most damaging pathogens,
producing toxic secondary metabolites, such as cyclodepsipeptides. Cyclodepsipeptides biosynthesis
has been observed for 44 Fusarium species (Table 2) and F. acuminatum, F. concentricum, F. proliferatum,
F. verticillioides, F. oxysporum, and F. tricinctum produce a broad spectrum of ENN, BEA, and BEAE
analogues. The remaining Fusarium species formed only individual mycotoxin groups, such as BEA,
ENNs, or a mixture of these. However, in a few research papers, it was not specified which Fusarium
species produced ENNs and the presence of mycotoxins was described as a “mix of ENNs” (Table 2).

Fusarium species can cause many plant diseases and one of them is Fusarium head blight (FHB),
which is devastating for cereal species, particularly as it is a major problem regarding wheat production
in many countries. Usually, one or more Fusarium species (F. graminearum, F. culmorum, F. avenaceum,
F. poae, and F. sporotrichioides) are involved as causal agents [74]. The occurrence of many Fusarium
species may increase the accumulation of mycotoxins in grains or plants and introduce them into the
food chain [71,75,76]. Humidity and temperature determine the disease severity, but geographical
conditions, plant genotype, and local pathogen populations also play essential roles [54,77].
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Table 2. Cyclodepsipeptides mycotoxins produced by various Fusarium species.

Fusarium Species Compound References

F. acuminatum
BEA, ENN A, ENN A1, ENN B, ENN B1, ENN B2, ENN B3,

ENN B4, ENN P1, ENN P2, BEA C, BEA D, BEA G1,
ALLOBEA C

[2,3,5,21,39,47,78]

F. acutatum BEA, mix of ENNs [79]

F. ananatum BEA, ENN A, ENN B, ENN B1 [39]

F. anthophilum BEA, ENN A, ENN B, ENN B1 [39,78]

F. arthrosporioides mix of ENNs [15]

F. avenaceum BEA, ENN A, ENN A1, ENN B, ENN B1, ENN B2, ENN B3,
ENN B4

[25,39,78,80,81]

F. beomiforme BEA [78]

F. bulbicola BEA [79]

F. circinatum BEA [79,82]

F. concentricum

BEA, ENN A, ENN A1, ENN B, ENN B1, BEA A/F, BEA B,
BEA C, BEA D, BEA E, BEA G1, BEA G2, BEA J, BEA K, BEA
L, BEAE A, BEAE B, BEAE G1/G2/G3, BEAE L, ALLOBEA A,

ALLOBEA B, ALLOBEA C

[2,3,39,79,82]

F. compactum ENN A, ENN A1, ENN B, ENN B1, ENN B2 [47]

F. culmorum mix of ENNs, ENN B [83]

F. denticulatum BEA [79]

F. dlamini BEA, ENN A, ENN A1, ENN B1 [39,78,79]

F. equiseti BEA, ENN A, ENN A1, ENN B, ENN B1 [39,78]

F. fujikuoi BEA [79]

F. globosum BEA [84]

F. guttiforme BEA [79,82]

F. graminearum ENN A, ENN A1, ENN B, ENN B1 [85]

F. konzum BEA [86]

F. kyushuense ENN B, ENN B1 [87]

F. lactis BEA, ENN A, ENN A1, ENN B, ENN B1 [39,79]

F. langsethiae BEA, ENN A1, ENN B, ENN B1 [87]

F. lateritium mix of ENNs [15]

F. longipes BEA [78]

F. merismoides mix of ENNs [15]

F. nygamai BEA, ENN A, ENN A1, ENN B [39,78,79]

F. oxysporum

BEA, BEA A/F, BEA B, BEA C, BEA D, BEA E, BEA G1, BEA
G2, BEA J, BEAE A, BEAE B, BEAE L, ALLOBEA A,

ALLOBEA B, ALLOBEA C, ENN A1, ENN B, ENN B1, ENN
H, ENN I, ENN MK1688

[2,3,39,44,78]

