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Abstract: Venomous snakebite is one of the world’s most lethal neglected tropical diseases.
Animal-derived antivenoms are the only standardized specific therapies currently available for
treating snakebite envenoming, but due to venom variation, often this treatment is not effective
in counteracting all clinical symptoms caused by the multitude of injected toxins. In this study,
the coagulopathic toxicities of venoms from the medically relevant snake species Bothrops asper,
Calloselasma rhodostoma, Deinagkistrodon acutus, Daboia russelii, Echis carinatus and Echis ocellatus were
assessed. The venoms were separated by liquid chromatography (LC) followed by nanofractionation
and parallel mass spectrometry (MS). A recently developed high-throughput coagulation assay
was employed to assess both the pro- and anticoagulant activity of separated venom toxins. The
neutralization capacity of antivenoms on separated venom components was assessed and the
coagulopathic venom peptides and enzymes that were either neutralized or remained active in the
presence of antivenom were identified by correlating bioassay results with the MS data and with
off-line generated proteomics data. The results showed that most snake venoms analyzed contained
both procoagulants and anticoagulants. Most anticoagulants were identified as phospholipases A2s
(PLA2s) and most procoagulants correlated with snake venom metalloproteinases (SVMPs) and serine
proteases (SVSPs). This information can be used to better understand antivenom neutralization and
can aid in the development of next-generation antivenom treatments.

Keywords: antivenom; nanofractionation; coagulation; anticoagulation; snakebite

Key Contribution: An integrated analytical approach was established to assess the coagulopathic
properties of nanofractionated venom toxins and the neutralization potency of antivenoms against these
coagulopathic activities, which is a valuable complementary antivenomics tool in antivenom research.

1. Introduction

According to the World Health Organization around 5.5 million people get bitten by snakes,
per year causing more than 1.8 envenomings, resulting in 81,000–138,000 deaths [1–4]. Furthermore,
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around 400,000 are estimated to suffer from long-term morbidity including amputation, blindness, and
nerve damage [3,5–8].

Most snake venoms are abundant in peptides and proteins, many of which are of pathological
importance and capable of affecting important physiological functions including blood coagulation,
blood pressure regulation, and the transmission of nervous and muscular impulses. One of the most
common but serious pathological effects of envenoming by snakes is coagulopathy [9], which is caused
by the deregulation of blood coagulation by hemotoxic compounds [10]. Coagulopathy-inducing
venom components can be categorized based on their procoagulant and anticoagulant properties.
Important procoagulant toxins include certain clotting factor activating snake venom metalloproteinases
and serine proteases [8,11,12], whereas anticoagulant toxins include enzymatic (e.g., phospholipases
A2 (PLA2), fibrin(ogen)olytics and L-amino acid oxidases) and non-enzymatic proteins (e.g., C-type
lectin-like proteins (CTL), three-finger toxins, and Kunitz-type proteinase inhibitors) [13]. They often
synergistically disturb the hemostatic system and can lead to coagulopathy [8,9,14,15].

The only standardized specific treatment currently available for neutralizing the medically
important effects of snake venom toxins is antivenom [8,9,12]. However, due to limited availability
of antivenom, the need for cold storage, varying quality and specificity, and because of ontogenetic,
individual and geographic inter-specific venom variation, antivenom administration often does not
provide an adequately effective treatment. Frequently, inappropriate antivenoms are applied. Even
when a suitable antivenom is administered in many cases, not all clinical symptoms are counteracted,
i.e., not all toxins from the injected venom cocktails are (fully) neutralized. The limited paraspecific
immunological cross-reactivity of each particular antivenom and the variation in snake venoms at
every taxonomic level therefore requires many different antivenoms and/or polyvalent antivenoms to
be available. Nevertheless, the proportion of antibodies specific to any particular venom in polyvalent
antivenoms are relatively low, meaning that larger doses of these antivenoms are typically required
to effect cure [12,16]. This not only results in higher treatment costs, but also increases the risk of
adverse immunological reactions [12,17–19]. Therefore it is important to develop a new generation
of antivenoms that are paraspecifically effective at much lower doses than currently used [12,20].
Although antivenomics [21] have been successfully used to evaluate which venom toxins can bind
efficiently to antivenom, this technique does not reveal whether the binding of antivenom to venom
components neutralizes their toxicity (which has to be assessed by one or several biological assays).
New analytics that can assess the effectiveness of antivenoms in neutralizing the pathology induced by
individual venom toxins would be a valuable complementary tool to antivenomics. Nanofractionation
analytics is regarded as an effective method for screening complex crude venoms to rapidly identify
and characterize separated venom toxins [22,23]. Such nanofractionation analytics include liquid
chromatographic (LC) separation, UV absorbance, and mass spectrometric (MS) detection followed
by a bioassay after collection of low-volume fractions of the column effluent at a resolution of 2 s to
10 s [22]. Among many existing assays available to assess coagulopathic nature of snake venoms, the
assay developed recently by Still et al. [10] is a sensitive high throughput and low volume 384-well
format assay, which can directly be combined with nanofractionation analytics. In the study of Still
et al. several other coagulation assay formats are also discussed in detail.

In this study we present an integrated analytical approach providing a valuable complementary
tool for antivenomics in antivenom research. We used the aforementioned, recently developed,
high-throughput screening (HTS) coagulation assay [10] integrated into nanofractionation analytics to
assess the coagulopathic properties of fractionated venom toxins following liquid chromatography.
The profiles of fractionated venom toxins from a number of medically important snake species
capable of causing coagulopathic effects were obtained after which the neutralizing potency of
antivenoms against these activities was assessed. The species included in this study were Bothrops
asper, Calloselasma rhodostoma, Deinagkistrodon acutus, Daboia russelii, Echis carinatus and Echis ocellatus.
Moreover, the fractioned coagulopathic venom toxins were identified using mass spectrometry and
proteomics data acquired by Slagboom et al. [24]. Finally, the cross-reactivity of antivenoms against
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venoms of closely related snake species was evaluated to assess their efficacy, or lack thereof, in the
neutralization of these venom components. These results will broaden our knowledge on the relative
efficacy and cross-reactivity of existing antivenom therapies and can guide the future development of
next-generation antivenom treatments.

