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Abstract: Previous studies by us or others have shown that endoplasmic reticulum (ER) stress was
activated by fumonisin 1 (FB1) exposure, which is considered to be a critical event in the FB1-
induced toxic effect. However, the detailed mechanisms underlying FBl-induced ER stress-
mediated liver toxicity remain elusive. The objectives of the present study were designed to address
the following issues: (1) the contribution of each arm of the unfolded protein response (UPR); (2)
the downstream targets of ER stress that mediated FBl-induced liver toxicity; and (3) the
relationship between ER stress and oxidative stress triggered by FB1. We also investigated whether
the inhibition of ER stress by its inhibitor could offer protection against FB1-induced hepatotoxicity
in vivo, which has not been critically addressed previously. The results showed that the activation
of the IREla axis, but not of the PERK axis, of UPR contributed to FB1-induced ER stress-mediated
hepatocyte toxicity; the activation of the Bax/Bak-mediated mitochondrial pathway lay downstream
of IREla to trigger mitochondrial-dependent apoptosis in response to FB1; FB1-induced oxidative
stress and ER stress augmented each other through a positive feedback mechanism;
tauroursodeoxycholic acid (TUDCA)-mediated ER stress inactivation is an effective approach to
counteract FB1-induced hepatotoxicity in vivo. The data of the present study allow us to better
understand the mechanisms of FB1-induced hepatotoxicity.

Keywords: Fumonisin B1; endoplasmic reticulum stress; IREla; oxidative stress; hepatotoxicity;
autophagy

Key Contribution: Activation of IREla-mitochondria pathway, but not the PERK axis of the
endoplasmic reticulum stress response, contributed to fumonisin Bl-induced hepatocyte toxicity.
The inhibition of endoplasmic reticulum stress by tauroursodeoxycholic acid offered a significant
protection against fumonisin Bl-induced hepatotoxicity in vivo.

1. Introduction

The endoplasmic reticulum (ER) is a vital organelle and plays a pivotal role in protein synthesis,
folding and maturation [1,2]. ER stress can be induced in response to many cellular perturbations,
such as oxidative stress, in turn activating an evolutionary conserved signaling pathway named the
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unfolded protein response (UPR) [3-5]. The main aim of UPR is to counteract ER stress through the
inhibition of protein translation, enhancing its ability for protein folding and accelerating protein
degradation, and to restore ER homeostasis [4,6,7]. However, the excessive or persistent induction of
the UPR may change its initial function from adaptation to cell death induction, which has been
shown to contribute to the pathogenesis of various diseases, including liver diseases [8].

Mycotoxins are toxic secondary metabolites of fungi and the common toxic substances found in
food [9]. It has been well documented that mycotoxin can produces numerous health problems for
human and animals [10,11]. Fumonisins, synthesized mainly by Fusarium verticillioides and Fusarium
proliferatum, are a group of mycotoxins often found in maize and maize-based foodstuffs [12,13].
Among them, fumonisin B1 (FB1) is a key member with numerous adverse health effects, including
hepatotoxicity. Previous studies by us or others have shown that treatment with FB1 can trigger ER
stress, which contributed significantly to the FB1-induced toxic effect [14,15]. However, the detailed
mechanisms underlying FB1-induced ER stress-mediated liver toxicity remain largely unknown. The
objectives of the current study were designed to decipher the mechanisms involved in ER stress-
mediated liver toxicity by addressing the following issues: (1) the functional role of each branch of
the UPR signaling; (2) the downstream molecules of ER stress that contributed to FB1-induced liver
toxicity; and (3) the relationship between ER stress and oxidative stress induction by FB1. In addition,
the possibility of ER stress as a target to counteract FB1-caused hepatotoxicity in vivo has been
evaluated, something which has not been critically addressed previously.

