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Abstract: Hydrophobic uremic toxins accumulate in patients with chronic kidney disease, contributing
to a highly increased cardiovascular risk. The clearance of these uremic toxins using current
hemodialysis techniques is limited due to their hydrophobicity and their high binding affinity to
plasma proteins. Adsorber techniques may be an appropriate alternative to increase hydrophobic
uremic toxin removal. We developed an extracorporeal, whole-blood bifunctional adsorber particle
consisting of a porous, activated charcoal core with a hydrophilic polyvinylpyrrolidone surface
coating. The adsorption capacity was quantified using analytical chromatography after perfusion of
the particles with an albumin solution or blood, each containing mixtures of hydrophobic uremic
toxins. A time-dependent increase in hydrophobic uremic toxin adsorption was depicted and all toxins
showed a high binding affinity to the adsorber particles. Further, the particle showed a sufficient
hemocompatibility without significant effects on complement component 5a, thrombin-antithrombin
III complex, or thrombocyte concentration in blood in vitro, although leukocyte counts were slightly
reduced. In conclusion, the bifunctional adsorber particle with cross-linked polyvinylpyrrolidone
coating showed a high adsorption capacity without adverse effects on hemocompatibility in vitro.
Thus, it may be an interesting candidate for further in vivo studies with the aim to increase the
efficiency of conventional dialysis techniques.

Keywords: activated charcoal; hemodialysis; adsorption; uremic toxins; hemocompatibility; chronic
kidney disease

Key Contribution: In this study a bifunctional; extracorporeal whole blood adsorber particle was
developed with a porous activated charcoal core and a hydrophilic polyvinylpyrrolidione surface
coating. The particle showed a high adsorption capacity towards hydrophobic; protein-bound uremic
toxins without adverse effects on albumin binding or hemocompatibility in vitro.
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1. Introduction

A vast amount of substances with disparate physico-chemical properties are accumulating in
the blood of patients suffering from chronic kidney disease (CKD), leading to uremic toxicity [1].
The conventional dialysis therapies aim to replace the filtration capacity of the failing kidney by
clearing a range of uremic toxins from the blood of CKD patients. However, efficient removal cannot
currently be reached for the whole spectrum of uremic toxins, especially for the group of hydrophobic,
protein-bound substances. In general, uremic toxins are grouped into three classes based on their
molecular weight and chemical properties: (i) small, water-soluble solutes that are not protein-bound
(<500 Da), which can be easily removed by dialysis; (ii) middle molecules (>500 Da), which can be
cleared using dialysis membranes with larger pore size or hemodiafiltration; and (iii) proteins as
well as hydrophobic, protein-bound uremic toxins [1–3]. The latter uremic toxins have a molecular
weight smaller than 500 Da but are very difficult to remove using conventional dialysis due to their
hydrophobicity. The solubility of hydrophobic substances in an aqueous solution is strongly limited
(similia similibus solvuntur) and consequently, the substances accumulate in the plasma of patients.
In addition, their high binding affinity towards plasma proteins, such as albumin, substantially
increases their molecular weight and prevents their efficient removal through the pores of the dialysis
membranes [2,3]. For example, studies have shown that ≈70% of phenylacetic acid [4], ≈90% of
p-cresyl sulfate [5], and >90% of indoxyl sulfate [6] are protein-bound in the blood. In healthy
subjects, the tubular epithelial cells within the kidney facilitate the removal of these hydrophobic
uremic toxins from the blood by shifting their bound state to free fraction via various transporters [7].
In contrast, only ≈25% of the protein-bound uremic toxins are removed by dialysis [8]. In recent years,
different studies have tested new approaches to improve the removal of protein-bound uremic toxins.
However, studies on longer dialysis sessions and hemodiafiltration were only able to achieve moderate
improvements [9,10]. Recent studies indicate that these hydrophobic, protein-bound uremic toxins
may play an essential role in the high morbidity and mortality of CKD patients, including their highly
increased cardiovascular risk, as is clearly shown for p-cresyl sulfate and indoxyl sulfate [11–15].

Restoring the blood filtrating function of the kidney is therefore a major challenge and many
renal replacement therapies targeting the removal of protein-bound uremic toxins have emerged
over the last few decades. Nonetheless, to date, none of these attempts have managed to adequately
filtrate protein-bound uremic toxins [9,10,16–18], resulting in an ongoing demand for new strategies to
efficiently remove protein-bound uremic toxins from blood.

One long-standing idea to improve the conventional high-flux hemodialysis therapy is the
use of extracorporeal adsorber particles to mimic plasma proteins in binding hydrophobic uremic
toxins. Early studies indicated that hemoperfusion using activated charcoal enabled the removal of
uric acid [19], for example, but was clinically not feasible due to a plethora of adverse effects such
as extensive deposits of fine charcoal particles, depletion of platelets and leukocytes, and allergic
reaction [20]. So far, commercial adsorbers have been analyzed for the treatment of patients with acute
intoxication, sepsis, liver failure, and hypercholesterinemia. Also, they have been tested in pilot studies
for extracorporeal removal of soluble fms-like tyrosine kinase 1 in preeclampsia [21–23]. Further, it was
demonstrated that utilizing an extracorporeal liver support adsorption-dialysis device (fractionated
plasma separation, adsorption, and dialysis (FPAD) system) was more effective in the removal of
protein-bound, hydrophobic uremic toxins than conventional high-flux hemodialysis [16]. However,
due to the equipment necessary for FPAD and the associated costs, this approach is not suitable for the
regular extracorporeal therapy of CKD patients. A special adsorber for the regular therapy of CKD
patients is not yet available as the combination of an efficient adsorption capacity with an adequate
hemocompatibility still remains a challenge.

Therefore, in this study, we developed and examined the performance of an activated spherical
charcoal particle coated with a hydrophilic, cross-linked polymer for uremic toxin adsorption.
This innovative adsorber particle was designed to combine (i) size exclusion, to enable the exclusion of
larger plasma proteins; (ii) hydrophobicity, to enable effective binding of hydrophobic uremic toxins;
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and (iii) hemocompatibility due to the coating with a hydrophilic, cross-linked polymer to achieve
usability for whole blood applications. The resulting adsorber particle may be used in both renal
or hepatic replacement therapies for detoxification and in the treatment of sepsis in future clinical
applications, and might prevent cardiovascular disease in CKD patients.

2. Results

2.1. Processing and Characterization of the Newly Developed Adsorber Particle

The core of the newly developed adsorber particles consists of activated charcoal, a material
that was shown to highly adsorb arsenic, selenium and mercury in aqueous solutions [24].
Polyvinylpyrrolidone (PVP) was previously used as a surface coating for silver nanoparticles due
to a good hemocompatibility [25]. The charcoal adsorbent beads were dissolved in a mixture of
PVP, crosslinker (ethylene glycol dimethacrylate), and initiator (azo-bis-isobutyronitrile) in water,
finally leading to the formation of coated particles through a suspension polymerization process [26].
Systematically, different ratios of monomer and crosslinker were tested, resulting in 13 different
particle types. These particles were tested regarding their adsorption capacity toward hydrophobic
uremic toxins. Hemocompatibility was analyzed for the particles with a high adsorption capacity
(Figure 1A). Finally, one particle was selected for in-depth characterization. Starting from the uncoated
charcoal adsorbent particles (Figure 1B), coating with PVP in a 5 L glass reactor through a suspension
polymerization process (Figure 1C) resulted in the formation of the selected particle with a highly porous
core and a homogenous PVP coating without any surface irregularities (Figure 1D). The optimized and
detailed synthesis of this particle is illustrated in Figure 2.