2. Results

In this study, a nanofractionation approach was used to evaluate antivenom efficacy in neutralizing the
coagulopathic properties of individual venom proteins. Following LC separation, both the procoagulant
and anticoagulant activities of venom fractions were assessed using a low volume HTS coagulation
bioassay performed in 384-well plates. An assessment of the coagulation activity of each venom fraction
in the presence of varying concentrations of homologous (i.e., species-specific) antivenom was then
performed. Coagulopathic activity was correlated with the MS and proteomics data obtained in parallel
to determine which types of venom components were neutralized and if so to what extent.

2.1. Correlation of Coagulopathic Toxins to Coagulant Peaks

Coagulopathic venom components were correlated to coagulant peaks in each snake venom as
described in the experimental section. The results are listed in Table 1. The table contains a numbered
identifier for each positive or negative coagulopathic peak (these numbers are also given in Figure 1
where they indicate the respective peaks) together with Mascot results, accurate mass, toxin class, and
activity. In multiple venom fractions, more than one venom toxin was assigned due to co-elution.
Many snake venom PLA2s are known to exert anticoagulant activities [25,26]. Identified PLA2s that
eluted in anticoagulant bioactivity regions are listed in Table 1 including those for which no data on
their anticoagulation activity could be found in the literature and/or was reported in UniprotKB. The
characteristic profiles of the UV chromatograms obtained for each venom were used to connect the
results with MS and proteomics data obtained for the same venoms by Slagboom et al. [24]. This way,
coagulopathic activities could be linked to accurate molecular masses and tentative protein identities. The
exact mass data from LC-MS measurements and the proteomics results from the in-well tryptic digests of
bioactive wells (performed by Slagboom et al. [24]) are presented in Table 1. Where no exact mass data
could be acquired by LC-MS, the proteomics mass data obtained from the Mascot searches are provided.

2.2. Effect of Nanofractionated Venom Toxins on Plasma Coagulation

The effect of nanofractionated snake venom proteins on plasma coagulation was first studied in a
dose-response manner. Reconstructed coagulation bioassay chromatograms are shown in Figure 1.
For all venoms analyzed both procoagulant and anticoagulant effects were observed at a venom
concentration of 1.0 mg/mL. The chromatographic retention times of the anticoagulants were within a
similar time frame as those of the procoagulants, whereas the anticoagulants eluted closely together
before the procoagulants. An exception was observed for C. rhodostoma venom for which the small
anticoagulant peak (only observed at the highest venom concentration tested) eluted in between the
cluster of procoagulant peaks. Some coagulopathic activities were observed as several sharp peaks as
observed for B. asper venom, while other venoms showed only broad peaks in their chromatograms
such as the anticoagulation activity of D. russelii venom. This broad anticoagulant peak most likely
represents the bioactivity of multiple closely eluting peaks from several peptides and/or enzymes
involved in the anticoagulant activity measured. As anticipated, when diluting injected venoms,
all procoagulant and anticoagulant signals were concentration-dependent, i.e., both the height and
broadness of the positive and negative peaks were reduced with decreasing venom concentrations until
the signal disappeared. All coagulopathic signals in all tested venoms disappeared at a 0.04 mg/mL
venom concentration, except for D. russelii venom, where the anticoagulant peak was still retained
indicating full anticoagulant activity at this concentration. Only by further diluting this venom to
0.008 mg/mL we observed the disappearance of this potent anticoagulant peak. A detailed description
of all observed coagulopathic peaks analyzed in duplicate for all venoms and their relative potencies
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are given in the Supporting Information (Section S1). Based on results from Slagboom et al. [24] the
venom of the Australian elapid snake Oxyuranus scutellatus also displayed potent coagulopathic toxicity.
Its effects on plasma coagulation and the neutralization efficacy of the corresponding Polyvalent
Snake Antivenom (Australia-PNG) (CSL Limited, Parkville, Victoria Australia) against this venom are
presented in the Supporting Information (Section S4).

Table 1. Correlated LC-UV peaks, LC-MS (mass spectrometry) masses and proteomics data for
coagulopathic venom toxins (peaks numbers of the pro- and anticoagulant peaks are indicated in
Figure 1; CTL = C-Type Lectin; PLA2 = Phospholipases A2; SVMP = Snake Venom Metalloproteinase;
SVSP = Snake Venom Serine Protease.

Species Peak
Number

Retention
Time (min)

Mascot Protein
Hits

Exact Mass
From MS Data

Exact Mass
Calculated From

Mascot Data

Toxin
Class

B. asper

BA 1 19.1 PA2H2_BOTAS 13,714.5646 13,714.56817 PLA2
BA 2 19.4–20.2 PA2HA_BOTAS 13,912.4649 13,896.51308 PLA2
BA 2 19.4–20.2 PA2H3_BOTAS 13,765.5812 13,765.58896 PLA2
BA 3 20.5–20.8 PA2B3_BOTAS 13,957.5333 13,957.48720 PLA2
BA 3 20.5–20.8 VM2_BOTAS - 53,564 SVMP
BA 3 20.5–20.8 PA2A2_BOTAS - 14,194 PLA2
BA 4 20.6 VSPL_BOTAS - 28,019 SVSP
BA 4 20.6 VM1B1_BOTAS - 45,936 SVMP
BA 5 21.1–21.3 SLA_BOTAS - 7084 CTL
BA 6 21.7 - - - -

C. rhodostoma

CR 1 19.7–20.5 PA2BD_CALRH 13,665.0848 13,665.0237 PLA2
CR 1 19.7–20.5 VSPF1_CALRH - 26,570 SVSP
CR 1 19.7–20.5 SLEA_CALRH - 15,962 CTL
CR 1 19.7–20.5 SLEB_CALRH - 15,190 CTL
CR 1 19.7–20.5 PA2AB_CALRH - 14,352 PLA2
CR 2 19.6–19.7 VSPF2_CALRH - 29,145 SVSP
CR 3 20.1–20.7 VSPF2_CALRH - 29,145 SVSP
CR 4 20.8–21.2 VSPF2_CALRH - 29,145 SVSP
CR 4 20.8–21.2 SLYA_CALRH - 15,796 CTL