2. Results

2.1. Activation of IRE1a but not the PERK Axis of ER Stress Response Contributes to FB1-Induced ER
Stress-Mediated Hepatocyte Toxicity

Most existing studies have employed HepG2 liver cancer cells to investigate the hepatotoxicity
of FB1 [15]. The cancer attribute poses a key limitation of this cell line as a model for hepatotoxicity
study. The AML12 (alpha mouse liver 12) cell line was established from the hepatocytes of a mouse.
Given its non-tumorigenic feature, the AMLI12 cell line may be a more suitable cell model for
hepatotoxicity study. AML12 cells were exposed to increasing concentrations of FB1 for 48 h, and cell
proliferation and apoptosis were assessed by crystal violet staining and Annexin V/PI staining,
respectively. As shown in Figure 1A,B, the FB1 exposure induced a dose-dependent reduction of the
cell proliferation and an increase of the cell death induction in AML12 cells. Next, we examined
whether ER stress was induced by FB1 in AMLI12 cells, and the results are shown in Figure 1C. A
Western blot analysis of key ER stress markers demonstrated that FB1 treatment caused a dose-
dependent increased phosphorylation of IREla, PERK, and elF2q, indicating that ER stress was
activated by FB1 in AML12 cells. To determine the role of ER stress in FBl-induced apoptosis in
AML12 cells, we tested the influence of ER stress inactivation by its inhibitor tauroursodeoxycholic
Acid (TUDCA) on apoptosis induction by FB1. As shown in Figure 1D, FB1-induced apoptosis was
significantly attenuated by ER stress inhibition. These results suggest that the AML12 cell line is a
reasonable system for addressing the detailed mechanisms of the ER stress-mediated liver toxicity of
FBI.

It has been shown that PERK and IREla are the two key branches of the ER stress response
associated with ER stress-mediated apoptosis [3]. To decipher the contribution of each branch to FB1-
inducd apoptosis in liver cells, we evaluated the influence of the specific inactivation of PERK or
IREla on apoptosis induction by FB1 in AML12 cells. 4u8C [16] and GSK2606414 [17] were used to
specifically inhibit IREla and PERK respectively, and apoptosis was measured by Annexin-V/PI
staining. As shown in Figure 1E, FB1-induced apoptosis was significantly suppressed in the presence
of 4u8C but not of GSK2606414 in AML12 cells. Similar results were also found in mouse embryonic
fibroblast (MEF) cells (Figure 1F). These data suggested that the activation of the IREla pathway but
not of the PERK pathway contributed to FB1-induced hepatocyte apoptosis.
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Figure 1. Activation of the IREla axis, but not PERK axis, of the ER stress response contributed to
FB1-induced ER stress-mediated hepatocyte toxicity. AML12 cells were treated with 50 to 300 uM FB1
for 48 h, and then (A) the inhibitory effects of FB1 on the AML12 cells was evaluated by crystal violet
staining, and (B) the cell death was analyzed by Annexin V/PI staining. (C) The effect of FB1 on the
ER stress makers, the cells were exposed to FB1 for 48 h, and the phosphorylation of PERK, IRElq,
and elF2a were analyzed by Western blot. n = 3 (D) The influence of the ER stress inhibitor TUDCA
on the cell death induction by FB1. (E & F) The effect of IREla or PERK specific inhibitor on FB1-
induced cell death in AML12 cells and MEF cells. The cells were exposed to FB1 in the presence or
absence of inhibitors for the indicated time, and the cell death was evaluated by the flow cytometry
analysis of Annexin V/PI positive cells. The bars denote standard errors from three experiments. * p <
0.05, ** p <0.01, ** p < 0.001 compared with the corresponding control.

2.2. IREla-Mediated Activation of Mitochondrial Pathway Plays an Important Role in Apoptosis Induction
by FB1 in Liver Cells