F. poae BEA, ENN A, ENN A1, ENN B, ENN B1 [39,71,78,87]

F. phyllophilum BEA [79]

F. proliferatum
BEA, ENN A1, ENN B, ENN B1, BEA A/F, BEA B, BEA C,
BEA D, BEA E, BEA G1, BEA G2, BEA J, BEA K, BEAE A,

BEAE B, BEAE L, ALLOBEA A, ALLOBEA B, ALLOBEA C
[2,3,39,84]

F. pseudoanthophilum BEA [82]

F. pseudocircinatum BEA [79]
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Table 2. Cont.

Fusarium Species Compound References

F. redolens BEA [37]

F. sacchari BEA [79]

F. sambucinum BEA, mix of ENNs [15,78]

F. scirpi mix of ENNs [15]

F. semitectum BEA [88]

F. sporotrichioides BEA, ENN A, ENN B, ENN B1, ENN A1 [39,71,87]

F. subglutinans BEA, ENN A, ENN B, ENN B1 [39,88–90]

F. succisae BEA [79]

F. temperatum BEA, ENN A, ENN A1, ENN B, ENN B1 [39,90]

F. torulosum ENN B [91,92]

F. tricinctum BEA, ENN A, ENN A1, ENN B, ENN B1, ENN B4, ENN J1 [5,36,39,93]

F. verticillioides BEA, ENN B, ENN B1, BEA C, BEA D, BEA G1, BEA K,
BEAE A, ALLOBEA C [2,3,39,94]

“ENN”—enniatin; “BEA”—beauvericin; “ALLOBEA”—allobeauvericin; “BEAE”—beauvenniatin.

Available literature data relate both to identifying Fusarium fungi isolated from various hosts and
analyzing their mycotoxin biosynthesis capacity (Table 3). Efforts are also being made to assess contamination
levels with these toxins of raw plant materials and food and feed products (Table 4). Mainly, the content of
BEA and four ENNs (ENN A, ENN A1, ENN B, ENN B1) has been investigated [8,25]. BEA and ENNs are
common contaminants and were detected in plant crops and grains throughout the world. The occurrence of
BEA, ENN A, ENN A1, ENN B, and ENN B1 in naturally contaminated crops has been studied much more
extensively than the occurrence of other cyclodepsipeptides [1,39]. Table 3 summarizes the most effective
producers of depsipeptides among Fusarium fungi isolated from different crops and geographical areas.
F. avenaceum, F. equiseti, F. proliferatum, and F. sporotrichioides were the most common species isolated from
plants. The best producer of BEA was F. proliferatum (FPG61_CM), isolated from garlic in Spain, with the
concentration reaching 671.80 µg/g [6]. The highest yielding producers of ENNs were F. avenaceum (KF1330),
isolated from wheat in Poland, and F. tricinctum (3405), isolated from wheat in Finland [5,39]. Both strains
produced in the highest amounts ENN B (895.46 µg/g, 690 µg/g) and ENN B1 (452.46 µg/g, 1200 µg/g) [5,39].

Table 4 presents the maximum amounts of BEA and ENNs in naturally contaminated plant crops
described in the literature. The highest contamination level of BEA was found to be 1731.55 µg/g in
Polish maize [95]. When compared to other cyclodepsipeptides, it was also the highest concentration
of mycotoxin in crops. In Tunisian sorghum, maximum concentrations of ENN A (95.6 µg/g) and ENN
B1 (120.1 µg/g) were detected [96]. The highest amount of ENN A1 was 813.01 µg/g and 814.42 µg/g
in Spanish maize and rice, respectively [97]. ENN B was found with a maximum level of 180.6 µg/g
in Tunisian wheat [96]. The data show very high variability of investigated cyclodepsipeptides and
it can be concluded that each strain of Fusarium species possesses a unique ability to biosynthesize
these compounds. In addition to crops, cyclodepsipeptides are also found in food and feed [98–103].
Cyclodepsipeptides were identified mainly in cereal food, with very high levels of ENN A1 and B1

in breakfast cereals from Morocco (668 and 795 µg/g, respectively) [99]. In feed samples, ENNs and
BEA levels were very low and did not exceed 0.48 µg/g for BEA (poultry feed) and 2.19 µg/g for ENNs
(poultry feed) [101].
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Table 3. The strains of Fusarium species from different origin and hosts, producing the highest amounts of cyclodepsipeptides [µg/g].