CR 5 21.5–21.7 SLYA_CALRH - 15,796 CTL
CR 5 21.5–21.7 SLYB_CALRH - 16,770 CTL

D. acutus

DA 1 20.6–20.9 PA2A_DEIAC - 14,820 PLA2
DA 1 20.6–20.9 SL_DEIAC - 18,332 CTL
DA 2 21.3–21.7 SLCB_DEIAC - 17,133 CTL
DA 2 21.3–21.7 VSP1_DEIAC - 29,480 SVSP
DA 2 21.3–21.7 VSPA_DEIAC - 26,132 SVSP
DA 2 21.3–21.7 VM1AC_DEIAC - 47,690 SVMP
DA 2 21.3–21.7 VM11_DEIAC - 47,845 SVMP
DA 2 21.3–21.7 VM1H5_DEIAC - 46,518 SVMP
DA 2 21.3–21.7 VM3AK_DEIAC - 69,752 SVMP
DA 3 21.8–22.1 VM11_DEIAC 47,845 SVSP
DA 3 21.8–22.1 VM1H5_DEIAC 46,518 SVSP
DA 4 22.8–23.1 VM3A2_DEIAC 27,151 SVMP
DA 4 22.8–23.1 VM3AH_DEIAC 70,721 SVMP

D. russelii

DRR 1 18.3–21.7 PA2B8_DABRR 13,587.2248 13,587.2027 PLA2
DRR 1 18.3–21.7 PA2B5_DABRR 13,587 PLA2
DRR 1 18.3–21.7 PA2B3_DABRR 13,687 PLA2
DRR 2 21.6–22.4 - - - -

E. carinatus
EC 1 19.6–19.7 PA2A1_ECHCA - 16,310 PLA2
EC 2 21.9–22.3 - - - -
EC 3 22.3–22.9 - - - -

E. ocellatus
(Nigeria)

EO 1 19.4–19.8 PA2A5_ECHOC 13,856.1382 13,856.0665 PLA2
EO 2 21.8–21.9 VM3E2_ECHOC - 69,426 SVMP
EO 2 21.8–21.9 VM3E6_ECHOC - 57,658 SVMP
EO 2 21.8–21.9 SL1_ECHOC - 16,601 CTL
EO 2 21.8–21.9 SL124_ECHOC - 16,882 CTL
EO 3 22.0–23.1 VM3E6_ECHOC - 57,658 SVMP
EO 3 22.0–23.1 SL1_ECHOC - 16,601 CTL
EO 3 22.0–23.1 SL124_ECHOC - 16,882 CTL
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Figure 1. Reconstructed coagulation chromatograms for B. asper, C. rhodostoma, D. acutus, D. russelii,
E. carinatus, and E. ocellatus venoms after nanofractionation at different concentrations. Numbers in the
figures represent protein IDs and are listed in Table 1.
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2.3. Antivenom Neutralization Potency

The capability of antivenoms to neutralize nanofractionated snake venom proteins involved
in modulating plasma coagulation was studied at a venom concentration of 1.0 mg/mL. For all
venoms the corresponding antivenom was analyzed at a minimum of three different concentrations,
representing the normal clinically used antivenom concentration (undiluted), and the respective 5-
and 25-fold antivenom dilutions. For some venoms, 125- and 625-fold antivenom dilutions were also
evaluated (Figure 2). For most venoms, both the procoagulant and anticoagulant activities decreased
with increasing antivenom concentrations. Specifically, when analyzed in the presence of undiluted
antivenom, all coagulopathic signals were neutralized for B. asper, C. rhodostoma and E. ocellatus
venoms. All procoagulant signals were fully neutralized for the D. acutus, D. russelii and E. carinatus
venoms, whereas their anticoagulant activities were not fully neutralized or not neutralized at all. For
the D. acutus and E. carinatus venoms, no neutralization of the single sharp anticoagulant peak was
observed in their anticoagulation chromatograms at any of their respective antivenom concentrations.
In case of D. russelii venom the anticoagulant neutralization (of the broad anticoagulant peak) did occur
partly although this is not clearly visible in Figure 2, but when testing anticoagulation neutralization
by undiluted antivenom using a 5-times lower D. russelii venom concentration, the neutralization was
clearly visible (Figure 3). The coagulopathic activities neutralized by undiluted antivenom increased
with decreasing antivenom concentrations. For both B. asper and E. ocellatus venoms, the procoagulant
and anticoagulant peaks reappeared at the 25- and 5-fold antivenom dilutions, respectively. The
procoagulant and anticoagulant activities in C. rhodostoma venom reappeared at the 5- and 25-fold
antivenom dilutions, respectively. For D. acutus, E. carinatus and D. russelii venoms of which the
procoagulant activities could be fully neutralized by their respective undiluted antivenoms, their
procoagulant activity peaks started to appear at a 5-fold antivenom dilution for D. acutus and E. carinatus
venoms, and at a 125-fold antivenom dilution for D. russelii venom. Finally, for the slightly/medium
increased coagulation activities observed in the D. acutus venom chromatograms, the last two positive
peaks were fully neutralized at a 25-fold antivenom dilution, while the first eluting positive peak was
only efficiently neutralized by undiluted antivenom. The duplicate bioassay chromatograms and a
detailed description of all coagulation activities neutralized by their corresponding antivenoms are
given in the Supporting Information (Section S2).

As shown in Figure 2, the anticoagulant profile for D. russelii venom at 1.0 mg/mL could not
even be neutralized by undiluted Russell’s viper antivenom. In fact, the antivenom did not neutralize
any of the anticoagulant activities observed. Therefore, a lower venom concentration (0.2 mg/mL)
was subsequently analyzed, both with and without undiluted Russell’s viper antivenom (Figure 3).
Importantly, the Russell’s viper antivenom used here (Russell’s viper antivenom, Thai Red Cross)
is purified from equine immunoglobulins after hyperimmunization with D. siamensis (Thailand)
venom, while the venom used in this study is from the sister species D. russelii from Sri Lanka. The
nanofractionated D. russelii venom displayed a sharp positive procoagulant peak and a broad negative
anticoagulant peak at a concentration of 0.2 mg/mL, similar to those observed for the 1.0 mg/mL
venom concentration, but slightly narrower, as expected. In the presence of undiluted antivenom, the
procoagulant signals disappeared completely while the broad anticoagulant negative peak became
narrower and smaller, indicating that most of the anticoagulant toxicities were neutralized by antivenom
under these conditions.
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Figure 2. Coagulation chromatograms showing antivenom neutralization efficacy against
nanofractionated venom proteins involved in modulating plasma coagulation. B. asper, C. rhodostoma,
D. acutus, D. russelii, E. carinatus and E. ocellatus venoms analyzed in presence of different amounts/
concentrations of antivenoms (i.e., no antivenom, x-fold dilution and undiluted antivenom).
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Figure 3. Coagulation chromatograms showing antivenom neutralization of venom proteins involved
in modulating plasma coagulation. Nanofractionated D. russelii venom samples analyzed at 0.2 mg/mL
(note: for all other antivenom analyses, 1.0 mg/mL venom concentrations were nanofractionated).