To investigate the downstream molecules of ER stress that mediated FB1-induced apoptosis in
liver cells, we examined the effect of ER stress inhibition on FB1-induced apoptosis-related proteins
by Western blot analysis. As demonstrated in Figure 2A, FB1 treatment resulted in increased JNK
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phosphorylation, the down-regulation of anti-apoptotic Bcl-2 family protein Mcl-1, and the up-
regulation of pro-apoptotic Bcl-2 family protein Bak, Bax, and PUMA in AMLI12 cells. To critically
determine the role of Bax/Bak in FB1-induced apoptosis, wild-type (WT) mouse embryonic fibroblast
(MEF) cells and Bax/Bak double knockout (KO) MEF cells were employed to compare apoptosis
induction in these two cell lines. As demonstrated in Figure 2B, FB1 caused a concentration-
dependent apoptosis in WT-MEF cells, which was dramatically decreased in Bax/Bak KO-MEEF cells,
suggesting Bax/Bak played a pivotal role in FB1l-induced apoptosis. In line with the protective effect
of IREla inhibition on apoptosis induction, the FB1-induced changes of apoptosis-related proteins
were ameliorated in the presence of the IREla specific inhibitor 4u8C (Figure 2C), further supporting
a pivotal role of IREla in FB1-induced hepatocyte apoptosis.
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Figure 2. The IREla-mediated activation of the mitochondrial pathway plays an important role in
apoptosis induction by FB1 in liver cells. (A) The effect of FB1 on the expression of JNK, Mcl-1, Bak,
Bax, and Puma in the protein level. The cells were exposed to FB1 with or without TUDCA for 48 h,
and the phosphorylation of JNK, Mcl-1, Bak, Bax, and Puma were analyzed by Western blotting. n =
3. (B) FBI1 significantly induced cell death in wild-type MEF cells but not in Bax/Bak knockout MEF
cells. The bars denote standard errors from three experiments. (C) The effect of the IREla specific
inhibitor 4u8C on the expression of apoptosis-related proteins. The cells were exposed to FB1 with or
without 4u8C for 24 h, and the phosphorylation of JNK, Mcl-1, Bak, Bax, and Puma were analyzed by
Western blotting. n = 3. ** p <0.01 compared with the corresponding control.

2.3. A Positive Feedback Loop Exists between ER Stress Activation and ROS Generation Induced by FB1

It has been well documented that reactive oxygen species (ROS) generation and ER stress are
closely linked events in apoptosis induction, and that these two cellular events can augment each
other in a positive feedback loop under certain conditions [18]. Previous studies have shown that
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both oxidative stress and ER stress are induced by FB1 exposure [14,15,19,20]. We then investigated
the relationship between FB1-induced ER stress and oxidative stress. AML12 cells were exposed to
FB1 for the indicated time, and ROS was measured by flow cytometry following DCFH-DA staining.
As shown in Figure 3A, treatment with FB1 induced a time-dependent increase of ROS in AML12
cells. To assess the role of the ROS generation in FB1-induced ER stress, we tested the effect of ROS
suppression by N-acetyl-1-cysteine (NAC), a free radical scavenger and a precursor of glutathione,
on FB1-induced key markers of ER stress. As shown in Figure 3B, the FB1-induced phosphorylation
of IREla and elF2a, and the induction of Bip, were significantly attenuated in the presence of NAC.
In agreement with the ER stress inhibition by NAC, FB1l-induced cell death (Figure 3C) and the
cleavage of PARP (Figure 3B) were dramatically reduced under the condition of the ROS suppression.
These results clearly indicate that ROS generation is an important contributor to the ER stress
induction by FB1 exposure in liver cells. We next asked whether ROS-mediated ER stress led to a
further ROS generation through a positive feedback mechanism. The changes of ROS levels were
measured by flow cytometry when UPR signaling was inhibited by either the IREla or PERK
inhibitor. As shown in Figure 3D, a significant reduction of FBl-induced ROS production was
observed in the presence of the IREla inhibitor, whereas no significant change was detected in the
presence of the PERK inhibitor. Together, these results suggest that a positive feed-forward loop
existed between the ROS generation and IREla activation induced by FB1.

