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Abstract: The steady growth of inflammatory diseases of the udder in dairy cattle 
forces us to look for the causes of this phenomenon in the context of growing 
chemical pollution of the environment and feeds. Within the framework of this 
concept, an analysis was made of the polarity level of the three toxic impurity 
groups, which are commonly present in dairy cattle feeds. These impurities are 
presented by mycotoxins, polyaromatic hydrocarbons (PAH) and persistent 
organic pollutants (POP). It has been determined that 46% of studied mycotoxins 
(n = 1500) and 100% of studied polyaromatic hydrocarbons (n = 45) and persistent 
organic pollutants (n = 55) are lipophilic compounds, prone to bioaccumulation. A 
comparative evaluation of the sorption capacity of four adsorbents of a different 
nature and polarity with respect to the simplest PAH, naphthalene and lipophilic 
estrogenic mycotoxin, zearalenone in vitro has been carried out. The highest 
efficiency in these experiments was demonstrated by the reversed-phase 
polyoctylated polysilicate hydrogel (POPSH). The use of POPSH in a herd of 
lactating cows significantly reduced the transfer of aldrin, dieldrin and heptachlor, 
typical POPs from the “dirty dozen”, to the milk. The relevance of protecting the 
main functional systems of animals from the damaging effects of lipophilic toxins 
from feeds using non-polar adsorbents, and the concept of evaluating the 
effectiveness of various feed adsorbents for dairy cattle by their influence on the 
somatic cell count in the collected milk are discussed. 

Keywords: mycotoxin; PAH; POP; lipophilicity; Log P; cattle; mastitis; ryegrass 
staggers; adsorbent; bioaccumulation 

Key Contribution: Data on the partition coefficients of 1500 mycotoxins; and other 
fungal and some bacterial metabolites are presented in one table. The nature and 
properties of three major groups of toxic chemical contaminants from the feed for 
dairy cows were analyzed. The data on the feasibility of the mandatory use of non-
polar adsorbents when feeding dairy cattle are demonstrated. 
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1. Introduction 

It is known that inflammatory diseases of the udder, which depending on their 
severity, are usually referred to as subclinical or clinical mastitis, cause serious 
damage to agriculture [1,2]. The annual economic losses that cause these diseases of 
dairy cattle on a global scale are account for billions of dollars. To date, the 
pathogens that provoke the development of mastitis and the factors that determine 
the sensitivity of animals to this pathology are well determined and studied [2–7]. 
Among them, the properties inherent in the animals themselves, such as the type of 
animal, genetic features [8], productivity, age, number of calving/lactation, structure 
of the udder [9,10] etc., as well as external factors associated with the conditions of 
care, milking and feeding animals [1–3,9–13] are usually examined.  

Today we can conclude that despite the considerable progress achieved in 
selective genetics and technology of the maintenance, care and milking of the 
animals, the number of cases of registered mastitis continuously increases. 
Moreover, in some regions there is a significant increase in the incidence of mastitis, 
especially in its subclinical form (up to 60% of the herd) [2,11]. Perhaps this might 
be related to the constant increase in environmental pollution that cannot but affect 
the quality of feed used in dairy farming.  

Supposedly, despite the undisputed achievements in genetic selection and the 
modern use of the most advanced technologies in dairy production, the greater, if 
not essential, effect on dairy cattles’ health and productivity, as well as the consumer 
quality of the dairy products is determined by the quality of the feed used in the 
dairy farming. This practice demonstrates that the feed rations of poultry, fish and 
pigs include feeds based on raw grain materials with different supplements, and 
dairy cattle feed is based on herbaceous plants with a small supplementation of 
concentrates. Therefore, the feeds of poultry, fish and pigs majorly contain toxins 
typical to the raw grain materials, mostly mycotoxins, whereas the feeds of dairy 
cattle contain toxins typical to the mass of green grass. The herbal mass, in addition 
to mycotoxins, what will be discussed in more detail later, always contains 
polyaromatic hydrocarbons (PAHs) and persistent organic pollutants (POPs) as 
impurities. Consequently, it is common to believe that dairy cattle consume more 
toxic feed than poultry and the pigs. Since the base of the feed ration of dairy cows 
during the summer period consists of green fodder, and during the winter periods 
contains silages, concentrates, haylage and straw, then with time the toxins 
contained in these feeds may negatively impact the general health of the animals, as 
well as the ability of the nervous, immune, endocrine and digestive systems, the milk 
somatic cells count (SCC), bacterial contamination of milk and the level of milk 
production.  