2.4. Antivenom Cross-Reactivity

While antivenom cross-reactivity for venoms of closely related snake species can perhaps be
expected (although note our findings with Daboia spp. described above), more phylogenetically
divergent venoms should display little to no cross-reactivity [27–29]. The venom of D. russelii showed
potent (i.e., large and/or broad peaks) pro- and anticoagulant activities. Therefore, this venom was
selected to evaluate the potential of our method for studying antivenom cross-reactivity, that is,
evaluating antivenom potencies towards venoms other than their target venoms. Six undiluted
antivenoms were evaluated against D. russelii venom after nanofractionation at a concentration of
1.0 mg/mL (Figure 4a). Our resulting data show that Snake Antivenin IP (Haffkine, India) and SAIMR
Echis antivenom (SAVP, South Africa) can effectively neutralize the coagulopathic components of
D. russelii venom. No coagulopathic activity was detected in the presence of undiluted Snake Antivenin
IP and fast coagulation activity was readily neutralized by its 25-fold dilution (Figure 4b). These findings
are perhaps not surprising when considering that this antivenom is made using Indian D. russelii
venom as one of four immunogens. However, the procoagulant activities of D. russelii venom were also
fully neutralized by undiluted SAIMR Echis antivenom, although a small sharp negative anticoagulant
peak was still retained. In sharp contrast, “D. acutus Antivenin” (CDC, China) and “Suero Antiofidico
Polyvalente” (ICP, Costa Rica) antivenoms could only partly neutralize the pro-coagulopathic activities
observed in D. russelii venom, and most anticoagulant peaks were not neutralized. Moreover, both
“Malayan pit viper antivenom” (Thai Red Cross, Thailand) and “Polyvalent Snake Antivenom” (CSL,
Australia) could fully neutralize the fast procoagulant activity but could only partially reduce the
slightly/medium increased procoagulant and anticoagulant activities.

Although venom composition similarities might be expected for E. ocellatus and E. carinatus,
as they both belong to the Echis genus [30–32], studies have shown that anti-E. ocellatus antivenom is
preclinically ineffective against the venom of E. carinatus [33], while clinical studies have shown that
using anti-E. carinatus antivenoms for treating bites by E. ocellatus result in dramatic increases in patient
case fatality rates [34]. To explore such complex interactions between these two medically important
snake venoms and their antivenoms we analyzed the neutralization of E. ocellatus coagulotoxins
by Snake Antivenin IP and that of E. carinatus venom by SAIMR Echis antivenom (anti-E. ocellatus
and E. pyramidum) were analyzed (Figure 5). Perhaps surprisingly, undiluted Snake Antivenin IP
fully neutralized the procoagulant and anticoagulant activities in E. ocellatus venom, with E. ocellatus
venom being more effectively neutralized than E. carinatus venom. However, SAIMR Echis antivenom
showed limited paraspecificity against the coagulopathic toxicity of E. carinatus venom and could only
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neutralize its fast procoagulant activity, even though it effectively neutralized all activities observed in
the E. ocellatus venom. These findings suggest that toxins involved in causing other pathologies, such as
hemorrhage for example, may be responsible for the described lack of clinical efficacy between Indian
E. carinatus antivenom and snakebites by E. ocellatus. The duplicate chromatograms for SAIMR Echis
antivenom vs. E. carinatus, Snake Antivenin IP vs. E. ocellatus and Snake Antivenin IP vs. D. russelii are
presented in the Supplementary Materials (Section S3).

Figure 4. Coagulation chromatograms of antivenom cross-reactivity against nanofractionated D. russelii
venom proteins: (a) The neutralization efficacy of various undiluted antivenoms against coagulopathic
toxicities was assessed; (b) Snake Antivenin IP was selected and further analyzed at different
antivenom concentrations.

Figure 5. Coagulation chromatograms of antivenom cross-reactivity: (a) SAIMR Echis antivenom
neutralization of nanofractionated E. carinatus venom toxins; (b) Snake Antivenin IP neutralization of
nanofractionated E. ocellatus venom toxins.
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2.5. Limitations

As a critical note, although venom toxins are commonly highly stable and typically remain active
when exposed to organic solvents used in reverse-phase LC, some might become (partly) denatured
during separation and thereby lose their biological activity. This is perhaps most likely the case when
considering relatively non-polar venom toxins eluting at higher concentrations of organic modifiers
(i.e., acetonitrile). In contrary to LC-MS and venomics studies, in nanofractionation analytics the venom
toxins have to survive the analytical separation non-denatured in order to perform post-column assays
with the separated venom toxins. Additionally, the LC eluents have to be compatible with ESI-MS. The
currently most efficient LC-MS separations of venoms available rely on trifluoroacetic acid (TFA) in
the mobile phases for reversed-phase separations. The low pH resulting from the ion pairing agent
TFA in the eluent, however, results in (partial or full) denaturation of certain toxins, particularly larger
enzymes, including many pro-coagulopathic enzymes (data from preliminary studies conducted in our
laboratory). Additionally, TFA in LC eluents is well known to reduce sensitivity and cause ion pairing
observed in MS when performing LC-MS with directly coupled ESI-MS to the separation. Therefore,
our reversed phase separations use formic acid (FA) instead when performing nanofractionation
analytics. FA renders many venom toxin enzymes intact during separation but gives lower resolution
and thus peak capacity resulting in more venom toxins being not fully separated from each other. As a
consequence, for bioactive peaks in the bioactivity chromatograms, there are often closely eluting
overlapping toxin candidates which can be responsible for the bioactivity observed. We are currently
investigating different MS compatible separations and eluent compositions to get (1) high peak capacity,
(2) eluted enzyme toxins in their native state and, (3) ESI-MS compatibility.

3. Discussion

Based on the data presented in Table 1 and Figures 2–5 (which show antivenom neutralization of
nanofractionated venom toxins), we assessed which coagulopathic venom protein(s) were efficiently
neutralized, and which were less efficiently or not neutralized.