The disrupted sphingolipid metabolism-mediated accumulation of free sphingoid bases is
another contributing factor for FBl-induced cytotoxicity. We next asked whether the ER stress
induction was also associated with the disruption of the sphingolipid metabolism. Myriocin, a small
molecule that blocks the sphingolipid biosynthesis pathway [21], was used to inhibit free sphinganine
accumulation, and under such conditions neither the apoptosis induction nor ER stress activation
was attenuated, ruling out the involvement of the accumulation of free sphingoid bases in the FB1-
induced ER stress in liver cells (data not shown).
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Figure 3. ROS generation is responsible for FBl-induced ER stress. (A) The effects of FB1 on the ROS
generation. The cells were treated with FB1 for 8 h or 18 h, and the intercellular ROS levels were
assessed using flow cytometry after DCFH-DA staining. (B) The influence of ROS suppression by
NAC on the ER stress markers and cell apoptosis. The cells were treated with FB1 with or without
NAC for 48 h, and the phosphorylation of IREla and elF2a, Bip, and cleaved PARP were analyzed
by Western blotting. n = 3. (C) The influence of ROS suppression by NAC on cell death induction. The
cells were treated with FB1 with or without NAC for 48 h, and the cell death was evaluated by flow
cytometry analysis after Annexin V staining. (D) The effect of the IRE1a or PERK specific inhibitor on
FB1-induced ROS. The bars denote standard errors from three experiments. ** p < 0.01, ** p < 0.001
compared with the corresponding control.

2.4. Inhibition of ER Stress by TUDCA Leads to a Significant Reduction of FB1-induced Liver Injury In
Vivo

Previous studies have established a correlation between hepatotoxicity and ER stress induction.
However, it has not yet been addressed whether targeting ER stress can offer protection for FB1-
induced liver injury in vivo. To investigate the role of ER stress in FB1-induced hepatotoxicity in vivo,
we first confirmed ER stress induction in liver via FB1 exposure in a mouse model. As shown in
Figure 4A, treatment with 2.5 mg/kgBW FB1 for 5 days caused a significantly increased
phosphorylation of IREla, PERK, and elF2a in liver samples. The elevated phosphorylation levels of
these key ER stress-related proteins indicated that ER stress in liver was activated by FB1. To critically
determine the functional role of ER stress in FB1-induced liver injury, we measured the effect of ER
stress inhibition by its inhibitor tauroursodeoxycholic acid (TUDCA) on the level of alanine
aminotransferase (ALT), a key biochemical marker of liver toxicity. As shown in Figure 4B, FB1
treatment induced a significant increase of serum ALT, which was dramatically reduced by TUDCA.
Accordingly, the key ER stress markers were nearly completely abolished. In addition, FB1-induced
body weight reduction was also attenuated by ER stress inhibition (Figure 4C). Together, the data
suggest that FB1 exposure led to ER stress induction in liver, and that the inhibition of ER stress by
its inhibitor significantly protected against FB1-induced liver injury.
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Figure 4. The inhibition of ER stress by TUDCA led to a significant reduction of FB1l-induced liver
injury in vivo. Animals and treatments are as described in Materials and Methods. (A) Western blot
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analysis of the expression of ER stress markers in the liver tissues of mice. n = 5. (B) The serum levels
of ALT. (C) The body weight kinetics of mice. The quantitative data are presented as the mean + SD
based on biological repeats. ** p < 0.01, *** p < 0.001 compared with the corresponding control group.

