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Abstract: Trimethylamine-N-oxide (TMAO) has been suggested as a marker and mediator of
cardiovascular diseases. However, data are contradictory, and the mechanisms are obscure. Strikingly,
the role of the TMAO precursor trimethylamine (TMA) has not drawn attention in cardiovascular
studies even though toxic effects of TMA were proposed several decades ago. We assessed plasma
TMA and TMAO levels in healthy humans (HH) and cardiovascular patients qualified for aortic
valve replacement (CP). The cytotoxicity of TMA and TMAO in rat cardiomyocytes was evaluated
using an MTT test. The effects of TMA and TMAO on albumin and lactate dehydrogenase (LDH)
were assessed using fluorescence correlation spectroscopy. In comparison to HH, CP had a two-fold
higher plasma TMA (p < 0.001) and a trend towards higher plasma TMAO (p = 0.07). In CP plasma,
TMA was inversely correlated with an estimated glomerular filtration rate (eGFR, p = 0.002). TMA but
not TMAO reduced cardiomyocytes viability. Incubation with TMA but not TMAO resulted in
the degradation of the protein structure of LDH and albumin. In conclusion, CP show increased
plasma TMA, which is inversely correlated with eGFR. TMA but not TMAO exerts negative effects on
cardiomyocytes, likely due to its disturbing effect on proteins. Therefore, TMA but not TMAO may
be a toxin and a marker of cardiovascular risk.
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Key Contribution: Our study reveals, for the first time, that cardiovascular patients demonstrate
increased plasma TMA levels which are inversely correlated with eGFR, and that TMA but not TMAO
exerts negative effects on cardiomyocytes, likely due to its disturbing effect on proteins. Our findings
seem to change the present paradigm for looking at TMAO as a cardiovascular risk factor. We propose
that TMA but not TMAO may be a marker of cardiovascular risk.

1. Introduction

Recently, trimethylamine N-oxide (TMAO) has gained a lot of attention as a marker of
cardiovascular risk. However, data are somehow contradictory [1–10].

Toxins 2019, 11, 490; doi:10.3390/toxins11090490 www.mdpi.com/journal/toxins

http://www.mdpi.com/journal/toxins
http://www.mdpi.com
https://orcid.org/0000-0002-0281-015X
https://orcid.org/0000-0003-4649-9524
https://orcid.org/0000-0002-7519-2532
https://orcid.org/0000-0002-1111-1748
https://orcid.org/0000-0003-0088-8284
http://www.mdpi.com/2072-6651/11/9/490?type=check_update&version=1
http://dx.doi.org/10.3390/toxins11090490
http://www.mdpi.com/journal/toxins


Toxins 2019, 11, 490 2 of 11

Plasma TMAO originates from the liver, which oxidizes trimethylamine (TMA), a gut bacteria
product, to TMAO. In addition, plasma TMAO increases after the ingestion of dietary TMAO, e.g.,
saltwater fish and seafood [11].

Though the number of publications on TMAO are rapidly growing—only in the last three-to-four
years, over 600 papers have been published according to PubMed—the mechanisms linking increased
plasma levels of TMAO to cardiovascular diseases remain unknown [12]. Furthermore, conflicting
results exist whether TMAO exerts beneficial or harmful effects on living organisms [13–16].
Previously, we demonstrated that chronic, low-dose oral TMAO treatment exerted positive effects
on a pressure-overloaded heart in rats and was associated with a decrease in the plasma level of
TMA, suggesting that not only TMAO but also TMA may exert biological effects on the circulatory
system [17]. Very recently, we found that TMA increased arterial blood pressure in rats [18] and
that ageing, a risk factor for cardiovascular diseases, was associated with increased plasma TMA
in rats. The latter, but not TMAO, exerted a toxic effect on vascular smooth muscle cells (VSMCs).
Specifically, TMA affected VSMCs viability at concentrations only two-to-three-fold higher than those
in portal blood in rats. In contrast, TMAO did not exert cytotoxic effects at concentrations exceeding its
physiological level by 1000-fold [19].

Notably, the toxic effect of TMA was described in several clinical and experimental papers in
the early 20th century [20,21]. Furthermore, TMA was suggested to be a uremic toxin as far back as
1981 [22]. With this regard, it has been well-established that the accumulation of uremic toxins is
involved in the aetiology of cardiorenal syndrome [23–25].

Strikingly, the plasma level of TMA has not gained much attention in recent cardiovascular
studies and, to the best of our knowledge, no clinical studies have evaluated the association between
plasma TMAO levels and cardiovascular diseases in addition to the measurements of plasma TMA
levels. This may result from the fact that papers showing the toxic effect of TMA are not available in
widely-used medical databases that collect medical literature from recent decades.