The B. asper anticoagulants (PA2H2_BOTAS and VM2_BOTAS) and procoagulants (VSPL_BOTAS,
VM1B1_BOTAS and SLA_BOTAS) were neutralized by 25-fold dilutions and 5-fold dilutions of
the species-relevant antivenom Suero Antiofidico polyvalente, respectively. Four B. asper PLA2s
identified in Mascot searches (PA2H3_BOTAS, PA2HA_BOTAS, PA2B3_BOTAS and PA2A2_BOTAS)
were matched to anticoagulant peaks, despite the fact that no anticoagulant activity has been
reported for these enzymes in UniprotKB. However, many snake venom PLA2s are known to
exert anticoagulant activities [25,26]. The anticoagulant activities of these PLA2s were neutralized but
required doses of either undiluted or 25-fold dilution of Suero Antiofidico polyvalente antivenom.
For C. rhodostoma three procoagulant (SLYA_CALRH, SLYB_CALRH and VSPF2_CALRH) and
four anticoagulant (VSPF1_CALRH, SLEA_CALRH, SLEB_CALRH and PA2AB_CALRH) toxins
were neutralized by a 25-fold dilution and 5-fold dilution of Malayan pit viper antivenom,
respectively. The PA2BD_CALRH (PLA2) identified from Mascot searches was matched to anticoagulant
peaks, displays calcium-independent myotoxicity [35] and was neutralized by a 5-fold dilution
of Malayan pit viper antivenom. The PA2A_DEIAC and SL_DEIAC anticoagulants could not be
neutralized by Antivenin of D. acutus. The VM11_DEIAC, VM1H5_DEIAC, VM3A2_DEIAC and
VM3AH_DEIAC procoagulants, and the SLCB_DEIAC, VSP1_DEIAC, VSPA_DEIAC, VM1AC_DEIAC
and VM3AK_DEIAC procoagulants were neutralized by a 25-fold dilution of and undiluted Antivenin
of D. acutus. The PA2B8_DABRR, PA2B5_DABRR and PA2B3_DABRR PLA2s were identified
as anticoagulants in D. russelii venom, and were neutralized by undiluted Snake Antivenin IP
antivenom, undiluted SAIMR Echis antivenom and undiluted Russell’s viper antivenom, of which only
PA2B8_DABRR was reported to exhibit anticoagulant activity [36]. The PA2A1_ECHCA (PLA2) was
assigned as a tentative anticoagulant in the proteomics searches, was reported to be non-lethal to mice
and devoid of neurotoxicity, myotoxicity, hemorrhage, anticoagulant activity and cytotoxicity [37],
was not neutralized by either undiluted Snake Antivenin IP or SAIMR Echis antivenoms. The
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tentative anticoagulant PA2A5_ECHOC was neutralized by undiluted SAIMR Echis antivenom and
undiluted Snake Antivenin IP. The VM3E2_ECHOC, VM3E6_ECHOC, SL1_ECHOC and SL124_ECHOC
procoagulants were neutralized by a 5-fold dilution of SAIMR Echis antivenom and undiluted Snake
Antivenin IP.

4. Conclusions

The neutralization potency of various antivenoms against the coagulopathic activities of
(individual) venom toxins from several medically important snake venoms was assessed using
a HTS coagulation assay following nanofractionation. When antivenoms were tested at their clinically
used concentrations, all detected coagulopathic activities in B. asper and C. rhodostoma venoms were
fully neutralized by their corresponding antivenoms. Antivenin of D. acutus was found to neutralize
the procoagulant activities of the homologous venom, although the anticoagulant peaks were only
partially neutralized. Surprisingly the Indian antivenom, Snake Antivenin IP (Haffkine), could fully
neutralize coagulopathic toxins of both West African E. ocellatus and Indian E. carinatus venoms,
with a higher potency against E. ocellatus. Conversely, the African SAIMR Echis antivenom was only
capable of neutralizing the fast procoagulant activity of E. carinatus venom, but was effective against
all coagulopathic activities exhibited by E. ocellatus venom. Most anticoagulant venom proteins in Sri
Lankan D. russelii venom could only be neutralized by undiluted Russell’s viper antivenom (Thailand)
when nanofractionated at a low (0.2 mg/mL), but not at the typically tested (1.0 mg/mL), concentrations.
The Russell’s viper antivenom (Thailand) was, however, able to effectively neutralize all procoagulant
toxicities caused by this venom. These findings suggest that considerable inter-specific differences exist
between the anticoagulant toxins found in D. russelii and D. siamensis venoms. Almost all coagulopathic
venom toxins in D. russelii venom were neutralized by the Snake Antivenin IP (Haffkine) antivenom,
which includes Indian D. russelii venom as an immunogen, while the SAIMR Echis antivenom also
exhibit some neutralizing potency against this paraspecific venom.

Thus, here we have demonstrated that by applying nanofractionation analytics, one can study the
neutralization of separated venom toxins by antivenom instead of looking solely at crude venoms.
As demonstrated in this study, the cross-reactivity of antivenoms against separated venom toxins can
add great value in terms of informing antivenom neutralization capabilities in vitro, although careful
interpretation of these findings must be applied, as the resulting neutralization profiles relate specifically
to the bioassay being used, and careful consideration of the multifunctionality of snake venoms must be
applied. Thus, neutralization of coagulopathic toxins may not necessarily mean that an antivenom will
be clinically effective. However, by incorporating parallel conducted LC-MS and proteomics analyses
(using data from Slagboom et al. [24]) we generated tentative identifications of the separated bioactive
venom toxins thus further informing these neutralization profiles. The nanofractionation analytics
described herein, therefore, serves as a valuable complementary antivenomics tool in antivenom
research. Furthermore, such analytical approaches are also useful for studying environmental pollutants,
plant extracts, and metabolic mixtures [38–40]. Ultimately, our data on antivenom neutralization can
guide future research on the development of next generation antivenoms for treating snakebite. The
cross-reactivity results are valuable for evaluating the potential use of antivenoms on distinct (but
related) snake species and/or the same snake species from different geographic locations.