2.5. Inhibition of ER Stress by TUDCA Inhibits FB1-Induced Hepatic Apoptosis and Autophagy In Vivo

It has been shown that the induction of apoptosis and autophagy contributed to FB1-induced
toxicity [14,22-26]. We next asked whether the inhibition of ER stress could protect against FB1-
induced hepatic apoptosis and autophagy in vivo. Apoptosis was evaluated by a TUNEL assay
detecting apoptotic DNA fragmentation and via a Western blot analysis of caspase-3. As shown in
Figure 5A, FB1 exposure induced a significant increase in TUNEL-positive cells in liver samples,
indicating that hepatic apoptosis was induced by FB1 under experimental conditions. As expected,
FB1-induced hepatic apoptosis was significantly ameliorated by the ER stress inhibitor TUDCA. In
agreement with the TUNEL assay results, a Western blot analysis revealed that the FB1 induced the
cleavage of caspase-3, which was rescued by ER stress inhibition (Figure 5B). Autophagy was
detected by a Western blot analysis of the LC3I/II conversion, which is a key marker of autophagy
induction. As shown in Figure 5C, treatment with FB1 caused an increased LC3I/II conversion, which
was suppressed by ER stress inhibition, suggesting a pivotal role of ER stress in activating hepatic
autophagy by FB1 in vivo. We also investigated the involvement of the AMPK-mTOR axis in FB1-
induced hepatic autophagy, and the results are shown in Figure 5D. The data showed that FB1
reduced AMPK phosphorylation and increased mTOR phosphorylation, indicating that FB1-induced
autophagy was independent of AMPK activation or m-TOR inactivation. Taken together, the
induction of ER stress, but not the inactivation of the mTOR pathway, played an important role in
FBl-induced hepatic apoptosis and autophagy in vivo. To determine the relationship between
apoptosis and autophagy in response to FB1, we examined the influence of autophagy inhibition by
its inhibitor 3-MA or the knockdown of ATGS5, or of autophagy induction by its inducer rapamycin
on FBl-induced apoptosis. As shown in Figure 5E,F, apoptosis increased in the presence of 3-MA or
by silencing ATG5, whereas a reduced apoptosis was observed in the presence of rapamycin,
indicating that the activation of autophagy by FB1 counteracted its apoptotic effect in liver cells.
Taken together, the data suggest that ER stress contributed to FB1l-induced hepatic apoptosis and
autophagy in vivo, and that the activation of autophagy by FB1 exposure acted as prosurvival
signaling against apoptosis induction in liver cells.
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Figure 5. The inhibition of ER stress by TUDCA inhibited FBl-induced hepatic apoptosis and
autophagy in vivo. (A) Hepatic apoptosis assessed by TUNEL. (B) A Western blot analysis revealed
that FB1 induced the cleavage of caspase-3, which was rescued by ER stress inhibition in liver samples.
(C) Western blot analysis of the LC3I/II expression. (D) Western blot analysis of p-AMPK, p-mTOR.
(E) The influence of autophagy inactivation by the chemical inhibitor or RNAi on the apoptosis
induction by FB1 in liver cells. (F) The effect of autophagy activation by rapamycin on the FB1-
induced apoptosis in liver cells. The bars denote standard errors from three experiments. * p <0.05, **
p <0.01 compared with the corresponding control.

2.6. Glycyrol Prevents FB1-Induced Apoptosis in AML12 Cells Through Inactivating IREla

Licorice, a popular edible and medicinal plant, has been demonstrated to possess multiple
biological activities, including a hepatoprotective effect [27,28]. Glycyrol (GC) is a naturally occurring
plant coumarin compound isolated from licorice [29]. Our previous studies have shown that
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glycycoumarin (GCM), an analogue of GC, protected against hepatotoxicity in multiple model
systems through mechanisms involved in the suppression of ER stress [30]. We then examined if GC
could offer protection for FBl-induced apoptosis through inactivating IREla. AML12 cells were
exposed to FB1 with or without GC for 48 h, and apoptosis was analyzed by Annexin V/PI staining.
As demonstrated in Figure 6A, apoptosis induced by FB1 was significantly reduced by GC. In line
with the decreased apoptosis, FBl-induced IREla phosphorylation and Bip up-regulation were
obviously suppressed by GC (Figure 6B). The data suggest that GC was capable of protecting liver
cells from FB1-induced apoptosis via the inactivation of IRElat.
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Figure 6. Glycyrol (GC) prevents FB1-induced apoptosis in AML12 cells through inactivating IRElax.
The effects of GC on FB1-induced cell death. (A) The cells were exposed to 300 uM FB1 with or without
10 uM GC for 48 h, and then the cells were collected for a death measurement by Annexin V/PI
staining. The bars denote standard errors from three experiments. (B) The influences of GC on the
FB1-mediated ER stress. The cells were exposed to 300 uM FB1 with or without 10 uM GC for 24 h,
and then IREla phosphorylation and Bip were examined by Western blotting. n = 3. ** p < 0.01
compared with the corresponding control.