In this paper, we will use terms that describe the properties of chemicals in 
relation to their environment. It is necessary to take into account that mycotoxins 
can be attributed either to polar substances that have good solubility in water, 
therefore they are called polar or hydrophilic, or to non-polar substances that do not 
dissolve in water and preferably concentrate in low dielectric media. Such 
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substances are usually designated by the terms non-polar, lipophilic, or 
hydrophobic. However, since among non-polar substances there are compounds 
with polar constituents that ensure the presence of a dipole moment in the molecule, 
the terms lipophilic or hydrophobic will be used more often to refer to substances 
with Log Pow > 3. 

The major toxic components of farm animal feeds are considered to be 
mycotoxins—secondary metabolites of toxicogenic microscopic fungi [14–19]. The 
mycotoxins represent a very wide range of chemical compounds with different 
composition, structure and biological properties, which are combined only by one 
factor, their source of origin.  

With the development of analytical techniques and the equipment of specialized 
and research laboratories, the number of contaminated feed types, as well as the 
types and number of mycotoxins determined in feeds, continues to grow [20–28]. In 
other words, the wider the spectrum of the mycotoxins analyzed and found in the 
feeds, the higher portion of the feeds become contaminated with these compounds. 
At present, more and more specialists incline that almost all feeds contain 
mycotoxins. It is a question of their nomenclature and concentration. Based on the 
figures cited in the research on the evaluation of the contamination of the samples 
of grass and silages from different countries with various types of microscopic 
mycotoxin producing fungi belonging to more than 20 genera [20,23,26,29], it is 
reasonable to anticipate that these samples may contain in different quantities up to 
500 or more different mycotoxins, and it is almost impossible to determine all of 
them and their levels in full. 

The danger of the presence of mycotoxins in feed for cattle and other farm 
animals, in addition to the harm posed to livestock health and reduced productivity 
[30,31], is complemented by the risk of their transfer to animal products—mainly 
milk [32–35], eggs and meat [36–39]—and thus their inclusion in the human food 
chains [40–42]. First of all, this refers to non-polar toxins, capable of bioaccumulation 
[43]. 

In addition to mycotoxins, as they are known, cattle feed always contains two 
more groups of toxic compounds, which as a result of natural phenomena and 
human activity, are widely distributed in the environment of any region. These 
include PAHs, for example, naphthalene, benzopyrene, chrysene, benzanthracene, 
etc., and POPs, such as aldrin, dieldrin, heptachlor, DDT, hexachlorocyclohexane, 
polychlorinated biphenyls, dioxins, furans, etc. [37,44,45]. 

It has been established that PAHs and POPs, like lipophilic mycotoxins, are also 
capable of bioaccumulation [46] and transfer into milk [37,47–50] in amounts up to 
80% of the received dose from feed, especially POPs. In addition, PAHs together 
with the mycotoxins, but unlike POPs, are attributed to evolutionarily typical 
substrates for the vertebrate cytochrome P-450 xenobiotic metabolism system and 
by their presence in feed, they put an additional burden on the liver detoxification 
system, reducing its ability to neutralize other toxic xenobiotics, first of all—
mycotoxins.  
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There is a point of view that not only mycotoxins can synergistically enhance the 
effect of each other [51,52], but also synergistically interact with PAHs and POPs. It 
was shown that some POPs, for example, 2,3,7,8-tetrachlorodibenzo-p-dioxin, or 
simply dioxin, can increase the toxic impact of T-2 toxin on rabbits by several times 
[53]. In this regard, it is rather difficult to estimate the level of synergistic interactions 
of toxins and their consequences for the organism while there are several tens or 
hundreds of different mycotoxins, PAHs and POPs in feeds even in low 
concentrations. Therefore, in modern animal husbandry, it is imperative to use 
effective means of protecting animals from the harmful effects of toxins in feed. 