5. Materials and Methods

5.1. Chemicals

Water was purified using a Milli-Q Plus system from Millipore (Amsterdam, The Netherlands).
Acetonitrile (ACN; LC/MS grade) and formic acid (FA) were obtained from Biosolve (Valkenswaard,
The Netherlands). Calcium chloride (CaCl2) and phosphate-buffered saline (PBS) were purchased
from Sigma-Aldrich (Zwijndrecht, The Netherlands). Bovine plasma (500 mL, Sodium Citrated, Sterile
Filtered, Product Code: S0260) was purchased from Biowest (Nuaillé, France). Lyophilized snake



Toxins 2020, 12, 53 12 of 16

venoms were stored at −20 ◦C. Prior to analysis, the snake venoms were dissolved in water at a
concentration of 5.0 ± 0.1 mg/mL and then diluted in water to the defined concentrations in this study.
After analysis, the samples were stored at −80 ◦C for further use. Antivenoms were stored at ~4 ◦C,
according to the manufacturer’s instructions.

5.2. List of Venoms and Antivenoms Included in This Study

All venoms under study and their corresponding antivenoms were provided by the Centre for
Snakebite Research and Interventions, Liverpool School of Tropical Medicine (Liverpool, United
Kingdom). Suero Antiofidico polyvalente (Anti-Botropico, Anti-Crotalico, Anti-Laquesico) was
obtained from the Clodomiro Picado Institute, University of Costa Rica (San Jose, Costa Rica) and
was used as antivenom for B. asper (Costa Rica) venom. Malayan pit viper Antivenin from the Queen
Saovabha Memorial Institute, The Thai Red Cross Society (Bangkok, Thailand) was used for neutralizing
C. rhodostoma (Thailand) venom. Antivenin of D. acutus against D. acutus venom was sourced from the
Center for Disease Control, NanKang (TaiPei, Taiwan). Russell’s viper antivenin (Thailand) obtained
from the Queen Saovabha Memorial Institute, The Thai Red Cross Society (Bangkok, Thailand) was
used to neutralize D. russelii (Sri Lanka) venom. SAIMR Echis antivenom used to neutralize E. ocellatus
(Nigeria) was sourced from South African Vaccine Producers (PTY) Lid. (Edenvale, South Africa).
Snake Antivenin IP (Haffkine) for neutralizing E. carinatus (India) venom was obtained from the
Haffkine Bio-pharmaceutical Corporation Ltd. (Pimpri, India). Note that the Indian E. carinatus venom
was collected from a single specimen that was inadvertently imported to the UK via a boat shipment of
stone, and then rehoused at LSTM on the request of the UK Royal Society for the Prevention of Cruelty
to Animals (RCPCA).

5.3. LC-MS Nanofractionation

Venom separation was performed on a Shimadzu UPLC system (‘s Hertogenbosch, The
Netherlands) controlled by Shimadzu Lab Solutions software. For analysis, 50 µL venom solutions
were injected by a Shimadzu SIL-30AC autosampler. The gradient separation was performed on a
Waters XBridge reverse-phase C18 column (a 250 × 4.6 mm analytical column; 3.5 µm particle size
diameter) at 30 ◦C. The column temperature was maintained by a Shimadzu CTO-30A column oven.
The total solvent flow rate of 0.5 mL/min was controlled by two Shimadzu LC-30AD parallel pumps.
Mobile phase A was made up of 98% H2O, 2% ACN and 0.1% FA and mobile phase B was 98% ACN, 2%
H2O and 0.1% FA. The following LC gradient was used for separation: a linear increase from 0 to 50% B
in 20 min followed by a linear increase from 50% to 90% B in 4 min followed by isocratic elution at 90%
B for 5 min. Equilibration was done by a decrease from 90 to 0% B in 1 min followed by 10 min isocratic
elution at 0% B. A 1 to 9 split ratio was implemented after the column of which the 10% fraction of the
effluent was sent to a UV detector (Shimadzu SPD-M20A Prominence diode array detector) and the 90%
fraction was directed to a Gilson 235P autoinjector modified into a nanofraction collector controlled
by an in-house written software Ariadne, or to a FractioMateTM nanofractionator (SPARK-Holland &
VU, Netherlands, Emmen & Amsterdam) controlled by FractioMator software (Spark-Holland, The
Netherlands, Emmen). The nanofractions were collected onto transparent 384-well plates (F-bottom,
rounded square well, polystyrene, without lid, clear, non-sterile; Greiner Bio One, Alphen aan den
Rijn, The Netherlands) at a resolution of 6 s/well. After fractionation, the plates with venom fractions
were dried overnight using a Christ Rotational Vacuum Concentrator (RVC 2−33 CD plus, Zalm en
Kipp, Breukelen, The Netherlands) in combination with a cooling trap at −80 ◦C. Freeze-dried plates
were stored at −20 ◦C until bioassays were performed.

5.4. Plasma Coagulation Activity Assay

For aliquoting plasma from new bottles, a plasma bottle (500 mL bottle, Sodium Citrate, Sterile
Filtered; Biowest, Nuaillé, France) stored at −80 ◦C was warmed up in a warm water bath until just
fully defrosted and then quickly aliquoted in 15 mL CentriStarTM tubes (Corning Science, Reynosa,
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Mexico), which were immediately stored at −80 ◦C. Prior to performing coagulation activity assays,
aliquoted plasma was defrosted to room temperature in a warm water bath and then centrifuged at
2000 rpm for 4 min to remove possible particulate matter. The bioassay followed the method described
recently by Still et al. [10]: A 20 mM CaCl2 solution (20 µL per well) at room temperature was pipetted
onto a 384-well plate with freeze-dried nanofractionated venom fractions using a Multidrop™ 384
Reagent Dispenser (Thermo Fisher Scientific, Ermelo, The Netherlands). Then, plasma was pipetted
into the plate using the same dispenser system (20 µL/well). In the first set of experiments, only varying
concentrations of nanofractionated venoms were analyzed for their coagulopathic effects. For these
experiments, where no antivenom was added to the incubations, the final assay volume was 40 µL/well.
Immediately after plasma addition, a kinetic absorbance measurement was performed on a Varioskan™
Flash Multimode Reader (Thermo Fisher Scientific, Ermelo, The Netherlands) at a wavelength of
595 nm at 25 ◦C. The coagulation activity in each well was measured kinetically over 100 min. The
resulting coagulation curves were normalized by dividing each slope value by the median of all the
values obtained in a single measurement and plotted in several different graphs, that is, the slope
of the average of the 0–5 min readings for fast coagulation, the slope of the average of the 0–20 min
readings for slightly/medium increased coagulation, and the slope of the single reading at 100 min
for anticoagulation. Finally, for each coagulopathic parameter (anticoagulation, fast coagulation, and
extremely fast coagulation) the processed values per well were plotted against the chromatographic
time of each fraction to generate bioactivity chromatograms. Procoagulant activity was plotted in
two different ways to distinguish the slightly and medium increased coagulation velocity from the
fast coagulation velocity. In this study, fast coagulation is considered full coagulation, resulting in
maximum absorbance in the bioassay within 5 min. By plotting the slope of the readings from 0 to
5 min only, the slightly or medium increased coagulation velocity is not observed, as significant clotting
is not yet observed. By plotting the slope of the readings from 0 to 20 min, all coagulation velocities
reaching full coagulation before 20 min display the same slope and therefore their real coagulation
velocities cannot be distinguished from each other.