3. Discussion

Liver is major target organ site of FB1 toxicity, and the activation of ER stress is considered to be
a critical event for FB1-induced hepacytotoxicity. In the present study, we further deciphered the
mechanisms underlying ER stress-triggered liver toxicity in response to FB1 exposure. We
demonstrated that the activation of the IREla-mitochondria pathway but not of the PERK axis of the
ER stress response contributed to FBl-induced ER stress-mediated hepatocyte toxicity. Moreover,
our data revealed that FB1-induced ROS generation and ER stress induction accentuated each other
through a positive feed-forward loop. In addition, we provided evidence that inactivating ER stress
via its inhibitor led to a significant reduction of FB1-induced hepatotoxicity in vivo. The data enable
us to better understand the functional role of ER stress in FB1-induced hepatotoxicity.

When ER stress is induced, a number of intracellular signal transduction pathways are activated.
To date, at least three mechanistically distinct arms of the UPR signaling (PERK, IREla, and ATF6)
have been identified. Among the UPR signaling pathways, IREla and PERK are two key molecules
that regulate the cell fate of ER-stressed cells. The activation of IRE1a and PERK can exert an either
protective or pro-death function depending on the context [2,15]. Both IREla and PERK were
activated by FB1 exposure. Regarding the functional role of these two branches of UPR, in the current
study we uncovered that the inhibition of IREl«, but not of PERK, protected the liver from FB1-
induced toxicity. Accordingly, inactivating IRE1a by its specific inhibitor led to nearly abolishing the
activation of JNK and the mitochondrial pathway induced by FB1. The data therefore supported that
the FBl-induced ER stress-mediated hepatotoxicity was attributed to the activation of the IREla-
JNK-mitochondria pathway but not to PERK. The data of the current study provided novel insight
into the mechanistic understanding of the hepatotoxicity induced by FB1.
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Autophagy can be induced by various types of stimuli, including mycotoxins [14]. The activation
of autophagy can either protect against cell death induction or promote cell death induction,
depending on the context [31]. The determinants that govern the pro-death or pro-survival function
of autophagy remain elusive. The proposed factors that affect the functional role of autophagy in
regulating cell death induction include the magnitude and duration of autophagy or the types of cells
[32]. Our previous study has shown that treatment with FB1 dose-dependently activated autophagy
in MARC-145 monkey kidney cells. The inhibition of autophagy by either RNAi or chemical
inhibitors resulted in a significantly reduced cell death, suggesting that the autophagy induction by
FB1 contributed to the cell death induction in MARC-145 monkey kidney cells [14]. Consistent with
the pro-death function of autophagy in MARC-145 monkey kidney cells, a recent study by Zhang et
al. [33] demonstrated that FB1 can cause autophagic cell death in the hemocytes of Ostrinia furnacalis.
In the present study, we showed that hepatic autophagy was activated by FB1 both in vitro and in
vivo. The inhibition of autophagy by its inhibitor or the RN Ai approach led to an increased cell death
induction in AML12 mouse liver cells, while the autophagy inducer rapamycin protected the liver
cells from FB1-induced cell death. These results clearly indicated that hepatic autophagy induction
exerted a pro-survival activity against FB1-induced hepatocytotoxicity, which is consistent with that
found in HepG2 cells [15]. An obvious explanation for this controversial role of FBl-induced
autophagy in regulating cell death induction is the types of cells. The detailed mechanisms involved
in the pro-death or pro-survival function of FB1-induced autophagy need to be further investigated.
Moreover, the validation of these in vitro findings in vivo is also needed.