1 

 

 

Figure 1 

 

Figure 1. Synthesis of the whole-blood adsorber particle. (A) Flowchart of the experimental design for
synthesis of the adsorber particles. (B) Representative scanning electron microscopic image of the
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uncoated activated charcoal. (C) Representative image of the experimental setup for the suspension
polymerization process for coating the activated charcoal core particles. (D) Representative scanning
electron microscopic image of the newly developed adsorber particle after coating of the charcoal core
particles. Scale bars represent 200 µm (B) and 500 nm (D).Toxins 2019, 11, x FOR PEER REVIEW 5 of 18 
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Figure 2. Overview of components and conditions used for the generation of the optimized whole-blood
adsorber particle. The particle was generated by coating activated charcoal with polyvinylpyrrolidone
(PVP) in a suspension polymerization process using the indicated amounts of stabilizer, initiator,
monomer, and crosslinker in the indicated conditions of heating and incubation.

2.2. Assessment of the Adsorption Capacity of the Particle towards Hydrophobic, Protein-Bound Uremic Toxins

The capacity of the generated particles to adsorb hydrophobic uremic toxins was analyzed after
time-dependent incubation of the particles with selected hydrophobic uremic toxins using analytical
reversed phase high performance liquid chromatography (RP-HPLC). The experiments depicted a
time-dependent increase in the adsorbed toxin amount for all uremic toxins investigated (phenylacetic
acid, p-cresyl sulfate, and indoxyl sulfate), either when solved in BSA solution (Figure 3A) or blood
(Figure 3B). Each of the three uremic toxins dissolved in a BSA solution was very efficiently adsorbed
to the particle, demonstrating a mean adsorption level of 91.4 ± 5.1% after 180 min of incubation
(phenylacetic acid 81.7 ± 1.2%, p-cresyl sulfate 94.0 ± 0.5%, indoxyl sulfate 98.7 ± 0.3%) (Figure 3A).
When present in blood, all three uremic toxins showed a high affinity to the particle, with in average
94.2 ± 1.7% of the toxins adsorbed even after only 30 min of incubation (phenylacetic acid 92.5 ± 1.4%,
p-cresyl sulfate 92.5 ± 1.4%, indoxyl sulfate 97.5 ± 0.9%) (Figure 3B). In contrast, the particles did not
show a significant adsorption of BSA even up to an incubation time of 240 min (Figure 3C).
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Figure 3. Quantification of the binding capacity of the newly developed adsorber particle to hydrophobic,
protein-bound uremic toxins. The particles were incubated with the uremic toxins phenylacetic acid
(PAA), p-cresyl sulfate (pCRS), and indoxyl sulfate (IDS), and their adsorption capacities were
quantified by reversed-phase chromatography. (A,B) Quantification of the adsorption capacity after
static incubation of the adsorber particles with the uremic toxins dissolved in BSA solution (A) or
in blood (B) for different incubation periods, as indicated. Shown are mean values ± S.E.M of three
independent experiments. (C) Quantification of the protein concentration of a BSA solution after
static incubation with the adsorber particles. Shown are mean values ± S.E.M of four independent
experiments. (D) Flowchart of the experimental set-up for the quantification of uremic toxin adsorption
to adsorber particles in conditions of flow. (E–G) Quantification of the adsorption capacity after flow
incubation of the adsorber particles with phenylacetic acid (PAA) (E), p-cresyl sulfate (pCRS) (F),
or indoxyl sulfate (IDS) (G), all dissolved in PBS, and after different time points, as indicated. Shown
are mean values ± S.E.M of three independent experiments.
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Furthermore, the adsorption capacity of the absorber particles towards hydrophobic uremic toxins
was quantified regarding the conditions of flow. The absorber particles were packed into a cartridge
and 1 L of aqueous PBS containing a mixture of the uremic toxins phenylacetic acid, p-cresyl sulfate,
and indoxyl sulfate was pumped through the cartridge (Figure 3D). Analysis of the samples, collected
at the outlet of the cartridge at different time points, demonstrated that after 60 min, the uremic toxins
phenylacetic acid, p-cresyl sulfate, and indoxyl sulfate were adsorbed 83.6 ± 2.2%, 94.7 ± 2.6%, and
96.3 ± 1.8%, respectively. After 240 min, the removal efficiencies reached 94.8 ± 1.4% (for phenylacetic
acid) (Figure 3E) and 100.0 ± 0.0% (for p-cresyl sulfate and indoxyl sulfate) (Figure 3F,G).

In summary, the newly developed absorber particle is highly efficient at adsorbing hydrophobic,
protein-bound uremic toxins that are present in the blood of patients with CKD stage 5, both under
static conditions and under conditions of flow.

2.3. Assessment of the Hemocompatibility of the Adsorber Particle

Hemocompatibility of adsorber particles is crucial for potential future applications in the clinical
situation. The ISO 10993-4 norm recommends specific tests to examine the effect of extracorporeal
adsorber products in contact with blood [27]. In accordance with these guidelines, we analyzed
the effects of the absorber particle on (i) complement factor 5a (C5a) production as a read-out for
complement cascade activation, (ii) thrombin-antithrombin III (TAT) complex levels as a read-out
for coagulation activation, and (iii) the thrombocyte concentration as a read-out for thrombocyte
activation and clotting. Furthermore, leukocyte counts (iv) were quantified as an additional hematology
parameter. In comparison, two commercially available adsorber particles used in hemoperfusion and
in their “non-primed” state, were checked for their hemocompatibility properties (adsorbers A and B).

C5a is an essential pro-inflammatory mediator that is cleaved from its precursor upon blood
damage [28]. Adsorbers A and B significantly increased the amount of C5a compared to the negative
control (blank), as shown in Figure 4A, while the newly developed particle did not alter the C5a levels.
In addition, the TAT complex was not significantly changed by the novel adsorber particle and the
adsorber B particle (Figure 4B). In contrast, the adsorber A particle significantly increased TAT complex
levels (Figure 4B). The number of leukocytes showed a significant decrease upon incubation with the
absorber developed in the current study as well as upon incubation with adsorber A, but not with
adsorber B (Figure 4C). Furthermore, a small but significant decrease in the thrombocyte concentration
was observed for adsorber A particles, but not for the absorber developed in the current study nor for
adsorber B (Figure 4D).

In summary, the newly developed particle showed a better hemocompatibility compared to the
commercially available adsorber A and B particles in a native, non-primed condition, and mainly
performs better in avoiding C5a production via complement cascade activation in contact with blood.
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Figure 4. Hemocompatibility assessment of the newly developed adsorber particle. Hemocompatibility
was assessed after flowing human blood for 180 min through a cartridge filled with the adsorber
particles at a flow rate of 12.6 mL/min. One approach without particles was used as a blank. (A,B)
Quantification of complement component 5a (C5a) (A) and the thrombin antithrombin-complex III (TAT)
(B) in blood after incubation with newly developed whole-blood adsorber, adsorber A or adsorber B
particles, or without particles (blank), as indicated. (C,D) Relative leukocyte count (C) and thrombocyte
count (D) in blood after incubation with the newly developed whole-blood adsorber, non-primed
adsorber A or adsorber B particles, or without particles (blank), as indicated, and displayed in % from
the initial value in blood. (A–D) Data are given as mean values ± S.E.M; n = 15 for blank, n = 12 for
the newly developed adsorber particle, n = 9 for adsorber A, and n = 5 for adsorber B. * p < 0.05,
**** p < 0.0001, n.s. = not significant. One-way ANOVA with Dunnet’s multiple comparison test were
all compared to the blank.