Species ID Strain Host Origin ENN A ENN A1 ENN B ENN B1 ENN B2 ENN B3 BEA Analytical Method Reference

F. acuminatum KF 3713 Pea Poland 19.62 26.92 90.89 31.49 NA NA 5.31 HPLC [39]

F. ananatum KF 3557 Pineapple Costa Rica 6.94 ND 8.81 27.60 NA NA 27.68 HPLC [39]

F. avenaceum

KF 3803 Asparagus Poland ND ≤0.01 0.03 ND NA NA ND HPLC [39]

11B14 Barley Italy 10.9 193 45 172 55 1.58 NA LC-MS/MS [104]

KF 3717 Pea Poland 6.09 5.65 6.71 11.46 NA NA ND HPLC [39]

Fa40 Wheat Italy 165.8 109.2 35.5 60.2 NA NA ND LC-DAD [71]

KF 1337 Wheat Poland 34.55 71.90 895.46 452.46 NA NA ND HPLC [39]

44 Wheat Italy 7.24 34.3 6.6 17.8 0.67 ≤0.01 ≤0.01 LC-MS/MS [105]

Fa34 Wheat Italy 332.8 181.7 64.9 101.9 NA NA ND LC-DAD [71]

KF 3390 Maize Poland 29.12 32.40 255.08 138.15 NA NA ND HPLC [39]

F. concentricum KF 3755 Pineapple Costa Rica 11.40 8.69 17.33 18.17 NA NA 312.2 HPLC [39]

F. culmorum KF 3798 Asparagus Poland ND ND 0.06 ND NA NA ND HPLC [39]

F. equiseti

KF 3563 Asparagus Poland 43.47 36.81 29.18 30.39 NA NA ND HPLC [39]

KF 3749 Tomato Poland 39.27 38.18 ND 29.22 NA NA ND HPLC [39]

KF 3430 Banana Ecuador 31.17 32.15 32.98 41.22 NA NA ND HPLC [39]

Feq16 Wheat Italy ND ≤0.01 ≤0.01 ≤0.01 NA NA ≤0.01 LC-DAD [71]

Feq136 Wheat Italy ≤0.01 0.02 ≤0.01 0.02 NA NA ND LC-DAD [71]

F. fujikuroi KF 3631 Rice Thailand ND ND ND ND NA NA 428.09 HPLC [39]

F. globosum 6646 Maize South
Africa NA NA NA NA NA NA 110 LC-MS [84]

F. lactis KF 3641 Pepper Poland 30.97 26.94 ND ND NA NA ND HPLC [39]

F. nygamai KF 337 Pigeon
Pea India 10.45 ND 9.50 ND NA NA 22.86 HPLC [39]

F. oxysporum KF 3567 Garlic Poland ND 6.42 8.25 7.28 NA NA 80.03 HPLC [39]

KF 3805 Asparagus Poland ND ND ND ND NA NA 0.53 HPLC [39]
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Table 3. Cont.

Species ID Strain Host Origin ENN A ENN A1 ENN B ENN B1 ENN B2 ENN B3 BEA Analytical Method Reference

F. poae

Fp26 Wheat Italy ≤0.01 0.07 0.03 0.05 NA NA 3.5 LC-DAD [71]

156 Wheat Italy ≤0.01 0.03 0.03 ND ND ND 10.5 LC-MS/MS [105]

Fp49 Wheat Italy ≤0.01 0.1 0.05 0.04 NA NA 9.4 LC-DAD [71]

KF 2576 Maize Poland 34.31 26.89 28.71 ND NA NA 37.53 HPLC [39]

F. proliferatum

KF 3382 Pineapple Hawaii ND ND ND ND NA NA 3.39 HPLC [39]

FPG61_CM Garlic Spain NA NA NA NA NA NA 671.80 HPLC [6]

KF 3363 Garlic Poland ND ND ND ND NA NA 45.13 HPLC [39]

KF 3792 Asparagus Poland ND 0.39 0.13 0.06 NA NA 0.41 HPLC [39]

KF 3584 Rice Thailand ND 6.39 12.92 19.64 NA NA 291.87 HPLC [39]

KF 3560 Rhubarb Poland ND ND ND ND NA NA 149.67 HPLC [39]