Therefore, our study sought to examine the plasma levels of TMA and TMAO in healthy humans
and in cardiovascular patients. Our previous experimental work in rats showed an association
between lower plasma TMA and the improved function of pressure-overloaded hearts [17]. Therefore,
we investigated patients with a pressure-overloaded left ventricle which were qualified for aortic valve
replacement due to severe aortic stenosis (AS). Furthermore, to evaluate a potential involvement of the
molecules in cardiovascular pathology, we examined the effect of TMA and TMAO on cardiomyocytes,
cardiac lactate dehydrogenase (LDH) and albumin protein structure.

2. Results

2.1. Plasma TMA and TMAO in Healthy Humans and Cardiovascular Patients

The plasma TMA level was over two-fold higher (p < 0.001) in cardiovascular patients in
comparison to the healthy group. There was also a trend (p = 0.07) towards a higher plasma TMAO
level in this group (Table 1).

Table 1. Demographics and plasma level of TMA and TMAO in the healthy group and in patients with
severe aortic stenosis (AS). TMA—trimethylamine, TMAO—trimethylamine N-oxide.

Characteristic Healthy Group (n = 9) AS Group (n = 19) p-Value

Ethnicity (Caucasian/other) 9/0 19/0 -
Male/Female 5/4 11/8 -
Age (years) 38.9 ± 4.8 74.5 ± 2.3 <0.001

eGFR (mL/min/1.73 m2) 101.5 ± 6.3 57.4 ± 5.45 <0.001
Plasma TMA (µmol/L) 23.2 ± 2.1 59.5 ± 3.9 <0.001

Plasma TMAO (µmol/L) 3.6 ± 0.4 5.5 ± 0.6 0.07
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In cardiovascular patients, there was a significant inverse correlation between plasma TMA and
estimated glomerular filtration rate (eGFR) (r = −0.66, p = 0.002), whereas TMAO levels only tended to
be inversely correlated with eGFR (r = −0.43, p = 0.065), (Figure 1).
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Figure 1. Correlation of plasma (A) TMA and (B) TMAO levels (µmol/L) with estimated glomerular
filtration rate (eGFR) (mL/min/1.73 m2). r—Pearson correlation coefficient; TMA—trimethylamine;
and TMAO—trimethylamine N-oxide.

2.2. The Effect of TMA and TMAO on Cardiomyocytes Viability (MTT Assay)

TMA at 10 mmol/L and 1 mmol/L concentrations significantly reduced cell viability after 24 and
72 hours of treatment, respectively. In contrast, TMAO at an equimolar concentration had no effect on
cardiomyocytes viability (Figure 2).
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Figure 2. The influence of TMA and TMAO on cardiomyocytes in vitro. Comparison of the viability of
cardiomyocytes (H9c2) treated with TMA or TMAO at increasing concentrations from 0.1 to 100 mmol/L
and concomitant treatment with TMA and TMAO, 10/10 (10 mmol/L TMA/10 mmol/L TMAO), 10/100
(10 mmol/L TMA/100 mmol/L TMAO). An MTT test was performed after 24 and 72 h of treatment,
measurement was performed in three independent experiments, and results for each experiment were
normalized to the control (untreated) cells; graphs show mean ± SE, * p < 0.05, *** p < 0.001, by a t-test.
TMA—trimethylamine; TMAO—trimethylamine N-oxide.

MTT findings were confirmed by a morphological observation of TMA or TMAO-treated cells
(Figure 3).
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Figure 3. Representative pictures showing changes in the number and morphology of cells after 72
hours of treatment with (A) TMA and (B) TMAO—bar 100 µm. ctrl.—control; TMA—trimethylamine;
and TMAO—trimethylamine N-oxide.

TMA concentrations of 10 and 100 mmol/L was cytotoxic, causing cell shrinkage and their
detachment from the bottom of the plate. In contrast, TMAO at the same concentrations did not
influence cell morphology. However, it lowered the density of cell culture, indicating that cell
proliferation but not survival was affected. Notably, a concomitant treatment with TMAO (100 mmol/L)
protected cardiomyocytes against the deleterious effect of TMA (10 mmol/L), i.e., a significant increase
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of cardiomyocyte viability was observed (Figure 2) and cells maintained normal morphology even
after 10 days of treatment (Figure 4), indicating a long-lasting protective effect of TMAO.
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Figure 4. Representative pictures showing morphology of cells after (A) 72 hours and (B) 10 days
of treatment with TMAO or TMA or the mixture of both compounds—bar 100 µm. ctrl.—control;
TMA—trimethylamine; and TMAO—trimethylamine N-oxide.

2.3. The Effect of TMA and TMAO on Protein Structure

Twenty four-hour incubation with TMA resulted in the degradation of the protein structure of
albumin and LDH. Specifically, there was a six-fold and three-fold increase in the diffusion coefficient
(D) for albumin and LDH, respectively, at TMA concentrations of 100 and 200 mmol/L. In contrast,
incubation with TMAO did not affect the D for albumin and LDH (Figure 5).
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Figure 5. Diffusion coefficient obtained for (A) albumin and (B) LDH after 24-hour incubation with
either PBS (control), TMA, or TMAO at increasing concentrations (n = 6). With protein degradation,
the biomolecule diffusion coefficient increases. D—diffusion coefficient; LDH—lactate dehydrogenase;
PBS—phosphate-buffered; TMA—trimethylamine; and TMAO—trimethylamine N-oxide.