To reduce the toxic load of feed, in addition to mechanical, chemical and 
physical methods of controlling mold fungi, adsorbents are often used. They are 
used in the form of feed additives to remove the mycotoxins from the 
gastrointestinal tract of animals. The properties and effectiveness of their use in 
animal husbandry are described in numerous reviews and original articles cited 
there [54–61]. Most of the feed adsorbents used show a fairly high efficiency in pig 
and poultry farming in the presence of mostly polar mycotoxins in feed. But, as 
practice shows, their effectiveness against lipophilic toxins is much lower. Therefore, 
the development and use of adsorbents, which can also remove lipophilic toxins 
from the body of an animal, such as hydrophobic mycotoxins, PAHs and POPs, in 
dairy farming is very urgent. 

In this article, after analyzing the properties of three main types of contaminant 
for cattle feeds—mycotoxins, PAHs and POPs—the effectiveness of a new adsorbent 
based on a hydrophobized reversed-phase polyoctylated polysilicate hydrogel 
(POPSH) in binding lipophilic toxins in vitro and in reducing some of the POP’s 
transfer into milk in vivo was demonstrated. We will also cite recommendations to 
fight against the non-polar toxins. 

2. Results 

2.1. On the Polarity of Mycotoxins 

Figure 1 shows data on the partition coefficients of 1500 different mycotoxins 
and other extralites of fungi and some bacteria which are widely distributed in soils 
and can be contained in cattle feeds, presented in the form of a histogram. The 
abscissa axis on the graph shows the values of partition coefficients with a step of 
0.5, and the ordinate reflects the number of substances having the value of this 
parameter in the specified range. Such a distribution can be called the “lipophilicity 
profile” for a given set of mycotoxins. Data on the calculated values of LogPow 
(XLog P3-AA [62]) for these compounds in a table form are presented in the 
Supplementary materials (Table S1). The elements of the table (mycotoxins) are 
arranged in accordance with the increase in the values of their partition coefficients 
(Log Pow) with a step of 0.1. Alphabetic sorting in the names of substances is 
followed within the same value of this parameter. 

Based on the data in Table S1, it follows that 90% of all mycotoxins presented 
have partition coefficients ranging from −0.2 to +7.2. The whole set (n = 1500) in 
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accordance with the partition coefficients of its components is characterized by the 
following parameters: Mean = 2.91, Median = 2.70, Min = −10.0, Max = +10.1. It is also 
clear that from the entire array containing 1,500 compounds, the share of polar 
substances (Log Pow < 1) is 213 substances, or 14.2%, the share of moderately 
lipophilic toxins (1 ≤ Log Pow < 3) is 592 substances, or 39.5%, and lipophilic 
compounds (Log Pow ≥ 3) are presented by 695 substances, which constitutes 46.3%. 

 

Figure 1. Distribution of some mycotoxins according to their polarity (lipophilicity). 

It should be noted that in the process of forming this database and increasing 
randomly the number of mycotoxins from 200 to 1500, the relative content of non-
polar toxins increased from 25% to 45% with an increase in the total number of 
mycotoxins to 400, and then remained almost constant at the level reached. Thus, it 
can be stated that more than 45% of mycotoxins studied in this paper are non-polar 
substances. These data deserve special attention because, as it is known, non-polar 
substances pose an additional threat to animals because of their capacity for 
bioaccumulation [43]. 

2.2. On the Polarity of Polyaromatic Hydrocarbons and Persistent Organic Pollutants 

It is known that almost all feeds for dairy cattle, especially those based on grassy 
plants, contain two more types of impurities - PAHs and POPs [37,45,47–50]. 