3. Discussion

Presently, the quality of dialysis as extracorporeal therapy of CKD patients is dependent on the
efficiency of diffusion and filtration of uremic toxins out of the blood through a polymer membrane
in a dialysis solution [29]. In general, hemodialysis assists patients in compensating their impaired
kidney function by removing uremic toxins from the blood. However, the current dialysis principle
preferentially eliminates low molecular weight, hydrophilic substances from the blood, whereas the
removal of hydrophobic uremic toxins in particular remains a challenge. These hydrophobic uremic
toxins bind to plasma proteins, e.g., serum albumin, resulting in protein-bound uremic toxins with
an overall molecular weight greater than the cut-off for conventional dialysis membranes [30]. As a
consequence, hydrophobic uremic toxins, such as phenylacetic acid, p-cresyl sulfate, and indoxyl sulfate,
accumulate in the blood of CKD patients over time, even despite regular hemodialysis treatments [2].
This accumulation of uremic toxins in the blood adversely affects the cardiovascular system [11–13],
with cardiovascular disease the major cause of premature death of CKD patients [31].
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Patients with liver failure have comparable problems to patients with CKD. Toxins, such as
ammonia, false neurotransmitters, phenols, aromatic amino acids, and other substances, accumulate
in the blood of these patients and early liver-support systems have focused on blood detoxification
to reduce patient morbidity. Many therapeutic processes to enhance the removal of toxins have
been tested in the past, e.g., hemodialysis, hemofiltration, exchange transfusion, and extracorporeal
blood perfusion over activated charcoal, alone or in combination [32–35]. However, the majority of
these techniques predominantly remove water-soluble substances, whereby protein-bound substances
accumulate in liver failure [36]. Patients suffering from acute deterioration of chronic liver disease
have a mortality rate of above 60% without liver transplantation [37]. The fractionated plasma
separation and adsorption (FPAD) system PrometheusTM is a common extracorporeal system for the
treatment of acute liver failure that significantly normalizes the serum levels of conjugated bilirubin,
bile acids, ammonia, cholinesterase, creatinine, urea, and blood pH [21]. The PrometheusTM system
combines fractionated plasma separation and adsorption (FPAD) with a high-flux hemodialysis in an
extracorporeal detoxification system [21,38]. Initial investigations of our group, in which CKD patients
on dialysis (CKD-5D) were treated using the FPAD technique for 5 h, showed increased hydrophobic
uremic toxin removal rates compared with conventional high-flux hemodialysis, with the removal
rates increased by 130% for phenylacetic acid, 127% for p-cresyl sulfate, and 187% for indoxyl sulfate.
There was no observed effect on safety parameters like cortisol, triiodothyronine, or total plasma
protein [16]. However, the plasma separation approach causes high costs and is therefore not suitable
for regular extracorporeal therapy of end-stage renal disease (ESRD) patients.

Furthermore, specific types and shapes of zeolite adsorbers have been examined for creatinine
binding capacity [39], and others have shown that hexadecyl-immobilized cellulose beads can efficiently
adsorb protein-bound uremic toxins [40]. Also, AST-120 is an orally administered, intestinal, activated
carbon adsorbent particle that adsorbs uremic toxins like indole as a precursor of indoxyl sulfate.
AST-120 was shown to improve the uremic condition in CKD patients and prolong the time to
initiation of hemodialysis. More specifically, a decrease in serum indoxyl sulfate was observed in a
dose-dependent manner by reducing the absorption of indole from the gastrointestinal tract in the
presence of AST-120 [41,42]. However, creating whole-blood adsorbers for the chronic therapy of CKD
patients still poses a challenge. Recently, Pavlenko et al. showed the efficient removal of uremic toxins
from human plasma after 4 h incubation with a carbon-based adsorbent in static conditions [43]. In this
study, we developed a highly porous, whole-blood-hemocompatible microparticle with an efficient
adsorption capacity towards hydrophobic uremic toxins under flow conditions for the treatment of
patients with CKD. The newly developed bifunctional whole-blood adsorber particle is specifically
designed for the removal of hydrophobic, protein-bound uremic toxins and consists of a hydrophobic,
porous, activated charcoal core and a hydrophilic coating with PVP. Due to the hydrophobic, porous
core, hydrophobic uremic toxins may diffuse into the activated charcoal and bind there. PVP was
chosen as the hydrophilic coating to counteract the binding of plasma proteins to the particle [44].
This complements the size-mediated exclusion of plasma proteins from the hydrophobic core by the
pore size of the particle. Additionally, the coating with PVP was selected to induce hemocompatibility
of the particles for whole-blood applications, as interference with protein adsorption also prevents
downstream biological reactions [45].

Activated charcoal has already been used for the adsorption of methionine, tyrosine, and
phenylalanine, as well as arsenic, selenium, and mercury [24,46]. Also, it is a well-established treatment
option for gastrointestinal decontamination upon acute overdose [47] due to its hydrophobicity and
large surface area and porosity, which favour the high adsorptive capacity. So far, however, studies
have indicated that hemoperfusion over uncoated, activated charcoal was unacceptable because of
excessive blood damage [48]. To avoid blood damage, we have previously screened different coatings
for the activated charcoal (data not shown). From that screening, we selected PVP for the coating in this
study, since previous studies have already shown an excellent biocompatibility of dialysis membranes
blended with PVP [49–51]. Also, PVP in combination with iodine was already shown to demonstrate
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an acceptable tissue tolerability [52]. Further, PVP was tested earlier as a surface coating for silver
nanoparticles and showed good hemocompatibility with erythrocytes [25]. Also, coating of hydrogel
with PVP resulted in the decreased activation of platelets during contact with blood under flow, and its
hemocompatibility was also confirmed in a small animal model [53]. Therefore, in our study, PVP was
tested as particle coating with the aim to improve the hemocompatibility of activated charcoal, while
simultaneously retaining the particle’s high adsorption capacity towards hydrophobic compounds.
Therefore, different ratios of monomer (PVP) and cross-linker (ethylene glycol dimethacrylate) were
tested for the charcoal coating as a first step to retain a particle with a high adsorption capacity (data
not shown).

The optimized whole-blood adsorber particle showed a very strong adsorption capacity for the
analyzed hydrophobic uremic toxins phenylacetic acid, p-cresyl sulfate, and indoxyl sulfate, with
a 92–97% adsorption of these toxins from blood after 30 min of incubation. In the recirculation
experiment, 60 and 240 min of flow resulted in an adsorption of 84–96% and 95–100%, respectively.
This revealed a high adsorber capacity of the developed whole-blood adsorber particle towards
phenylacetic acid, p-cresyl sulfate, and indoxyl sulfate, also in conditions of flow, with a flow rate and
incubation time comparable to the clinical dialysis situation. Our adsorber particle thereby exceeded
the performance of hexadecyl-immobilized cellulose beads recently shown to adsorb indoxyl sulfate
in vitro for 55.9 ± 1.4% [40]. Also, the adsorption performance of our particles exceeded that of
CMK-3 and the commercially available Norit A Supra, both carbon-based sorbents recently shown to
adsorb indoxyl sulfate to ≈80% and ≈90% in vitro, respectively [43]. Furthermore, our particles were
at least comparable in adsorption performance to a hemocompatible, an activated carbon monolith
recently demonstrated by Sandeman et al. as highly promising in binding p-cresyl sulfate and indoxyl
sulfate from human plasma and whole blood [54]. In addition, the removal of phenylacetic acid,
p-cresyl sulfate, and indoxyl sulfate from blood was more efficient by our particles compared to the
commercially available FPAD system PrometheusTM, as well as compared to conventional high-flux
hemodialysis, which could reduce the plasma concentrations of these uremic toxins in CKD patients by
factors of 6.2, 3.4, and 4.6 (FPAD), respectively, and by factors of 2.7, 1.5, and 1.6 (conventional high-flux
hemodialysis), respectively [16]. All combined, our adsorber particle showed a high adsorption
capacity towards protein-bound uremic toxins, exceeding that of currently available adsorber systems,
as well as conventional hemodialysis techniques. The uremic toxins phenylacetic acid, p-cresyl
sulfate, and indoxyl sulfate are important representatives of the group of hydrophobic, protein-bound
uremic toxins since they highly accumulate in CKD patients, even despite regular dialysis [2], and
have been associated with increased cardiovascular risk in these patients [11–13]. Thus, our results
indicate that the bifunctional, whole-blood adsorber particles may be very useful in the removal of
hydrophobic uremic toxins from the plasma of CKD patients with the ultimate goal to reduce mortality
in CKD patients. In contrast to the efficient binding of hydrophobic uremic toxins, the particles did
not significantly adsorb serum albumin, which is an important finding, as albumin adsorption may
reduce the adsorption capacity of the particles towards uremic toxins over time by narrowing the
particle pores.