3. Discussion

The novel finding of our study is that cardiovascular patients showed an increased plasma TMA
level that was inversely correlated with GFR. Furthermore, we found that TMA but not TMAO exerted
biological effects which may be detrimental for the circulatory system.

Plasma TMAO originates from the liver oxygenation of TMA, a gut bacteria product of choline
and carnitine [26]. The second source of plasma TMAO is dietary TMAO from seafood and fish [11].
Therefore, the plasma TMAO concentration depends on numerous factors including diet, the intestinal
absorption of TMA and TMAO, the liver oxidation of TMA to TMAO, and the excretion of TMA and
TMAO by the kidneys.

A number of clinical studies have shown an association between elevated plasma TMAO levels
and increased cardiovascular risk. However, data are somehow inconsistent [1–10], and the underlying
mechanisms remain unclear [12].

Interestingly, none of the above-mentioned studies assessed the plasma level of TMA in addition
to TMAO measurements. This is striking, as numerous studies have shown the toxic effects of TMA.
In humans, eye [21] and skin [27] irritation have been shown after exposure to TMA. Apart from
that, reproductive/developmental toxicity has been reported [28]. We found that TMA but not TMAO
exerted a toxic effect on VSMCs [19], and a conference paper reported that TMA but not TMAO exerts
vasoconstriction [29].

In fact, due to the obvious toxicity and, at the same time, widespread use in industry,
various exposure limit guidelines with a detailed description of toxicity are available such as
“Recommendation from the Scientific Committee on Occupational Exposure Limits” by the European
Union Commission [30]. Finally, it was already suggested that TMA is a uremic toxin forty years
ago [22].

Here, we found that plasma TMA is more than twice as high in cardiovascular patients compared
to healthy individuals, which was accompanied by a less pronounced difference in TMAO levels.
Our study also shows that kidney deterioration plays a key role in the increased plasma level of TMA,
as demonstrated by a significant inverse correlation between the plasma level of TMA and eGFR.

Uremic cardiomyopathy is a cardiac pathology found in patients with chronic kidney disease.
Though both TMA and TMAO are increased in kidney failure [22,31], here, we found that only TMA
exerted negative effects on cardiomyocytes. Specifically, we found that TMA but not TMAO decreased
the proliferation and viability of cardiomyocytes. Moreover, the concomitant treatment with TMAO
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protected cardiomyocytes against the cytotoxic effect of TMA. The protective action of TMAO was
evident after 10 days of treatment.

Our findings suggest that the toxic effect of TMA on cardiomyocytes may be due to a triggering
role of TMA in the degradation of proteins structure. Specifically, we found that after 24 hours of
incubation with TMA but not TMAO, the protein structure of cardiac LDH and albumin was degraded.
This was evident at a TMA concentration of 100 mmol/L. Though such concentration significantly
exceeded TMA plasma levels in humans, it is very likely that smaller conformational changes of
proteins that alter their biological functions may occur at lower TMA concentrations. This assumption
is supported by our experiments with cardiomyocytes and other studies showing the toxic effect of
TMA at relatively low concentrations [20,21,28,32].

With regard to a potentially protective role of TMAO, there are numerous other studies showing
that TMAO protects the structural and functional proteins of cells from denaturants such as high
osmotic pressure, hydrostatic pressure, NaCl, urea or a high temperature [15,33–35].

It has been well-established that a decreased GFR is an independent cardiovascular risk
factor [36,37]. Here, we found that cardiovascular patients had an increased plasma TMA level,
which was associated with a decreased eGFR. An increased plasma TMA was also reported in kidney
failure patients in other studies [38,39], providing evidence for the important role of renal deterioration
in TMA plasma level increase.

Our study shows that, at equimolar concentrations, TMA but not TMAO exerts a cytotoxic
effect on cardiomyocytes, perhaps due to the disturbing effect of TMA on cardiac LDH and, likely,
other proteins. Finally, numerous studies published several decades ago showed the toxic effect of
TMA on the respiratory tract [31], the reproductive system [28], eye [21] and skin [27].

Therefore, we propose that it is TMA and not TMAO that may be a marker and mediator of
cardiovascular diseases. TMA may be one of the links between the progressive deterioration of kidney
and heart functions, as well as mediator in cardiorenal syndrome.

Given that in our experiments, TMA degraded the protein structure of two very different functional
proteins, i.e., albumin and cardiac LDH, and exerted a toxic effect on cardiomyocytes, it is most likely
that the circulatory effects of TMA are very nonspecific, i.e., involve a disturbing effect of TMA on the
protein structure of numerous functional proteins (receptors and transporters of mediators), rather
than one specific pathway.