KF 496 Maize Italy ND 5.48 9.61 12.89 NA NA ND HPLC [39]

F. sambucinum 179 Wheat Italy ND ND ND ND ND ND 10.1 LC-MS/MS [105]

F. subglutinans 1084 Maize South
Africa NA NA NA NA NA NA 700 LC-MS [84]

F.
sporotrichioides

KF 3815 Asparagus Poland ND 0.09 ND ND NA NA 0.21 HPLC [39]

KF 3728 Pea Poland 12.67 ND 5.99 18.15 NA NA 5.13 HPLC [39]

Fsp50 Wheat Italy ND ≤0.01 ≤0.01 0.02 NA NA 13.7 LC-DAD [71]

194 Wheat Italy ND ND ND ND ND ND 6.89 LC-MS/MS [105]

F. temperatum
KF 3321 Pineapple Costa Rica 27.79 34.39 39.20 29.21 NA NA 290.97 HPLC [39]

RCFT 934 Maize Argentina NA NA NA NA NA NA 1151 HPLC [106]

KF 506 Maize Poland ND ND 15.17 9.88 NA NA 17.47 HPLC [39]

F. tricinctum
KF 3795 Asparagus Poland 0.1 0.17 0.28 0.38 NA NA 0.55 HPLC [39]

27B14 Malting
barley Italy 8.45 118 39 124 27 0.13 NA LC-MS/MS [104]

3405 Wheat Finland NA 94 690 1200 NA NA 33 HPLC [5]

F. verticillioides KF 393 Maize USA ND ND 8.75 12.43 NA NA 2.34 HPLC [39]

“ND”—not detected; “NA”—not analyzed.



Toxins 2020, 12, 765 15 of 22

Table 4. Maximum levels [µg/g] of naturally occurring depsipeptides in foods and feeds from
different countries.

Sample Origin ENN A ENN A1 ENN B ENN B1 ENN B4 BEA Reference

Asparagus Poland ND 0.05 0.06 ND NA 0.1 [8]

Barley

Italy ND ND ND ≤0.01 0.02 ≤0.01 [100]

Italy 0.02 0.06 0.07 0.07 NA ≤0.01 [104]

Finland 0.95 2 9.76 5.72 NA 0.02 [1]

Morocco ND 220 49 32 NA 5 [107]

Norway ≤0.01 0.04 0.49 0.17 NA ≤0.01 [108]

Spain ND 361.57 21.37 45.94 NA 6.94 [97]

Tunisia 33.6 149 29.2 31 NA NA [96]

Maize

Brazil ≤0.01 0.31 ≤0.01 ≤0.01 NA 0.16 [109]

Croatia NA NA NA NA NA 1.84 [110]

Denmark ≤0.01 ≤0.01 0.58 0.09 NA 0.09 [111]

Japan NA NA NA NA NA 0.03 [112]

Morocco ND 445 100 8 NA 59 [107]

Poland NA NA NA NA NA 1.73 [95]

Serbia 0.02 0.03 ≤0.01 0.02 NA 0.14 [7]

Slovakia NA NA NA NA NA 3 [113]

Spain ND 813.01 6.31 4.34 NA 9.31 [97]

Tunisia ND 29.6 ND 17 NA NA [96]

USA NA NA NA NA NA 0.5 [114]

Oats
Finland ≤0.01 ≤0.01 0.02 ≤0.01 NA 0.02 [1]

Italy ND ≤0.01 ≤0.01 ND 0.05 ≤0.01 [100]

Norway ≤0.01 ≤0.01 0.05 0.02 NA 0.02 [108]

Rice
Iran ND ≤0.01 ND ND ND ≤0.01 [115]

Spain ND 814.42 7.95 ND NA 11.78 [97]

Rye Finland ND ≤0.01 0.05 ≤0.01 NA ND [1]

Italy ≤0.01 ND ≤0.01 ND ≤0.01 ≤0.01 [100]

Sorghum Tunisia 95.6 480 ND 120.1 NA NA [96]

Spelt wheat Italy ≤0.01 ND ND ND ND ND [100]

Wheat

Finland 0.49 0.94 18.3 5.1 NA ≤0.01 [1]