Hemocompatibility in contact with the patient’s blood is still a major challenge during the
development of new methods for the treatment of CKD patients. The hemocompatibility of the
newly developed particles was thus tested according to the ISO norm 10993-4. This ISO norm
recommends specific assays to evaluate potential adverse effects of biomaterials in contact with
blood, specifically also for extracorporeal adsorber products [27]. As such, the ISO norm 10993-4
advises the inspection of effects of extracorporeal adsorber particles on in vitro thrombosis, and this
is done by studying (i) coagulation (e.g., by TAT quantification); (ii) thrombocyte activation (e.g., by
quantifying thrombocyte counts); and (iii) complement cascade activation, with C5a being one of the
most important complement-derived pro-inflammatory mediators [55–57]. Increased TAT amounts
are associated with a hypercoagulable state, with patients predisposed to thrombotic events showing
elevated concentrations of TAT [58]. Further, thrombocytes are essential for blood clotting, and as
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blood clots reduce the amount of circulating thrombocytes, the thrombocyte count is recommended as
a second parameter to provide information on pro-thrombotic effects [27]. Finally, leukocyte counts are
suggested as an additional hematological control parameter, although according to the ISO 10993-4
norm, not absolutely required for evaluating the hemocompatibility of adsorber particles in blood
contact [27]. Based on these ISO recommendations and the fact that contact between blood and
particular biomaterials has previously been shown to trigger a complex series of events including
TAT elevation, C5a production, and coagulation activation/inactivation [57,59], we focussed on these
parameters in our hemocompatibility study to evaluate the potential of the newly developed adsorber
particle for future clinical applications.

In this study, the marker for activation of the coagulation system and complement activation
showed no significant difference after incubating blood with the newly developed particles under flow
condition when compared to the control, whereas at least one of these parameters was significantly
increased by the commercially available adsorber particles A and B. Furthermore, although the
leukocyte concentration was significantly decreased by the newly developed adsorber particles to
a comparable extent, as observed for commercial adsorber A particles, thrombocyte concentrations
were not significantly decreased by the new adsorber particle in comparison to the control condition.
Combined, these data suggest a good hemocompatibility of the newly developed whole blood adsorber
particles, also in comparison with the commercially available adsorber particles in their non-primed
state. The latter adsorbers have already been tested in the clinic for the treatment of patients with
acute intoxication, sepsis or for patients with liver failure, and hypercholesterinemia [21,22]. Of note,
for the assessment of hemocompatibility, identical conditions for all adsorber particles were selected,
discarding any potentially required pre-treatment of the adsorbers. As such, the adsorber A was not
primed with a recommended special buffer, as described in the according instructions for use (IFU),
which may reduce hemocompatibility properties compared to primed adsorber A as used in clinical
settings. This also suggests that further testing using differential priming conditions for our adsorber
particles might even further improve their hemocompatibility properties.

All combined, the properties of the newly developed adsorber particle in comparison with those of
commercial adsorber particles predestine our adsorber for clinical applications regarding the removal
of hydrophobic uremic toxins from the blood of CKD patients, or by extension, from patients suffering
from acute intoxication, sepsis, liver failure, or hypercholesterinemia. Whether the developed particles
may trigger eosinophil increases due to allergic responses remains to be investigated in future in vivo
studies, although PVP, used as a coating on our particles, has been reported to be non-allergenic, even
after long-term exposure [60]. Furthermore, since certain drugs may also be removed through particle
binding depending on the properties of the drug (e.g., hydrophobicity and size), the effect of adsorber
particles on daily drug dosing in CKD patients remains to be investigated in more detail, and is an
issue that has also been previously raised for alternative hemodialysis techniques [61]. Though outside
the scope of this study, additional in vitro investigations of drug binding to our particle combined
with in vivo pharmacokinetic data of selected drugs will further shed light on the issue of drug dosing
when using adsorber particles in combination with hemodialysis.

Since the developed adsorber particle is hemocompatible, it could be integrated into the existing
dialysis machines using an additional cartridge in row. Combined with the fact that activated charcoal
and PVP are both low-cost materials, which was an essential aspect in the development of the adsorber
material, this enables the extra production costs to be kept as low as possible. Nonetheless, an increase
in therapy costs cannot be avoided when combining conventional dialysis with adsorption, and a
preferential treatment of selected groups of highest-risk patients, patients with highest uremic toxin
concentrations, and those with cardiovascular complications could be considered to keep additional
healthcare costs under control. Furthermore, compared with the available PrometheusTM system,
which requires an expensive plasma separation and a filtration approach before adsorption [21], our
adsorber particle is hemocompatible with whole blood. This eliminates the need for plasma separation,
and considerably reduces therapy costs compared with the PrometheusTM system.
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In summary, we have developed a bifunctional, hemocompatible-coated whole-blood adsorber
particle that is highly efficient in adsorbing hydrophobic, protein-bound uremic toxins as increased in the
blood of patients with CKD stage 5. The hydrophilic surface modification with PVP prevented adverse
interactions of corpuscular blood components with the adsorber, but still allowed for efficient binding of
the porous, activated charcoal core pores with hydrophobic solutes in the blood. This approach resulted
in a hemocompatible adsorber with a very high adsorption capacity for hydrophobic uremic toxins.
Therefore, the whole blood adsorber can be used for the separation of protein-bound uremic toxins in
combination with dialysis. As these protein-bound uremic toxins highly accumulate in CKD patients,
even despite regular dialysis [2], and as these toxins are associated with increased cardiovascular
risk in these patients [11–13], the newly developed adsorber particles show great promise toward
increasing the efficiency of current conventional dialysis techniques in clearing pathophysiological,
hydrophobic uremic toxins from the blood and thereby reducing morbidity and mortality in CKD
patients. In future, this bifunctional, whole blood adsorber particle has to be tested on adsorption
performance, as well as potential side effects, as allergic reactions in vivo to confirm the in vitro results
for its clinical translation.

4. Conclusions

The newly developed whole blood adsorber particle is hemocompatible and showed a very
high capacity of adsorbing hydrophobic uremic toxins due to a combination of (i) size exclusion,
(ii) hydrophobicity, and (iii) hemocompatibility. Thus, the adsorber particle shows great promise
toward increasing the efficiency of conventional dialysis techniques in clearing pathophysiological,
hydrophobic uremic toxins from the blood and thereby reducing morbidity and mortality in CKD
patients. Future investigations will focus on the verification of these results in in vivo conditions.