A limitation of our study is that we evaluated a relatively small and distinct group of cardiovascular
patients, i.e., patients with aortic stenosis. In addition, further experimental studies are needed to
elucidate the involvement of TMA in pathological processes underlying cardiovascular diseases.

4. Conclusions

Our study demonstrates that cardiovascular patients show increased plasma TMA which is
inversely correlated with the eGFR. Furthermore, we found the TMA but not TMAO exerts cytotoxic
effect on cardiomyocytes, likely due to the disturbing effects of the molecule on cardiac LDH and
other proteins’ structures. Therefore, our findings strongly suggest that TMA but not TMAO may be a
marker and mediator of cardiovascular diseases. Future clinical studies determining the association
between cardiovascular risk and plasma TMAO should obligatorily evaluate plasma TMA levels.

5. Materials and Methods

5.1. Plasma TMA and TMAO Level in Healthy Humans and Cardiovascular Patients

Written informed consent was obtained from all subjects. The study conformed to the standards
set by the latest revision of the Declaration of Helsinki and was approved by the Bioethical Committee
of the Medical University of Warsaw (permissions no: KB/211/2018, 19 November 2018, and KB/4/2019,
14 January 2019).
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The study group included patients with severe AS who qualified either for surgical aortic valve
replacement or transcatheter aortic valve implantation recruited from the Public Central Teaching
Hospital of the Medical University of Warsaw. The control group consisted of healthy subjects recruited
from the GP practice “Zdrowie” in Warsaw. The inclusion criteria for healthy subjects was age 18–99,
and the exclusion criteria were the following: A medical history of chronic diseases, current therapy
with any medications, antibiotic treatment within the last one month, acute gastrointestinal disease in
the last 4 weeks, and the use of dietary supplements in the last 7 days. The inclusion criteria for AS
patients were age 18–99 years, severe AS defined as aortic valve area (AVA) < 1.0 cm2 and/or indexed
AVA of < 0.6 cm2/m2 as calculated by the continuity equation on transthoracic echocardiography (both
patients with high gradient and low gradient severe AS were enrolled) irrespective of the presence
of AS symptoms, qualified for interventional (surgical or transcatheter) treatment by the heart team,
in accordance with the guidelines of the European Society of Cardiology [40,41]. Exclusion criteria in
the AS group included: Heart failure attributable to causes other than severe AS, active neoplastic
disease, chronic inflammatory disease, chronic or acute (within the last 4 weeks) gastrointestinal
disease, antibiotic treatment in the last month, and the use of dietary supplements in the last 7 days.
In AS patients, blood samples were collected during their preprocedural diagnostic work-up when
they were clinically stable. The estimated glomerular filtration rate (eGFR) was calculated using the
Modification of Diet in Renal Disease (MDRD) formula.

Blood was collected into precooled EDTA tubes and chilled in a refrigerator. Samples were
centrifuged for 15 minutes at 2000× g, 60 min after blood collection. Plasma was frozen at −25 ◦C
until assayed.

5.2. The Effect of TMA and TMAO on Cardiomyocytes In Vitro

5.2.1. Cells and Treatment

Rat cardiomyocytes (H9c2 cell line) were purchased from ATCC (LGC Standards, Lomianki,
Poland). Cells were cultured in DMEM (Sigma Aldrich, St.Louis, MO, USA), supplemented with 10%
FBS (Biowest, Cytogen, Poland), L-glutamine and antibiotic and antymycotic solution. TMA and TMAO
solutions were dissolved in a cell culture medium and diluted to obtain the desired concentrations.

5.2.2. Metabolic Activity Assay in Cardiomyocytes (MTT Assay)

The MTT assay was used to check viability of cardiomyocytes treated with different concentrations
of TMA and TMAO. Cells were seeded in a 96-well plate at a of density 1500 cells per well. After one
day, the medium was exchanged for those containing TMA or TMAO. A 3-(4,5-Dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) (Sigma-Aldrich) solution (5 mg/mL) was added at indicated
time points, and cells were incubated for 2 h at 37 ◦C in a humidified atmosphere (5% CO2). Formazan
formed in living cells was dissolved in dimethyl sulfoxide (DMSO) (Sigma-Aldrich), and the absorbance
of the solution was measured at 570 nm using a microplate reader (Reader 400 SFC, LabInstruments,
Hamburg, Germany).