To analyze the effect of antivenom on nanofractionated venom components, antivenom (10 µL;
prepared as different dilutions from the clinically used antivenom solutions) was added to all wells of
the 384-well plates containing freeze-dried nanofractionated venom. The diluted antivenom solutions
were diluted 5, 25, 125 and 625-fold in PBS from the normal clinical concentration. Next, each plate
was centrifuged for 1 min at 2000 rpm using a 5810 R centrifuge (Eppendorf, Germany) and then
pre-incubated for 30 min at room temperature. Following this incubation period, the calcium and
plasma solutions were added to the plates as described above, and then the plates were measured
on the platereader. Each fraction was analyzed at least in duplicate. For comparison, to venom-only
plates (without any antivenom added), 10 µL PBS was added to each well and pre-incubated in the
same manner as done for the plates where antivenom was added.

5.5. Correlation of Coagulation Data with MS and Proteomics Data

For each procoagulant and anticoagulant peak observed in the bioactivity chromatogram, the
corresponding accurate mass (es) was extracted from the MS chromatogram acquired in parallel.
In addition, the proteomics data were also available from recent work in our group [24]. To import the
proteomics data for the venoms included in this study, the fingerprint profile LC-UV traces (measured
at 220 nm, 254 nm and 280 nm) for the same venom analyses acquired in both studies were used to align
the chromatograms to each other by inspecting potential slight retention times differences followed
by aligning one of the two chromatograms to the other when needed. Then the coagulation bioassay
activities from this study could be correlated to the MS and proteomics data acquired from the same
eluting venom toxins analyzed by Slagboom et al. [24]. Specifically, the UV data, coagulation bioassay
data, MS-Total Ion Current (TIC) and Extracted Ion Current (XIC) data in the chromatographic profiles
from Slagboom et al. were exactly aligned to those in our study, thus allowing for the comparison of
all datasets and the matching of corresponding accurate masses and proteomics-based venom toxin
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identifications with each coagulation and anticoagulation peak. In this way, accurate masses and
proteomics-based venom toxin identifications were obtained for most coagulation and anticoagulation
peaks. The UniprotKB database was used to search for information on toxin class and potentially
known functions of the relevant toxins.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/12/1/53/s1,
Figure S1: Reconstructed duplicate coagulation bioassay chromatograms for B. asper, C. rhodostoma, D. acutus,
D. russelii, E. carinatus and E. ocellatus venoms following nanofractionation, analyzed at different concentrations,
Figure S2: Duplicate chromatograms for antivenom neutralization of nanofractionated venom proteins involved
in modulating plasma coagulation for B. asper, C. rhodostoma, D. acutus, D. russelii, E. carinatus and E. ocellatus
venoms, Figure S3: Duplicate chromatograms of 0.2 mg/mL nanofractionated D. russelii venom showing
antivenom neutralization of venom proteins involved in modulating plasma coagulation (note: for all other
antivenom experiments, 1.0 mg/mL venom concentrations were nanofractionated), Figure S4: Duplicate
bioassay chromatograms of evaluating antivenom cross-reactivity in neutralizing venom components involved in
modulating plasma coagulation for SAIMR Echis antivenom vs. E. carinatus, Snake Antivenin IP vs. E. ocellatus and
Snake Antivenin IP vs. D. russelii, Figure S5: Reconstructed duplicate coagulation bioassay chromatograms of the
Elapid venom of O. scutellatus after nanofractionation, analyzed at different concentrations, Figure S6: Duplicate
bioassay chromatograms showing antivenom neutralization of nanofractionated O. scutellatus venom proteins
involved in modulating plasma coagulation.

Author Contributions: Conceptualization, F.J.V., N.R.C. and J.K.; Data curation, C.X. and K.B.M.S.; Formal
analysis, C.X. and J.S.; Funding acquisition, N.R.C. and J.K.; Investigation, J.K.; Methodology, K.B.M.S. and F.J.V.;
Project administration, J.K.; Resources, N.R.C. and J.K.; Software, J.S. and B.B.; Supervision, J.K.; Validation, C.X.;
Visualization, C.X.; Writing—original draft, C.X.; Writing—review & editing, L.-O.A., J.S., G.W.S., N.R.C. and J.K.
All authors have read and agreed to the published version of the manuscript.

Funding: C.X. was funded by a China Scholarship Council (CSC) fellowship. N.R.C. acknowledges funding from
a Sir Henry Dale Fellowship (200517/Z/16/Z) jointly funded by the Wellcome Trust and Royal Society. The APC
was funded by the Wellcome Trust.

Conflicts of Interest: The authors declare no conflict of interest

References

1. Lomonte, B. Snake venoms: From research to treatment. Acta Méd. Costarric. 2012, 54, 86–96.
2. Pandey, R. Snake Bite: A Neglected Tropical Condition. Indian Pediatr. 2015, 52, 571–572.
3. Kasturiratne, A.; Wickremasinghe, A.R.; de Silva, N.; Gunawardena, N.K.; Pathmeswaran, A.; Premaratna, R.;

Savioli, L.; Lalloo, D.G.; de Silva, H.J. The global burden of snakebite: A literature analysis and modelling
based on regional estimates of envenoming and deaths. PLoS Med. 2008, 5, e218. [CrossRef] [PubMed]

4. Williams, D.; Gutiérrez, J.M.; Harrison, R.; Warrell, D.A.; White, J.; Winkel, K.D.; Gopalakrishnakone, P. The
Global Snake Bite Initiative: An antidote for snake bite. Lancet 2010, 375, 89–91. [CrossRef]

5. Habib, A.G.; Kuznik, A.; Hamza, M.; Abdullahi, M.I.; Chedi, B.A.; Chippaux, J.-P.; Warrell, D.A. Snakebite is
under appreciated: Appraisal of burden from West Africa. PLoS Negl. Trop. Dis. 2015, 9, e0004088. [CrossRef]

6. Means, R.; Cabrera, J.; Moreno, X.; Amini, R. Remote South American Snakebite with Extensive Myonecrosis.
Clin. Pract. Cases Emerg. Med. 2017, 1, 47.