5. Materials and Methods

5.1. Synthesis of the Particles

Activated charcoal adsorbent particles (diameter 510 µm; pore size volume 0.7 cm3 g−1) were
purchased from the supplier IBU-tec advanced materials AG (Weimar, Germany) for coating with
the hydrophilic polyvinylpyrrolidone (PVP). By varying the ratios of the 1-vinyl-2-pyrrolidone
(PVP)-monomer versus ethylene glycol dimethacrylate as a crosslinker, a total of 13 particle types
were generated. For the final adsorber particle, 200 g of particles were suspended under constant
stirring in 4 L of an aqueous solution containing 2 wt% PVP (Sigma-Aldrich, Taufkirchen, Germany)
as a stabilizer in a 20 L glass reactor (BüchiGlasUster, Uster, Switzerland) to coat these activated
charcoal cores. The solution was heated up to 40 ◦C, after which, 2.8 g of azo-bis-isobutyronitrile
(Sigma-Aldrich, Taufkirchen, Germany) as an initiator; 720 g 1-vinyl-2-pyrrolidone (Sigma-Aldrich,
Taufkirchen, Germany) as a monomer; and 288 g of ethylene glycol dimethacrylate (Sigma-Aldrich,
Taufkirchen, Germany) as a crosslinker were added. Subsequently, the solution was stirred for 2.5 h
and, after raising the temperature to 65 ◦C, stirred for 11 hours overnight. Next, the resulting particles
were sedimented, washed with deionized water, and stored in an aqueous 2% PVP-solution at 4 ◦C.

5.2. Microscopic Particle Characterization

The cross sections of the charcoal adsorbent particles and the final coated particle were analyzed
using scanning electron microscopy (SEM; Zeiss GeminSEM, Oberkochem, Germany). Particles were
broken by using liquid nitrogen and afterwards transferred onto conductive tabs (Plano GmbH,
Wetzlar, Germany) for imaging. The images were taken using an accumulation grid of 8 mm with an
accelerating voltage of 5 kV at 20,000×magnification and a resolution of 1024 × 1024 pixels.
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5.3. Statement of Ethical Principles

Blood was drawn from healthy volunteers after full informed consent. All experiments conform
to the principles outlined in the declaration of Helsinki [62]. The study was approved by the ethic
committee from the RWTH Aachen University (EK 153/18, 06/2018).

5.4. Quantification of Adsorbed Hydrophobic Uremic Toxins by Analytical Reversed Phase Chromatography

In a first set-up, the adsorption of uremic toxins by adsorber particles was examined using
static incubation conditions. Here, 100 mg of adsorber particles were resuspended in 10 mL of
human blood or water containing 0.5% bovine serum albumin (BSA; Sigma-Aldrich, Taufkirchen,
Germany). Correspondingly, a control sample without adsorber particles was treated in the same
manner as a reference for calculating the amount of adsorbed uremic toxins. A mixture of uremic toxins
according to the concentration of the uremic toxins in patients with CKD stage 5 (phenylacetic acid
(474.0 µg/mL) [4], p-cresyl sulfate (41.0 µg/mL) [63], and indoxyl sulfate (44.0 µg/mL) [64]) was added
to the blood or the BSA solution and incubated at 37 ◦C for 15, 30, 60, 120, or 180 min, as indicated.
Next, the mixture was centrifuged at 3000 rpm for 10 min at 4 ◦C to deposit the adsorber particles
and the supernatant was transferred to cryotubes followed by the addition of 25 mg/mL of resorcin
(Sigma-Aldrich, Taufkirchen, Germany) as an internal standard for subsequent chromatographic
quantification purposes. The samples were stored at −80 ◦C until analysis. For the quantification
of serum albumin binding to the adsorber particles, 100 mg of adsorber particles were resuspended
in 10 mL water containing 60 g/L BSA (Sigma-Aldrich, Taufkirchen, Germany). After the indicated
defined time points, 20 µL samples were collected and used for quantifying the protein concentration
using the BioRad DC protein kit (Bio-Rad Laboratories GmbH, Munich, Germany). The data were
normalized to a control sample without adsorber particles.

The resulting uremic toxin concentrations of the samples were quantified using analytical
reversed-phase high-performance liquid chromatography (RP-HPLC) with a C18 column (Chromolith
PerformanceTM column 100 mm × 4.6 mm; Merck, Darmstadt, Germany). The mobile phase consisted
of 4 mM tetra-n-butyl ammonium hydrogen sulfate (TBA) in a 1 M K2HPO4 buffer (pH 6.5) as solvent
A, and ethanol (100%; pH 6.5) was used as solvent B. A total of 10 µL of sample was mixed with
200 µL of solvent A and was injected into the column using the Dionex HPLC system (Thermo Fischer
Scientific, Darmstadt, Germany). For elution, a linear gradient of 8 to 40% solvent B was applied for
8 min with a flow rate of 2 mL/min. Uremic toxins were analyzed by recording the UV absorbance
at λ220 by using the Dionex Chromeleon software (version 6.6; Thermo Fischer Scientific, Darmstadt,
Germany). Extinction coefficients were derived from standard plots generated by loading known
concentrations of synthetic phenylacetic acid, p-cresyl sulfate, and indoxyl sulfate eluating on the
HPLC column. Using these extinction coefficients, the total amount of uremic toxins of the samples
was quantified, being the fraction not bound to the adsorber particles. Then, based on the difference
between the initial concentration and the non-bound fraction, the fraction that was adsorbed to the
adsorber particles was calculated.

In a second approach, the adsorption of uremic toxins by adsorber particles was examined in
conditions of flow. Twelve grams of adsorber particles was packed into an XK column 16/20 (GE
Healthcare, Munich, Germany) and equilibrated with water. Later, one litre of PBS solution containing
a mixture of uremic toxins (phenylacetic acid (474.0 µg/mL) [4], p-cresyl sulfate (41.0 µg/mL) [63],
and indoxyl sulfate (44.0 µg/mL) [64]) was pumped at a flow rate of 8 mL/min through the cartridge.
After the indicated defined time points, 2 mL samples were collected at the outlet of the cartridge.
The samples were stored at −80 ◦C until analysis. For each sample, 150 µL was mixed with 15 µL
internal standard (containing 10 mg/L indoxyl-3a,4,6,7,7a-13C6 sulfate, 10 mg/L phenylacetic acid-1-13C,
and 10 mg/L p-tolyl sulfate-d7) (Sigma-Aldrich, Germany). The amount of adsorbed uremic toxins was
analyzed using an Aquity-UHPLC (C18 column, Waters, Eschborn, Germany) system coupled to a
TQD mass spectrometer (Waters, Eschborn, Germany) with an electrospray ionization (ESI) interface.
The mobile phase consisted of 0.1% formic acid in water as solvent A and 0.1% formic acid in acetonitrile
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was used as solvent B. A total of 10 µL of sample (including internal standard) was injected onto
the column. For elution, a linear gradient of 10 to 90% solvent B was applied for 3 min with a flow
rate of 0.45 mL/min. All acquired mass spectrometry raw data was pre-processed using the software
QuanLynx 4.1 SCN627 (Waters, Eschborn, Germany).