5.3. The Effect of TMA and TMA on Protein Structure

We evaluated the effect of TMAO and TMA on bovine serum albumin (BSA) (Sigma-Aldrich) and
cardiac lactic dehydrogenase (LDH) (Sigma-Aldrich) incubated with those agents at 20 ◦C for 24 h.
The proteins were fluorescently labelled with Atto 488 dye (Atto-Tec GmbH, Siegen, Germany) via
NHS-ester coupling reaction. Changes in protein structure were measured with the use of fluorescence
correlation spectroscopy (FCS), which enables the determination of a fluorescent probe’s diffusion
coefficient D related with the probe radius rp by the Stokes–Einstein relation. Protein unfolding (its
increased hydrodynamic radius) results in a decrease in its D value. Otherwise, as the protein is
degraded, the biomolecule diffusion coefficient increases.
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FCS measurements were performed using setup based on Nikon C1 confocal microscope (Nikon
Instruments, Tokyo, Japan), fitted with a PicoQuant LSM upgrade kit (PicoQuant GmbH, Berlin,
Germany). A PicoQuant pulsed diode laser of wavelengths of 485 nm, driven by a Sepia II module
was used for fluorescence excitation. Data acquisition was controlled by SymPhoTime 64 software
(Berlin, Germany).

5.4. Evaluation of TMA and TMAO Plasma Concentrations

The plasma concentrations of TMA and TMAO were evaluated using a Waters Acquity Ultra
Performance Liquid Chromatograph coupled with a Waters TQ-S Triple-Quadrupole Mass Spectrometer.
The mass spectrometer operated in the multiple-reaction monitoring (MRM)-positive electrospray
ionization (ESI) mode, as we have previously described [42].

5.5. Data Analysis and Statistics

Differences between the groups were assessed using the t-test. The relationships between the
concentration of TMA/TMAO and investigated variables were determined by Pearson’s correlation
coefficient. A value of two-sided p < 0.05 was considered significant. Analyses were conducted using
Dell Statistica, version 13 (Dell Inc, Tulsa, OK, USA).

Author Contributions: Conceptualization, M.U.; methodology, M.U., D.H., K.J., G.M., A.B.-Z., M.P., A.K.-C., K.F.,
E.S., R.H., formal analysis, M.U., D.H., K.J., G.M., A.B.-Z., M.P., A.K.-C., K.F., E.S., R.H.; investigation, M.U., D.H.,
K.J., G.M., A.B.-Z., M.P., M.K., A.G., A.K.-C., K.F., E.S., R.H.; resources, M.U., E.S., R.H. data curation, M.U., D.H.,
K.J., G.M., A.B.-Z., M.P., A.K.-C., E.S., R.H.; writing—original draft preparation, M.U., D.H., K.J., G.M., A.B.-Z.,
M.P., A.K.-C., K.F., E.S., R.H.; writing—review and editing, M.U., D.H., K.J., G.M., A.B.-Z., M.P., A.K.-C., K.F.,
E.S., R.H.

Funding: This research was funded by NATIONAL SCIENCE CENTRE, POLAND, grant number
2018/31/B/NZ5/00038.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Tang, W.H.; Wang, Z.; Levison, B.S.; Koeth, R.A.; Britt, E.B.; Fu, X.; Wu, Y.; Hazen, S.L. Intestinal microbial
metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 2013, 368, 1575–1584. [CrossRef]
[PubMed]

2. Troseid, M.; Ueland, T.; Hov, J.R.; Svardal, A.; Gregersen, I.; Dahl, C.P.; Aakhus, S.; Gude, E.; Bjorndal, B.;
Halvorsen, B.; et al. Microbiota-Dependent metabolite trimethylamine-N-Oxide is associated with disease
severity and survival of patients with chronic heart failure. J. Intern. Med. 2015, 277, 717–726. [CrossRef]
[PubMed]

3. Li, X.S.; Obeid, S.; Klingenberg, R.; Gencer, B.; Mach, F.; Raber, L.; Windecker, S.; Rodondi, N.; Nanchen, D.;
Muller, O.; et al. Gut microbiota-Dependent trimethylamine N-Oxide in acute coronary syndromes:
A prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur. Heart J. 2017, 38,
814–824. [CrossRef] [PubMed]

4. Senthong, V.; Wang, Z.; Fan, Y.; Wu, Y.; Hazen, S.L.; Tang, W.H. Trimethylamine N-Oxide and Mortality Risk
in Patients with Peripheral Artery Disease. J. Am. Heart Assoc. 2016, 5, 4237. [CrossRef]

5. Qi, J.; You, T.; Li, J.; Pan, T.; Xiang, L.; Han, Y.; Zhu, L. Circulating trimethylamine N-Oxide and the risk of
cardiovascular diseases: A systematic review and meta-Analysis of 11 prospective cohort studies. J. Cell.
Mol. Med. 2018, 22, 185–194. [CrossRef] [PubMed]