7. Spyres, M.B.; Ruha, A.-M.; Seifert, S.; Onisko, N.; Padilla-Jones, A.; Smith, E.A. Occupational snake bites:
A prospective case series of patients reported to the ToxIC North American Snakebite Registry. J. Med. Toxicol.
2016, 12, 365–369. [CrossRef]

8. Ainsworth, S.; Slagboom, J.; Alomran, N.; Pla, D.; Alhamdi, Y.; King, S.I.; Bolton, F.M.; Gutiérrez, J.M.;
Vonk, F.J.; Toh, C.-H. The paraspecific neutralisation of snake venom induced coagulopathy by antivenoms.
Commun. Biol. 2018, 1, 34. [CrossRef]

9. Maduwage, K.; Isbister, G.K. Current treatment for venom-induced consumption coagulopathy resulting
from snakebite. PLoS Negl. Trop. Dis. 2014, 8, e3220. [CrossRef]

10. Still, K.; Nandlal, R.S.; Slagboom, J.; Somsen, G.W.; Casewell, N.R.; Kool, J. Multipurpose HTS Coagulation
Analysis: Assay Development and Assessment of Coagulopathic Snake Venoms. Toxins 2017, 9, 382.
[CrossRef]

11. Sartim, M.A.; Cezarette, G.N.; Jacob-Ferreira, A.L.; Frantz, F.G.; Faccioli, L.H.; Sampaio, S.V. Disseminated
intravascular coagulation caused by moojenactivase, a procoagulant snake venom metalloprotease. Int. J.
Biol. Macromol. 2017, 103, 1077–1086. [CrossRef] [PubMed]

http://www.mdpi.com/2072-6651/12/1/53/s1
http://dx.doi.org/10.1371/journal.pmed.0050218
http://www.ncbi.nlm.nih.gov/pubmed/18986210
http://dx.doi.org/10.1016/S0140-6736(09)61159-4
http://dx.doi.org/10.1371/journal.pntd.0004088
http://dx.doi.org/10.1007/s13181-016-0555-7
http://dx.doi.org/10.1038/s42003-018-0039-1
http://dx.doi.org/10.1371/journal.pntd.0003220
http://dx.doi.org/10.3390/toxins9120382
http://dx.doi.org/10.1016/j.ijbiomac.2017.05.146
http://www.ncbi.nlm.nih.gov/pubmed/28552727


Toxins 2020, 12, 53 15 of 16

12. Slagboom, J.; Kool, J.; Harrison, R.A.; Casewell, N.R. Haemotoxic snake venoms: Their functional activity,
impact on snakebite victims and pharmaceutical promise. Br. J. Haematol. 2017, 177, 947–959. [CrossRef]
[PubMed]

13. Alvarez-Flores, M.P.; Faria, F.; de Andrade, S.A.; Chudzinski-Tavassi, A.M. Snake Venom Components
Affecting the Coagulation System. Snake Venoms 2015, 1–20. [CrossRef]

14. Gutiérrez, J.M.; Escalante, T.; Rucavado, A.; Herrera, C. Hemorrhage caused by snake venom
metalloproteinases: A journey of discovery and understanding. Toxins 2016, 8, 93. [CrossRef] [PubMed]

15. Kini, R.M.; Koh, C.Y. Metalloproteases affecting blood coagulation, fibrinolysis and platelet aggregation from
snake venoms: Definition and nomenclature of interaction sites. Toxins 2016, 8, 284. [CrossRef] [PubMed]

16. Abubakar, I.S.; Abubakar, S.B.; Habib, A.G.; Nasidi, A.; Durfa, N.; Yusuf, P.O.; Larnyang, S.; Garnvwa, J.;
Sokomba, E.; Salako, L. Randomised controlled double-blind non-inferiority trial of two antivenoms for
saw-scaled or carpet viper (Echis ocellatus) envenoming in Nigeria. PLoS Negl. Trop. Dis. 2010, 4, e767.
[CrossRef]

17. Roncolato, E.C.; Campos, L.B.; Pessenda, G.; e Silva, L.C.; Furtado, G.P.; Barbosa, J.E. Phage display as a
novel promising antivenom therapy: A review. Toxicon 2015, 93, 79–84. [CrossRef]

18. Deshpande, R.P.; Motghare, V.M.; Padwal, S.L.; Pore, R.R.; Bhamare, C.G.; Deshmukh, V.S.; Pise, H.N.
Adverse drug reaction profile of anti-snake venom in a rural tertiary care teaching hospital. J. Young Pharm.
2013, 5, 41–45. [CrossRef]

19. Hoogenboom, H.R. Selecting and screening recombinant antibody libraries. Nat. Biotechnol. 2005, 23, 1105.
[CrossRef]

20. Harrison, R.A.; Cook, D.A.; Renjifo, C.; Casewell, N.R.; Currier, R.B.; Wagstaff, S.C. Research strategies to
improve snakebite treatment: Challenges and progress. J. Proteom. 2011, 74, 1768–1780. [CrossRef]

21. Calvete, J.J.; Sanz, L.; Angulo, Y.; Lomonte, B.; Gutiérrez, J.M. Venoms, venomics, antivenomics. FEBS Lett.
2009, 583, 1736–1743. [CrossRef]

22. Zietek, B.M.; Still, K.B.; Jaschusch, K.; Bruyneel, B.; Ariese, F.; Brouwer, T.J.; Luger, M.; Limburg, R.J.;
Rosier, J.C.; v Iperen, D.J. Bioactivity profiling of small-volume samples by nano liquid chromatography
coupled to microarray bioassaying using high-resolution fractionation. Anal. Chem. 2019, 91, 10458–10466.
[CrossRef] [PubMed]

23. Zietek, B.M.; Mayar, M.; Slagboom, J.; Bruyneel, B.; Vonk, F.J.; Somsen, G.W.; Casewell, N.R.; Kool, J. Liquid
chromatographic nanofractionation with parallel mass spectrometric detection for the screening of plasmin
inhibitors and (metallo) proteinases in snake venoms. Anal. Bioanal. Chem. 2018, 410, 5751–5763. [CrossRef]
[PubMed]
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