5.5. Assessment of Hemocompatibility

Five grams of the optimized adsorber particles were packed in a polyethylene cartridge (self-made)
with aqueous 0.9% NaCl solution. For analysis of the hemocompatibility, two commercially available
adsorber particles from two different suppliers that are used for hemoperfusion were selected to
compare their hemocompatibility with that of our new particle. One type of these commercially
available reference particles was DALI, purchased from Fresenius Medical Care (DALI cartridge
Type adsorbent kit 1500, Bad Homburg, Germany) (“adsorber A”). These particles were developed
and accredited for low-density lipoprotein (LDL)-apheresis technology for the selective removal of
atherogenic LDL and lipoprotein(a) from whole blood. The second particle type that we selected for
comparison of hemocompatibility was Gambro Prismafex Adsorba™ C300 (adsorber B, purchased
from Baxter-Gambro Dialysatoren GmbH (Hechingen, Germany). Of note, for the assessment of the
hemocompatibility, identical conditions for all adsorber particles were selected for optimal comparison
of the “non-primed” adsorber properties, not taking into account potential special pretreatment
(“priming”) of the commercial adsorber particles, e.g., as prescribed for the DALI (adsorber A) particles
according to the instructions for use (IFU).

The cartridges containing the particles were connected by a tubing system with a reservoir filled
with 125.0 mL of human, heparin-anticoagulated healthy donor blood, the latter gently stirred for the
entire time to prevent clotting. The cartridge containing adsorber A was equilibrated with aqueous
0.9% NaCl solution; the cartridges containing particles developed and optimized in the current study
or adsorber B particles were equilibrated with water. After flushing the cartridges and tubing of the
system with 75 mL 0.9% NaCl, the blood was pumped through the cartridges using a flow rate of
12.6 mL/min for 180 min at 37 ◦C. Samples were collected before the beginning of the experiment
(t = 0 min) and after 180 min (t = 180 min) at the outlet of the cartridge and stored at −80 ◦C until
analysis. The samples from t = 0 min and t = 180 min were used to calculate the increase or decrease of
the tested parameters below. Additionally, one approach without particles was used as blank.

The system was continuously visually inspected for clotted blood during the testing procedure.
Furthermore, the numbers of leukocytes and thrombocytes were quantified using the K-4500 from
Sysmex (Norderstedt, Germany). Also, thrombin antithrombin complex III (TAT) and complement
component 5a (C5a) of blood samples were quantified by using the Freedom EVOlyzer (Tecan,
Männerdorf, Switzerland) and chemiluminescent enzyme-linked immunosorbent assays according to
the manufacturers’ instructions (C5a ELISA Kit EIA-3327, DRG, Marburg; Germany; Enzygnost® TAT
micro, Siemens, Marburg; Germany).

5.6. Statistics

All data were statistically analyzed using commercially available software packages (SPSS 23,
IBM; GraphPad Prism 6, GraphPad Software Inc.; La Jolla, CA, USA). Data were expressed as the
mean value of a minimum of three independent experiments ± standard error of the mean. Results of
repeated measurements were compared using a repeated measurements analysis of variance (one-way
ANOVA). In the case of significant results, post-hoc testing was performed using the Dunnet-test for
multiple measurements. * p < 0.05 was considered statistically significant.

Author Contributions: Conceptualization, K.O., A.E., U.T., S.S., and J.J.; Investigation, M.S., S.T.-B., K.O., and V.J.;
Writing—original draft, M.S., J.J., and H.N.; Writing—review and editing, M.S., S.T.-B., T.B., K.O., A.E., U.T., S.S.,
T.S., C.G., V.J., J.J., and H.N.



Toxins 2019, 11, 389 14 of 17

Funding: This study was financially supported by the Federal Ministry of Education and Research (BMBF,
Germany) (13N114116) and by the German Research Foundation (DFG SFB/TRR219-S03 to Vera Jankowski and
Joachim Jankowski, SFB/TRR219-C04 to Joachim Jankowski, and SFB/TRR219-M05 to Heidi Noels).

Conflicts of Interest: Ansgar Erlenkoetter, Ulrich Tschulena and Sonja Steppan are full-time employees of
Fresenius Medical Care. Kirsten Oleschko is a full-time employee of PSS. particle. The other authors declare no
competing financial interests.

References

1. Vanholder, R.; Schepers, E.; Pletinck, A.; Neirynck, N.; Glorieux, G. An Update on Protein-Bound Uremic
Retention Solutes. J. Ren. Nutr. 2012, 22, 90–94. [CrossRef]

2. Vanholder, R.; De Smet, R.; Glorieux, G.; Argilés, A.; Baurmeister, U.; Brunet, P.; Clark, W.; Cohen, G.; De
Deyn, P.P.; Deppisch, R.; et al. Review on uremic toxins: Classification, concentration, and interindividual
variability. Kidney Int. 2003, 63, 1934–1943. [CrossRef]

3. Jansen, J.; Jankowski, J.; Gajjala, P.R.; Wetzels, J.F.; Masereeuw, R. Disposition and clinical implications of
protein-bound uremic toxins. Clin. Sci. 2017, 131, 1631–1647. [CrossRef]

4. Jankowski, J.; Van Der Giet, M.; Jankowski, V.; Schmidt, S.; Hemeier, M.; Mahn, B.; Giebing, G.; Tölle, M.;
Luftmann, H.; Schluter, H.; et al. Increased plasma phenylacetic acid in patients with end-stage renal failure
inhibits iNOS expression. J. Clin. Investig. 2003, 112, 256–264. [CrossRef]

5. Martinez, A.W.; Recht, N.S.; Hostetter, T.H.; Meyer, T.W. Removal of P-Cresol Sulfate by Hemodialysis. J. Am.
Soc. Nephrol. 2005, 16, 3430–3436. [CrossRef]

6. Watanabe, H.; Miyamoto, Y.; Otagiri, M.; Maruyama, T. Update on the Pharmacokinetics and Redox Properties
of Protein-Bound Uremic Toxins. J. Pharm. Sci. 2011, 100, 3682–3695. [CrossRef]

7. Masereeuw, R.; Mutsaers, H.A.; Toyohara, T.; Abe, T.; Jhawar, S.; Sweet, D.H.; Lowenstein, J. The Kidney and
Uremic Toxin Removal: Glomerulus or Tubule? Semin. Nephrol. 2014, 34, 191–208. [CrossRef]

8. Lesaffer, G.; De Smet, R.; Lameire, N.; Dhondt, A.; Duym, P.; Vanholder, R. Intradialytic removal of
protein-bound uraemic toxins: Role of solute characteristics and of dialyser membrane. Nephrol. Dial.
Transplant. 2000, 15, 50–57. [CrossRef]

9. Sirich, T.L.; Luo, F.J.-G.; Plummer, N.S.; Hostetter, T.H.; Meyer, T.W. Selectively increasing the clearance of
protein-bound uremic solutes. Nephrol. Dial. Transplant. 2012, 27, 1574–1579. [CrossRef]

10. Meert, N.; Eloot, S.; Waterloos, M.A.; Van Landschoot, M.; Dhondt, A.; Glorieux, G.; Ledebo, I.; Vanholder, R.
Effective removal of protein-bound uraemic solutes by different convective strategies: A prospective trial.
Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transplant. Assoc. Eur. Ren. Assoc. 2009, 24, 562–570. [CrossRef]

11. Hung, S.; Kuo, K.; Wu, C.; Tarng, D. Indoxyl Sulfate: A Novel Cardiovascular Risk Factor in Chronic Kidney
Disease. J. Am. Heart Assoc. 2017, 6, e005022. [CrossRef]

12. Bammens, B.; Evenepoel, P.; Keuleers, H.; Verbeke, K.; Vanrenterghem, Y. Free serum concentrations of the
protein-bound retention solute p-cresol predict mortality in hemodialysis patients. Kidney Int. 2006, 69,
1081–1087. [CrossRef]