6. Yin, J.; Liao, S.X.; He, Y.; Wang, S.; Xia, G.H.; Liu, F.T.; Zhu, J.J.; You, C.; Chen, Q.; Zhou, L.; et al. Dysbiosis of
Gut Microbiota with Reduced Trimethylamine-N-Oxide Level in Patients with Large-Artery Atherosclerotic
Stroke or Transient Ischemic Attack. J. Am. Heart Assoc. 2015, 4, 2699. [CrossRef] [PubMed]

http://dx.doi.org/10.1056/NEJMoa1109400
http://www.ncbi.nlm.nih.gov/pubmed/23614584
http://dx.doi.org/10.1111/joim.12328
http://www.ncbi.nlm.nih.gov/pubmed/25382824
http://dx.doi.org/10.1093/eurheartj/ehw582
http://www.ncbi.nlm.nih.gov/pubmed/28077467
http://dx.doi.org/10.1161/JAHA.116.004237
http://dx.doi.org/10.1111/jcmm.13307
http://www.ncbi.nlm.nih.gov/pubmed/28782886
http://dx.doi.org/10.1161/JAHA.115.002699
http://www.ncbi.nlm.nih.gov/pubmed/26597155


Toxins 2019, 11, 490 10 of 11

7. Fukami, K.; Yamagishi, S.; Sakai, K.; Kaida, Y.; Yokoro, M.; Ueda, S.; Wada, Y.; Takeuchi, M.; Shimizu, M.;
Yamazaki, H.; et al. Oral L-Carnitine supplementation increases trimethylamine-N-Oxide but reduces
markers of vascular injury in hemodialysis patients. J. Cardiovasc. Pharmacol. 2015, 65, 289–295. [CrossRef]
[PubMed]

8. Meyer, K.A.; Benton, T.Z.; Bennett, B.J.; Jacobs, D.R., Jr.; Lloyd-Jones, D.M.; Gross, M.D.; Carr, J.J.;
Gordon-Larsen, P.; Zeisel, S.H. Microbiota-Dependent Metabolite Trimethylamine N-Oxide and Coronary
Artery Calcium in the Coronary Artery Risk Development in Young Adults Study (CARDIA). J. Am.
Heart Assoc. 2016, 5, 3970. [CrossRef]

9. Shafi, T.; Powe, N.R.; Meyer, T.W.; Hwang, S.; Hai, X.; Melamed, M.L.; Banerjee, T.; Coresh, J.; Hostetter, T.H.
Trimethylamine N-Oxide and Cardiovascular Events in Hemodialysis Patients. J. Am. Soc. Nephrol. 2017, 28,
321–331. [CrossRef]

10. Kuhn, T.; Rohrmann, S.; Sookthai, D.; Johnson, T.; Katzke, V.; Kaaks, R.; von Eckardstein, A.; Muller, D.
Intra-Individual variation of plasma trimethylamine-N-Oxide (TMAO), betaine and choline over 1 year.
Clin. Chem. Lab. Med. 2017, 55, 261–268. [CrossRef]

11. Cheung, W.; Keski-Rahkonen, P.; Assi, N.; Ferrari, P.; Freisling, H.; Rinaldi, S.; Slimani, N.; Zamora-Ros, R.;
Rundle, M.; Frost, G.; et al. A metabolomic study of biomarkers of meat and fish intake. Am. J. Clin. Nutr.
2017, 105, 600–608. [CrossRef]

12. Brown, J.M.; Hazen, S.L. Microbial modulation of cardiovascular disease. Nat. Revi. Microbiol. 2018, 16, 171.
[CrossRef]

13. Velasquez, M.T.; Ramezani, A.; Manal, A.; Raj, D.S. Trimethylamine N-Oxide: The Good, the Bad and the
Unknown. Toxins (Basel) 2016, 8, 326. [CrossRef]

14. Cho, C.E.; Caudill, M.A. Trimethylamine-N-Oxide: Friend, Foe, or Simply Caught in the Cross-Fire?
Trends Endocrinol. Metab. 2017, 28, 121–130. [CrossRef]

15. Jethva, P.N.; Udgaonkar, J.B. The Osmolyte TMAO Modulates Protein Folding Cooperativity by Altering
Global Protein Stability. Biochemistry 2018, 57, 5851–5863. [CrossRef]

16. Chan, M.M.; Yang, X.; Wang, H.; Saaoud, F.; Sun, Y.; Fong, D. The microbial metabolite trimethylamine
n-Oxide links vascular dysfunctions and the autoimmune disease rheumatoid arthritis. Nutrients 2019, 11,
1821. [CrossRef]

17. Huc, T.; Drapala, A.; Gawrys, M.; Konop, M.; Bielinska, K.; Zaorska, E.; Samborowska, E.;
Wyczalkowska-Tomasik, A.; Paczek, L.; Dadlez, M.; et al. Chronic, low-Dose TMAO treatment reduces
diastolic dysfunction and heart fibrosis in hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 2018, 315,
1805–1820. [CrossRef]