An analysis of the PubChem data [63] showed that, unlike the mycotoxins, all 
100% of PAHs (n = 45) and 100% of POPs (n = 55) belong to lipophilic substances (see 
Tables S2 and S3, respectively). Thus, the most polar of PAHs is naphthalene, 
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characterized by Log Pow = 3.3, and the most polar of POPs, endrin, has a partition 
coefficient equal to 3.7. Other representatives of these groups of compounds have 
even higher values of the partition coefficient in the range from 3.7 to 10.0. This 
means that all of them, like non-polar mycotoxins, are capable of bioaccumulation 
(bioconcentration), especially POPs [46]. 

2.3. Comparative Sorption Capacity of Adsorbents in Relation to Lipophilic Sorbates 

Figure 2 shows the data on the sorption capacity of four different adsorbents 
with respect to a non-polar simplest PAH, naphthalene (Log Pow = 3.3) and 
lipophilic infamous estrogenic mycotoxin, zearalenone (Log Pow = 3.6), a) and b), 
respectively. Everyone knows what damage this mycotoxin causes to the 
reproduction of cattle and other farm animals.  

  
(a) (b) 

Figure 2. Comparative capacity of adsorbents of different nature in relation to lipophilic sorbates 
naphthalene (a) and zearalenone (b). 

Adsorbents of different nature and polarity were used. Adsorbent No. 1 was 
chosen among aluminosilicate adsorbents, No. 2 consisted of yeast cell walls, No. 3 
is an activated carbon, and adsorbent No. 4 is a reversed-phase adsorbent based on 
a polyoctylated polysilicate hydrogel (POPSH) [24]. The sorption capacity of the 
most effective adsorbent was taken as 100%. 

It can be seen that non-polar adsorbents (No. 3 and 4) are significantly superior 
to polar ones (No. 1 and 2) in their ability to bind lipophilic sorbates. It can also be 
noted that adsorbent No. 4 in terms of sorption capacity exceeds activated carbon. 
For this reason, its capacity in these experiments was taken as 100%. 

2.4. Effects of POPSH on the Transfer of Chlorinated Pesticides into Milk 

As already mentioned, POPs are most prone to transfer to milk. This ability 
depends on the composition and properties of POPs, but as established, it is 
significantly higher than that of mycotoxins and PAHs. The reasons for this 
phenomenon will be discussed later. Table 1 provides data on the effect of adsorbent 
No. 4 on the concentration of certain chlorinated pesticides from the “dirty dozen”, 
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namely aldrin, dieldrin and heptachlor, in the collected milk from one of the dairy 
farms of the north-eastern part of the Kaluga region of the Russian Federation. 

Table 1. Concentration of chlorinated pesticides in raw cow milk. 

Substance Pesticide Concentration (µg/kg) 
 Control group Experimental group 

Aldrin 10.6 ± 0.35 n.d.* 

Dieldrin 5.70 ± 0.21 n.d. 

Heptachlor 5.85 ± 0.24 n.d. 

* n.d. (not determined) means that the concentration of a substance in a sample does not exceed the 
limits of detection of the analytical method used (2 µg/kg). 

It can be seen that the use of POPSH in experimental group consisting of 65 
animals for 40 days can significantly reduce the content of the specified chlorinated 
pesticides in raw milk. 

3. Discussion 

3.1. On the Polarity of Mycotoxins in Feed 

There are many types of classification for mycotoxins, based on their unique 
features, but the most important for our consideration are the two most general 
types of classification. The first relies on the ecological niches of fungal producers. 
Mycotoxins in feed for cattle, depending on the ecological niche of the source of 
origin, are conventionally divided into “field” ones, which are formed by 
phytopathogenic fungi during the period of growth and the ripening of herbaceous 
plants, grain and other forage crops [64–67]; “pasture” or “grazing” toxins that are 
produced by endophytic symbiotic fungi during the period of active vegetation and 
fruiting of some pasture plants in the warm season [23,68–72], and “storage” toxins, 
which are formed during the storage of plant products infected with saprophytic 
molds in warehouses in inappropriate storage conditions [26,54,65,67,73]. It should 
be noted that such a division is not absolutely strict, since some species of fungi from 
different genera may exhibit properties that are not characteristic of their own 
kind—“field”, “pasture” or “storage”. 