13. Ito, S.; Yoshida, M. Protein-Bound Uremic Toxins: New Culprits of Cardiovascular Events in Chronic Kidney
Disease Patients. Toxins 2014, 6, 665–678. [CrossRef]

14. Schlieper, G.; Hess, K.; Floege, J.; Marx, N. The vulnerable patient with chronic kidney disease. Nephrol. Dial.
Transplant. Off. Publ. Eur. Dial. Transplant. Assoc. Eur. Ren. Assoc. 2016, 31, 382–390. [CrossRef]

15. Karbowska, M.; Kaminski, T.W.; Marcinczyk, N.; Misztal, T.; Rusak, T.; Smyk, L.; Pawlak, D. The Uremic
Toxin Indoxyl Sulfate Accelerates Thrombotic Response after Vascular Injury in Animal Models. Toxins 2017,
9, 229. [CrossRef]

16. Brettschneider, F.; Tölle, M.; Von Der Giet, M.; Passlick-Deetjen, J.; Steppan, S.; Peter, M.; Jankowski, V.;
Krause, A.; Kühne, S.; Zidek, W.; et al. Removal of Protein-Bound, Hydrophobic Uremic Toxins by a
Combined Fractionated Plasma Separation and Adsorption Technique. Artif. Organs 2013, 37, 409–416.
[CrossRef]

17. Krieter, D.H.; Hackl, A.; Rodriguez, A.; Chenine, L.; Moragues, H.L.; Lemke, H.D.; Wanner, C.; Canaud, B.
Protein-bound uraemic toxin removal in haemodialysis and post-dilution haemodiafiltration. Nephrol. Dial.
Transplant. Off. Publ. Eur. Dial. Transplant. Assoc. Eur. Ren. Assoc. 2010, 25, 212–218. [CrossRef]

http://dx.doi.org/10.1053/j.jrn.2011.10.026
http://dx.doi.org/10.1046/j.1523-1755.2003.00924.x
http://dx.doi.org/10.1042/CS20160191
http://dx.doi.org/10.1172/JCI200315524
http://dx.doi.org/10.1681/ASN.2005030310
http://dx.doi.org/10.1002/jps.22592
http://dx.doi.org/10.1016/j.semnephrol.2014.02.010
http://dx.doi.org/10.1093/ndt/15.1.50
http://dx.doi.org/10.1093/ndt/gfr691
http://dx.doi.org/10.1093/ndt/gfn522
http://dx.doi.org/10.1161/JAHA.116.005022
http://dx.doi.org/10.1038/sj.ki.5000115
http://dx.doi.org/10.3390/toxins6020665
http://dx.doi.org/10.1093/ndt/gfv041
http://dx.doi.org/10.3390/toxins9070229
http://dx.doi.org/10.1111/j.1525-1594.2012.01570.x
http://dx.doi.org/10.1093/ndt/gfp437


Toxins 2019, 11, 389 15 of 17

18. Tao, X.; Thijssen, S.; Kotanko, P.; Ho, C.-H.; Henrie, M.; Stroup, E.; Handelman, G. Improved dialytic removal
of protein-bound uraemic toxins with use of albumin binding competitors: An in vitro human whole blood
study. Sci. Rep. 2016, 6, 23389. [CrossRef]

19. Chandy, T.; Sharma, C.P. Activated Charcoal Microcapsules and their Applications. J. Biomater. Appl. 1998,
13, 128–157. [CrossRef]

20. Williams, R. Trials and tribulations with artificial liver support. Gut 1978, 19, 578–583. [CrossRef]
21. Rifai, K.; Ernst, T.; Kretschmer, U.; Bahr, M.J.; Schneider, A.; Hafer, C.; Haller, H.; Manns, M.P.; Fliser, D.

Prometheus®— A new extracorporeal system for the treatment of liver failure. J. Hepatol. 2003, 39, 984–990.
[CrossRef]

22. Bosch, T.; Lennertz, A.; Schmidt, B.; Fink, E.; Keller, C.; Toepfer, M.; Dräger, J.; Samtleben, W. DALI Apheresis
in Hyperlipidemic Patients: Biocompatibility, Efficacy, and Selectivity of Direct Adsorption of Lipoproteins
from Whole Blood. Artif. Organs 2000, 24, 81–90. [CrossRef]

23. Thadhani, R.; Kisner, T.; Hagmann, H.; Bossung, V.; Noack, S.; Schaarschmidt, W.; Jank, A.; Kribs, A.;
Cornely, O.A.; Kreyssig, C.; et al. Pilot Study of Extracorporeal Removal of Soluble Fms-Like Tyrosine Kinase
1 in Preeclampsia. Circulation 2011, 124, 940–950. [CrossRef]

24. Peräniemi, S.; Hannonen, S.; Mustalahti, H.; Ahlgren, M. Zirconium-loaded activated charcoal as an adsorbent
for arsenic, selenium and mercury. Fresenius J. Anal. Chem. 1993, 349, 510–515. [CrossRef]

25. Kwon, T.; Woo, H.J.; Kim, Y.H.; Lee, H.J.; Park, K.H.; Park, S.; Youn, B. Optimizing Hemocompatibility of
Surfactant-Coated Silver Nanoparticles in Human Erythrocytes. J. Nanosci. Nanotechnol. 2012, 12, 6168–6175.
[CrossRef]

26. Zhang, H.; Song, J.; Deng, J. The First Suspension Polymerization for Preparing Optically Active Microparticles
Purely Constructed from Chirally Helical Substituted Polyacetylenes. Macromol. Rapid Commun. 2014, 35,
1216–1223. [CrossRef]

27. International Organization for Standardization. Biological Evaluation of Medical Devices— Part 4: Selection of
Tests for Interactions with Blood (ISO 10993-4:2017); DIN Deutsches Institut für Normung e. V. Beuth Verlag
GmbH: Berlin, Germany, 2017.

28. An, G.; Ren, G.; Zhang, C. Role of C5a-C5aR axis in the development of atherosclerosis. Sci. China Life Sci.
2014, 57, 790–794. [CrossRef]

29. Neirynck, N.; Vanholder, R.; Schepers, E.; Eloot, S.; Pletinck, A.; Glorieux, G. An update on uremic toxins.
Int. Urol. Nephrol. 2013, 45, 139–150. [CrossRef]

30. Gondouin, B.; Hutchison, C.A. High Cut-off Dialysis Membranes: Current Uses and Future Potential. Adv.
Chronic Kidney Dis. 2011, 18, 180–187. [CrossRef]

31. Thompson, S.; James, M.; Wiebe, N.; Hemmelgarn, B.; Manns, B.; Klarenbach, S.; Tonelli, M.;
Network, F.T.A.K.D. Cause of Death in Patients with Reduced Kidney Function. J. Am. Soc. Nephrol.
2015, 26, 2504–2511. [CrossRef]

32. Knell, A.; Dukes, D. Dialysis Procedures in Acute Liver Coma. Lancet 1976, 308, 402–403. [CrossRef]
33. Desmet, V.J.; De Groote, J.; Van Damme, B. Acute hepatocellular failure. A study of 17 patients treated with

exchange transfusion. Hum. Pathol. 1972, 3, 167–182. [CrossRef]
34. Longo, S.; Spagnuolo, S.; Mastantuono, A.; Ventriglia, R.; Tesauro, R.; Persico, G. Hepatocellular transplant

in the treatment of acute hepatic failure. An experimental study in rats. Minerva Chir. 1986, 41, 1549–1553.
[PubMed]