4. Conclusions

The activation of IREla, but not of the PERK branch, of the ER stress response contributed to
FB1l-induced ER stress-mediated hepatocyte toxicity. The hepatic ER stress activation by FB1 was
attributed to the oxidative stress, not to the accumulation of free sphingoid bases, and FB1-induced
ER stress promoted ROS generation through a positive feedback mechanism. The suppression of ER
stress by its chemical inhibitor could offer protection against FB1-induced liver toxicity in vivo. The
findings of the present study provided novel insight into understanding the mechanisms underlying
FB1l-induced ER stress-mediated liver toxicity, and strongly suggested that targeting ER stress is a
practical and an effective approach for fighting against FB1-mediated liver toxicity in vivo.

5. Materials and Methods

5.1. Chemicals and Reagents

Fumonisin Bl and Tauroursodeoxycholic acid (TUDCA) were purchased from Cayman
Chemical (Ann Arbor, MI, USA). Glycyrol (GC purity > 99%) was purchased from BioBioPha
(Kunming, Yunnan, China). 3-methyladenine (3-MA), bafilomycin Al, N-acetyl-L-cysteine (NAC),
Tris-HCl, and DCFH-DA were purchased from Sigma-Aldrich (St. Louis, MO, USA). ISP-1 (476300)
was purchased from Calbiochem (San Diego, CA, USA). IREla inhibitor 4u8C and PERK inhibitor
GSK2606414 were purchased from MCE (Shanghai, China). Primary-antibodies specific to caspase-3
(9662), Bip (3183), phospho-elF2a (3597), phospho-PERK (3192), CHOP (2895), Bax(2772), Bak
(12105), BCI-2 (3869), PUMA (14570), c-PARP (9548), p-AMPK (2535), p-mTOR (2448), Mcl-1 (4572),
and p-JNK (4668) were purchased from Cell Signaling Technology. Phospho-IREla (ab48187) was
purchased from Abcam (Beverly, MA, USA). Antibody for LC-3 was purchased from MBL
International Corporation (Woburn, MA, USA). 3-actin antibody was purchased from Action Biotech.
Rabbit (458) and Mouse (330) second antibodies were purchased from MBL International
Corporation. The primary antibody dilution ratio is 1:1000. The dilution ratio of second-antibody
specific for either rabbit or mouse is 1:5000. Protease inhibitor cocktail (AEBSF, hydrochloride;
aprotinin; E-64 protease inhibitor; EDTA, disodium salt; leupeptin hemisulfate. Cat. No. 539131) was
purchased from Calbiochem.
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5.2. Cell Culture and Treatments

AML12 mouse liver cells were obtained from the American Type Culture Collection (ATCC) and
grown in DMEM/F12 medium supplemented with 10% fetal bovine serum and 1% ITS without
antibiotics. MEF mouse embryonic fibroblast cells (generously provided by Professor Feng Zhu,
Tongji Medical College, Huazhong University of Science and Technology) were grown in DMEM
medium supplemented with 10% fetal bovine serum without antibiotics. Treatments were given
when the cell confluency reached around 50-60%.

5.3. Apoptosis Evaluation

Apoptosis was evaluated by the Annexin V staining of externalized phosphatidylserine in
apoptotic cells by flow cytometry using a commercially available kit (MBL International, Woburn,
MA, USA). Briefly, the cells were treated for the times indicated. After the treatments, the cells were
harvested and washed twice with ice-cold PBS, and re-suspended in a 1x binding buffer.
Subsequently, the cells were incubated with Annexin V-FITC staining solution at room temperature
for 15 min, and analyzed by Becton Dickinson FACSCalibur Flow Cytometer at an excitation
wavelength of 488 nm. Ten thousand cells were collected from the analyzed sample, the cells of
Annexin V positive and PI negative represented early apoptotic cells, the cells of both Annexin V and
PI positive represented late apoptotic cells, and the cells positive for PI only represented necrotic cells.
The percentage of cell deaths was calculated by adding up early apoptotic cells, late apoptotic cells,
and necrotic cells, and dividing the total cell number.

5.4. Proliferation Assay

The proliferation was evaluated by crystal violet staining. After the treatments, the culture
medium was removed, and 1% glutaraldehyde solution was used to fix the cells for 15 min. After the
fixation, 0.02% aqueous solution of crystal violet was used to stain the cells for 30 min. After washing
with PBS, the stained cells were solubilized with 70% ethanol. The absorbance at 570 nm with the
reference filter 405 nm was assessed by a microplate reader (Thermo, MK3, Waltham, MA, USA).