Italy ≤0.01 ≤0.01 0.02 ≤0.01 0.04 ≤0.01 [100]

Morocco 0.08 0.13 2.57 0.35 NA 0.02 [116]

Morocco 34 209 11 19 NA 4 [107]

Norway ≤0.01 0.02 0.79 0.18 NA ≤0.01 [108]

Poland 0.27 3.6 28.52 11.8 NA 0.02 [57]

Romania 0.14 0.36 0.41 0.51 NA NA [117]

Spain ND 634.85 ND ND NA 3.5 [97]

Tunisia 75.1 177.7 180.6 58.5 NA NA [96]

UK 0.04 0.17 0.13 0.30 NA NA [85]



Toxins 2020, 12, 765 16 of 22

Table 4. Cont.

Sample Origin ENN A ENN A1 ENN B ENN B1 ENN B4 BEA Reference

Breakfast
cereals

Morocco 29.7 688 81.1 795 NA 5.3 [99]

Spain ND 268.54 ND ND NA 3.12 [97]

Tunisia 121.3 480 295 120.1 NA NA [96]

Infant
cereals Morocco ND 52 5.7 14.5 NA 10.6 [99]

Pasta Italy ≤0.01 ≤0.01 0.11 ≤0.01 ≤0.01 ND [100]

Oat flour Spain ND 388.38 ND ND NA 4.18 [97]

Wheat flour Japan ≤0.01 0.03 0.63 0.09 NA ≤0.01 [112]

Corn grits Japan ND ND ND ND NA 0.03 [112]

Bovine feed Spain ND ≤0.01 0.04 0.02 NA 0.05 [98]

Ovine feed Spain ND ≤0.01 0.09 0.03 NA 0.13 [98]

Caprine
feed Spain ND ≤0.01 0.02 ≤0.01 NA 0.02 [98]

Horses feed Spain ND ≤0.01 0.04 ≤0.01 NA 0.03 [98]

Porcine feed
Finland 0.31 0.55 1.51 1.85 NA 0.41 [102]

Spain ND ≤0.01 0.06 0.02 NA ≤0.01 [98]

Poultry feed
Brazil ND ≤0.01 ≤0.01 ≤0.01 NA 0.02 [109]

Spain ND ≤0.01 0.05 0.02 NA 0.02 [98]

UK 0.04 0.03 2.19 0.40 NA 0.48 [101]

Rabbits
feed Spain ND ≤0.01 0.05 0.02 NA ≤0.01 [98]

Dogs feed Spain ND ≤0.01 0.02 ≤0.01 NA 0.04 [98]

Cats feed Spain ND ND ≤0.01 ≤0.01 NA ND [98]

Fish feed Scotland/Norway/
Spain ≤0.01 ≤0.01 0.03 ≤0.01 NA 0.08 [103]

“ND”—not detected; “NA”—not analyzed.

5. Conclusions

Fungi from the Fusarium genus produce a unique set of cyclodepsipeptide analogues of different
amounts. The described mycotoxins are involved in plant-pathogen interaction, thus they were detected
in a range of foodstuffs or feeds originating from many countries. They may be very dangerous for
human health because of their biological activities. On the other hand, cyclodepsipeptides possess
antimicrobial, insecticidal, antifungal, and antibiotic activities, which may help develop new drugs.
In addition, because of their cytotoxicity, cyclodepsipeptides may have applications in anti-cancer
therapy. Moreover, new BEAs, ENNs, or BEAEs with different amino/hydroxy acid compositions are
detected each year inside in vitro fungal cultures. It was proven that not only fungi from Fusarium
genus naturally produce cyclodepsipeptides, but also other fungi belonging to Beauveria, Acremonium,
and Paecilomyces genera. Therefore, it is essential to continually improve the knowledge regarding these
compounds, their structure, diversity, and toxicity to screen products of fungal secondary metabolism
and monitor the dispersion of phytopathogenic fungi, which are potent producers of threatening
mycotoxins. Moreover, it would be beneficial to bettering the understanding of cyclodepsipeptide
biosynthesis to investigate the diversity and evolution history of the BEAS/ESYN synthase gene cluster
from various fungi.
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