35. O’Grady, J.G.; Gimson, A.; O’Brien, C.; Pucknell, A.; Hughes, R.; Williams, R. Controlled trials of charcoal
hemoperfusion and prognostic factors in fulminant hepatic failure. Gastroenterology 1988, 94, 1186–1192.
[CrossRef]

36. Stockmann, H.B.A.C.; Hiemstra, C.A.; Ijzermans, J.N.M.; Marquet, R.L. Extracorporeal Perfusion for the
Treatment of Acute Liver Failure. Ann. Surg. 2000, 231, 460–470. [CrossRef] [PubMed]

37. Bismuth, H.; Samuel, D.; Castaing, D.; Williams, R.; Pereira, S. Liver Transplantation in Europe for Patients
with Acute Liver Failure. Semin. Liver Dis. 1996, 16, 415–425. [CrossRef] [PubMed]

38. Falkenhagen, D.; Strobl, W.; Vogt, G.; Schrefl, A.; Linsberger, I.; Gerner, F.J.; Schoenhofen, M. Fractionated
Plasma Separation and Adsorption System: A Novel System for Blood Purification to Remove Albumin
Bound Substances. Artif. Organs 1999, 23, 81–86. [CrossRef] [PubMed]

39. Koubaissy, B.; Toufaily, J.; Yaseen, Z.; Daou, T.J.; Jradi, S.; Hamieh, T. Adsorption of uremic toxins over
dealuminated zeolites. Adsorpt. Sci. Technol. 2017, 35, 3–19. [CrossRef]

http://dx.doi.org/10.1038/srep23389
http://dx.doi.org/10.1177/088532829801300204
http://dx.doi.org/10.1136/gut.19.6.578
http://dx.doi.org/10.1016/S0168-8278(03)00468-9
http://dx.doi.org/10.1046/j.1525-1594.2000.06476.x
http://dx.doi.org/10.1161/CIRCULATIONAHA.111.034793
http://dx.doi.org/10.1007/BF00323983
http://dx.doi.org/10.1166/jnn.2012.6433
http://dx.doi.org/10.1002/marc.201400067
http://dx.doi.org/10.1007/s11427-014-4711-5
http://dx.doi.org/10.1007/s11255-012-0258-1
http://dx.doi.org/10.1053/j.ackd.2011.02.006
http://dx.doi.org/10.1681/ASN.2014070714
http://dx.doi.org/10.1016/S0140-6736(76)92412-0
http://dx.doi.org/10.1016/S0046-8177(72)80071-6
http://www.ncbi.nlm.nih.gov/pubmed/3543735
http://dx.doi.org/10.1016/0016-5085(88)90011-X
http://dx.doi.org/10.1097/00000658-200004000-00003
http://www.ncbi.nlm.nih.gov/pubmed/10749605
http://dx.doi.org/10.1055/s-2007-1007254
http://www.ncbi.nlm.nih.gov/pubmed/9027954
http://dx.doi.org/10.1046/j.1525-1594.1999.06292.x
http://www.ncbi.nlm.nih.gov/pubmed/9950184
http://dx.doi.org/10.1177/0263617416666084


Toxins 2019, 11, 389 16 of 17

40. Yamamoto, S.; Sato, M.; Sato, Y.; Wakamatsu, T.; Takahashi, Y.; Iguchi, A.; Omori, K.; Suzuki, Y.; Ei, I.;
Kaneko, Y.; et al. Adsorption of Protein-Bound Uremic Toxins Through Direct Hemoperfusion With
Hexadecyl-Immobilized Cellulose Beads in Patients Undergoing Hemodialysis. Artif. Organs 2018, 42, 88–93.
[CrossRef] [PubMed]

41. Schulman, G.; Berl, T.; Beck, G.J.; Remuzzi, G.; Ritz, E.; Shimizu, M.; Shobu, Y.; Kikuchi, M. The effects
of AST-120 on chronic kidney disease progression in the United States of America: A post hoc subgroup
analysis of randomized controlled trials. BMC Nephrol. 2016, 17, 141. [CrossRef]

42. Schulman, G.; Vanholder, R.; Niwa, T. AST-120 for the management of progression of chronic kidney disease.
Int. J. Nephrol. Renov. Dis. 2014, 7, 49–56. [CrossRef] [PubMed]

43. Pavlenko, D.; Giasafaki, D.; Charalambopoulou, G.; Van Geffen, E.; Gerritsen, K.G.F.; Steriotis, T.;
Stamatialis, D. Carbon Adsorbents with Dual Porosity for Efficient Removal of Uremic Toxins and Cytokines
from Human Plasma. Sci. Rep. 2017, 7, 14914. [CrossRef] [PubMed]

44. Kim, J.; Somorjai, G.A. Molecular Packing of Lysozyme, Fibrinogen, and Bovine Serum Albumin on
Hydrophilic and Hydrophobic Surfaces Studied by Infrared−Visible Sum Frequency Generation and
Fluorescence Microscopy. J. Am. Chem. Soc. 2003, 125, 3150–3158. [CrossRef] [PubMed]

45. Xu, L.-C.; Bauer, J.W.; Siedlecki, C.A. Proteins, Platelets, and Blood Coagulation at Biomaterial Interfaces.
Colloids Surf. B Biointerfaces 2014, 124, 49–68. [CrossRef] [PubMed]

46. Gazzard, B.; Weston, M.; Murray-Lyon, I.; Flax, H.; Record, C.; Portmann, B.; Langley, P.; Dunlop, E.;
Mellon, P.; Ward, M.; et al. Charcoal Hæmoperfusion In The Treatment Of Fulminant Hepatic Failure. Lancet
1974, 303, 1301–1307. [CrossRef]

47. Juurlink, D.N. Activated charcoal for acute overdose: A reappraisal. Br. J. Clin. Pharmacol. 2016, 81, 482–487.
[CrossRef] [PubMed]

48. Hagstam, K.-E.; Larsson, L.-E.; Thysell, H. Experimental studies on charcoal haemoperfusion in phenobarbital
intoxication and uraemia, including histopathologic findings. Acta Med. Scand. 1966, 180, 593–604. [CrossRef]
[PubMed]

49. Bowry, S.; Ronco, C. Surface Topography and Surface Elemental Composition Analysis of Helixone®, a New
High-Flux Polysulfone Dialysis Membrane. Int. J. Artif. Organs 2001, 24, 757–764. [CrossRef] [PubMed]

50. Hoenich, N.A.; Stamp, S. Clinical performance of a new high-flux synthetic membrane. Am. J. Kidney Dis.
2000, 36, 345–352. [CrossRef] [PubMed]

51. Sirolli, V.; Ballone, E.; Amoroso, L.; Di Liberato, L.; Di Mascio, R.; Cappelli, P.; Albertazzi, A.; Bonomini, M.
Leukocyte Adhesion Molecules and Leukocyte-Platelet Interactions during Hemodialysis: Effects of Different
Synthetic Membranes. Int. J. Artif. Organs 1999, 22, 536–542. [CrossRef] [PubMed]

52. Reimer, K.; Vogt, P.M.; Broegmann, B.; Hauser, J.; Rossbach, O.; Kramer, A.; Rudolph, P.; Bosse, B.; Schreier, H.;
Fleischer, W. An Innovative Topical Drug Formulation for Wound Healing and Infection Treatment: In vitro
and in vivo Investigations of a Povidone-Iodine Liposome Hydrogel. Dermatology 2000, 201, 235–241.
[CrossRef] [PubMed]
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