5.5. Western Blotting

Western blot analyses were essentially conducted as described previously [34]. Briefly, ice-cold
RIPA (radio-immuno-precipitation assay) buffer containing protease inhibitor was used to lyse the
cells. Proteins of the samples were separated by electrophoresis and then transferred to a
nitrocellulose membrane (PALL, Pensacola, FL, USA). The membrane was subsequently incubated
with primary antibodies following the incubation with secondary antibody. The immunoreacted
bands were visualized by enhanced chemiluminescence (Fisher/Pierce, Rockford, IL, USA) and
recorded on an X-ray film (Eastman Kodak Company, Rochester, NY, USA; XBT-1).

5.6. Assessment of Reactive Oxygen Species

AML12 cells were treated with FB1 for the times indicated. 30 min before the cell harvest, 20 uM
DCFH-DA (2',7'-dichlorodihydrofluorescein diacetate) was added to the cultured medium. Esterases
can hydrolyze DCFH-DA to DCFH, which is then oxidized by hydrogen peroxides to generate
fluorescent DCF. The enhanced intracellular fluorescence was assessed by a 530 nm bandpass filter
with a Becton Dickinson FACSCalibur Flow Cytometer. The ROS scavenger NAC was added 2 h
before the treatment of FB1.

5.7. RNA Interference

siRNAs targeting ATG7 (41447), and non-targeting siRNA (37007) were obtained from Life
Technologies. The cells were transfected with siRNAs using siPORT NeoFX transfection agent
(AM4510). 24 h post-transfection, the cells were used for subsequent experiments.
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5.8. Animals and Treatments

Eight-week-old male C57BL/6N mice weighing 20.0 + 1.0 g were purchased from Vital River
(Beijing, China). Animal care and procedures were approved by the Institutional Animal Care and
Use Committee (China Agricultural University). Approval code: 3197190316; approval date: 11
March 2019. The mice were fed with a commercial standard mouse cube diet (Beijing Keaoxieli Feed
Company, Beijing, China). After acclimatization for 5 days, the mice were randomly divided into 4
groups, and each group contained 7 mice. Group 1: vehicle control with the injection of physiological
saline. Group 2: TUDCA (50 mg/kg, i.p. treatment for 7 days) according to the previous studies
[35,36]. Group 3: FB1 (2.5 mg/kg, i.p. treatment for 5 days) according to the previous studies [15].
Group 4: TUDCA (50 mg/kg, i.p. treatment for 7 days) and FB1 (2.5 mg/kg, i.p. treatment for 5 days).
The mice were treated with TUDCA two days prior to the FB1 treatment, and then treated with FB1
and/or TUDCA every day for 5 days continuously. FB1 and/or TUDCA were dissolved in
physiological saline. The mice were sacrificed 24 h after the last injection. The liver tissues were
collected immediately for the following research. The liver tissues were either fixed in neutral
buffered formalin or frozen in liquid nitrogen immediately.

5.9. ALT Measurement

The serum alanine aminotransferase (ALT) activity was determined by measuring the enzyme
reaction-mediated production of colorimetric product using a commercially available ALT activity
assay kit from Nanjing Jiancheng (Nanjing, China), according to the manufacturer’s instructions.

5.10. Histochemical and Immunohistochemical Staining

Apoptosis in mouse liver tissues was evaluated via a Terminal deoxynucleotidyl transferase-
mediated dUTP nick end labeling assay (DeadEnd™ Fluorometric TUNEL System, Promega
Corporation, WI, USA), according to the manufacturer’s instructions.

5.11. Statistical Analysis

The data are presented as the mean + SD. The statistical analysis was carried out via a one-way
ANOVA followed by Tukey’s post hoc test using SPS520.0. The graphs were drawn using GraphPad
Prism (version 5.0 for MacOS, La Jolla, CA, USA, 2014)
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