18. Jaworska, K.; Bielinska, K.; Gawrys-Kopczynska, M.; Ufnal, M. TMA (trimethylamine), but not its oxide
TMAO (trimethylamine-oxide), exerts hemodynamic effects—Implications for interpretation of cardiovascular
actions of gut microbiome. Cardiovasc. Res. 2019. [CrossRef]

19. Jaworska, K.; Konop, M.; Hutsch, T.; Perlejewski, K.; Radkowski, M.; Grochowska, M.; Bielak-Zmijewska, A.;
Mosieniak, G.; Sikora, E.; Ufnal, M. Tma but not tmao increases with age in rat plasma and affects smooth
muscle cells viability. J. Gerontol. 2019. [CrossRef]

20. Brieger, H.; Hodes, W.A. Toxic effects of exposure to vapors of aliphatic amines. Arch. Ind. Hyg. Occup. Med.
1951, 3, 287–291.

21. Friemann, W.; Overhoff, W.; Wolter, J.R. Eye diseases in the fishing industry. Arch. Gewerbepathol. Gewerbehyg.
1959, 17, 1–56.

22. Wills, M.R.; Savory, J. Biochemistry of renal failure. Ann. Clin. Lab. Sci. 1981, 11, 292–299.
23. Ito, S.; Yoshida, M. Protein-Bound uremic toxins: New culprits of cardiovascular events in chronic kidney

disease patients. Toxins (Basel) 2014, 6, 665–678. [CrossRef]
24. Lekawanvijit, S. Cardiotoxicity of Uremic Toxins: A Driver of Cardiorenal Syndrome. Toxins (Basel) 2018,

10, 352. [CrossRef]
25. Fujii, H.; Goto, S.; Fukagawa, M. Role of Uremic Toxins for Kidney, Cardiovascular, and Bone Dysfunction.

Toxins (Basel) 2018, 10, 202. [CrossRef]
26. Obeid, R.; Awwad, H.M.; Rabagny, Y.; Graeber, S.; Herrmann, W.; Geisel, J. Plasma trimethylamine N-Oxide

concentration is associated with choline, phospholipids, and methyl metabolism. Am. J. Clin. Nutr. 2016,
103, 703–711. [CrossRef]

http://dx.doi.org/10.1097/FJC.0000000000000197
http://www.ncbi.nlm.nih.gov/pubmed/25636076
http://dx.doi.org/10.1161/JAHA.116.003970
http://dx.doi.org/10.1681/ASN.2016030374
http://dx.doi.org/10.1515/cclm-2016-0374
http://dx.doi.org/10.3945/ajcn.116.146639
http://dx.doi.org/10.1038/nrmicro.2017.149
http://dx.doi.org/10.3390/toxins8110326
http://dx.doi.org/10.1016/j.tem.2016.10.005
http://dx.doi.org/10.1021/acs.biochem.8b00698
http://dx.doi.org/10.3390/nu11081821
http://dx.doi.org/10.1152/ajpheart.00536.2018
http://dx.doi.org/10.1093/cvr/cvz231
http://dx.doi.org/10.1093/gerona/glz181
http://dx.doi.org/10.3390/toxins6020665
http://dx.doi.org/10.3390/toxins10090352
http://dx.doi.org/10.3390/toxins10050202
http://dx.doi.org/10.3945/ajcn.115.121269


Toxins 2019, 11, 490 11 of 11

27. Fluhr, J.W.; Kelterer, D.; Fuchs, S.; Kaatz, M.; Grieshaber, R.; Kleesz, P.; Elsner, P. Additive impairment of the
barrier function and irritation by biogenic amines and sodium lauryl sulphate: A controlled in vivo tandem
irritation study. Skin Pharmacol. Physiol. 2005, 18, 88–97. [CrossRef]

28. Guest, I.; Varma, D.R. Selective growth inhibition of the male progeny of mice treated with trimethylamine
during pregnancy. Can. J. Physiol. Pharmacol. 1993, 71, 185–187. [CrossRef]

29. Restini, C.B.; Fink, G.D.; Watts, S.W. Abstract p145: The bacterial metabolite trimethylamine (tma), but not
trimethylamine n-Oxide (tmao), causes vascular contraction. Hypertension 2018, 72, 145. [CrossRef]

30. Pospischil, E.; Johanson, G.; Nielsen, G.; Papameletiou, D.; Klein, C. SCOEL/REC/179 Trimethylamine.
Publ. Sci. Comm. Occup. Expo. Lim. Eur. Union 2017. [CrossRef]

31. Storino, G.; Moraes, C.; Saldanha, J.; Mafra, D. Cardiovascular mortality in chronic kidney patients: The role
of uremic toxins. Int. J. Cardiovasc. Sci. 2015, 28, 327–334. [CrossRef]

32. Kinney, L.; Burgess, B.; Chen, H.; Kennedy, G. Inhalation toxicology of trimethylamine. Inhal. Toxicol. 1990, 2,
41–51. [CrossRef]

33. Zou, Q.; Bennion, B.J.; Daggett, V.; Murphy, K.P. The molecular mechanism of stabilization of proteins by
TMAO and its ability to counteract the effects of urea. J. Am. Chem. Soc. 2002, 124, 1192–1202. [CrossRef]

34. Yancey, P.H.; Speers-Roesch, B.; Atchinson, S.; Reist, J.D.; Majewski, A.R.; Treberg, J.R. Osmolyte Adjustments
as a Pressure Adaptation in Deep-Sea Chondrichthyan Fishes: An Intraspecific Test in Arctic Skates
(Amblyraja hyperborea) along a Depth Gradient. Physiol. Biochem. Zool. 2018, 91, 788–796. [CrossRef]

35. Vigorita, M.; Cozzolino, S.; Oliva, R.; Graziano, G.; Del Vecchio, P. Counteraction ability of TMAO toward
different denaturing agents. Biopolymers 2018, 109, 23104. [CrossRef]

36. Go, A.S.; Chertow, G.M.; Fan, D.; McCulloch, C.E.; Hsu, C.Y. Chronic kidney disease and the risks of death,
cardiovascular events, and hospitalization. N. Eng. J. Med. 2004, 351, 1296–1305. [CrossRef]

37. Manjunath, G.; Tighiouart, H.; Coresh, J.; Macleod, B.; Salem, D.N.; Griffith, J.L.; Levey, A.S.; Sarnak, M.J.
Level of kidney function as a risk factor for cardiovascular outcomes in the elderly. Kidney Int. 2003, 63,
1121–1129. [CrossRef]

38. Simenhoff, M.L.; Burke, J.F.; Saukkonen, J.J.; Ordinario, A.T.; Doty, R. Biochemical profile or uremic breath.
N. Engl. J. Med. 1977, 297, 132–135. [CrossRef]

39. Hao, X.; Liu, X.; Wang, W.; Ren, H.; Xie, J.; Shen, P.; Lin, D.; Chen, N. Distinct metabolic profile of primary focal
segmental glomerulosclerosis revealed by NMR-Based metabolomics. PLoS ONE 2013, 8, 78531. [CrossRef]

40. Baumgartner, H.; Falk, V.; Bax, J.J.; De Bonis, M.; Hamm, C.; Holm, P.J.; Iung, B.; Lancellotti, P.; Lansac, E.;
Rodriguez Munoz, D.; et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease.
Eur. Heart J. 2017, 38, 2739–2791. [CrossRef]

41. Baumgartner, H.; Hung, J.; Bermejo, J.; Chambers, J.B.; Edvardsen, T.; Goldstein, S.; Lancellotti, P.; LeFevre, M.;
Miller, F., Jr.; Otto, C.M. Recommendations on the echocardiographic assessment of aortic valve stenosis:
A focused update from the European Association of Cardiovascular Imaging and the American Society of
Echocardiography. Eur. Heart J. Cardiovasc. Imaging 2016, 18, 254–275. [CrossRef]

42. Jaworska, K.; Huc, T.; Samborowska, E.; Dobrowolski, L.; Bielinska, K.; Gawlak, M.; Ufnal, M. Hypertension
in rats is associated with an increased permeability of the colon to TMA, A gut bacteria metabolite. PLoS ONE
2017, 12, 189310. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1159/000083709
http://dx.doi.org/10.1139/y93-026
http://dx.doi.org/10.1161/hyp.72.suppl_1.P145
http://dx.doi.org/10.2767/440659
http://dx.doi.org/10.5935/2359-4802.20150047
http://dx.doi.org/10.3109/08958379009145244
http://dx.doi.org/10.1021/ja004206b
http://dx.doi.org/10.1086/696157
http://dx.doi.org/10.1002/bip.23104
http://dx.doi.org/10.1056/NEJMoa041031
http://dx.doi.org/10.1046/j.1523-1755.2003.00838.x
http://dx.doi.org/10.1056/NEJM197707212970303
http://dx.doi.org/10.1371/journal.pone.0078531
http://dx.doi.org/10.1093/eurheartj/ehx391
http://dx.doi.org/10.1093/ehjci/jew335
http://dx.doi.org/10.1371/journal.pone.0189310
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Plasma TMA and TMAO in Healthy Humans and Cardiovascular Patients 
	The Effect of TMA and TMAO on Cardiomyocytes Viability (MTT Assay) 
	The Effect of TMA and TMAO on Protein Structure 

	Discussion 
	Conclusions 
	Materials and Methods 
	Plasma TMA and TMAO Level in Healthy Humans and Cardiovascular Patients 
	The Effect of TMA and TMAO on Cardiomyocytes In Vitro 
	Cells and Treatment 
	Metabolic Activity Assay in Cardiomyocytes (MTT Assay) 

	The Effect of TMA and TMA on Protein Structure 
	Evaluation of TMA and TMAO Plasma Concentrations 
	Data Analysis and Statistics 

	References