The second general type of the classification of mycotoxins is founded on their 
physical and chemical properties [24]. The main criteria of selection in this approach 
is one of the fundamental characteristic, pertinent to all, without any exclusions, 
organic compounds, the degree of polarity of a compound, which can be 
quantitatively described using the partition coefficient of a chemical in the 
octanol/water system, which is expressed as a decimal logarithm (Log Pow). “Pow” 
refers to the “partition octanol/water” [74,75]. Further, taking into account the fact 
that in tables of this article the calculated values for the partition coefficients are 
given (XLogP3-AA) [62], for simplicity in the text we will use the notation Log Pow. 
The quantitative assessment inherent in this method of classification has certain 
advantages over other types of mycotoxin classification methods. Within the 
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confines of such approach, and in accordance with widely accepted schema, all 
mycotoxins could be conditionally, but univocally, divided into three groups, based 
on the degree of their polarity, such as: 1) polar (hydrophilic) (Log Pow < 1); 2) 
moderately hydrophilic/lipophilic (1 ≤ Log Pow < 3); and 3) lipophilic (hydrophobic) 
(Log Pow ≥ 3). Therefore, any mycotoxin from “field”, “pasture” or “storage” type, 
regardless of the ecological niche of the producer and biological properties of the 
substance, can occur in any of the polarity groups depending only on its chemical 
composition and the structure of the molecule. This approach to the systematization 
of mycotoxins is not associated with other methods of classifying mycotoxins but 
may be the most useful in the development of adsorbents to combat these toxins. 

As mentioned in the results of the study, the proportion of lipophilic mycotoxins 
from a sample of 1500 units exceeds 45%. A similar distribution of mycotoxins by 
their degree of polarity is also observed in real feeds for cattle. Graphically, this can 
be illustrated by analyzing the data presented in a large-scale study of the prevalence 
of 139 individual mycotoxins and other fungal and some bacterial metabolites in 86 
samples of various cattle feeds and their components obtained from different 
countries [26].  

 
Figure 3. Contamination of dairy cattle feed with various mycotoxins (adapted from [26]). 

Mycotoxins, which were quantified in this work, significantly differed in the 
degree of lipophilicity in the range of partition coefficients from −2.3 
(deoxynivalenol-3-glucoside) to +8.6 (calphostin C). It was also noted that the 
majority of feed samples contained from 25 to 40 different mycotoxins. The 
“lypophylicity profile” in Figure 3 presents data on 22 different mycotoxins, by 
which more than 60% of all the feed samples studied were contaminated. The X axis 
shows individual metabolites located on the scale according to the degree of their 
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lipophilicity, or Log Pow value, and along the Y axis, the number of feed samples 
contaminated by this mycotoxin, as a percentage of the total number of samples 
examined, are presented. Calculations show that four mycotoxins (deoxynivalen-3-
glucoside, nivalenol, deoxynivalen and monoliformin) are 18.2% and can be 
attributed to polar toxins, seven more mycotoxins (brevianamide F, ergomethrine, 
tryptophol, tentoxin, tenuazonic acid, emodin and alternariol) constitute 31.8% and 
can be attributed to moderately lipophilic toxins. The last eleven mycotoxins 
(alternariol methyl ether, culmorin, aurofuzarin, zearalenone, apicidin, equisetin, 
enniatins A, A1, B, and B1 and beauvericin) constitute the remaining 50% and belong 
to lipophilic toxins. At the same time, the degree of contamination of feed with the 
most hydrophobic mycotoxins, eniathins and beauvericin (Log Pow = 6.5–8.4), was 
found to be from 87% to 98% [26].  

The danger of these mycotoxins presenting in cattle feed is that due to their high 
lipophilicity they are capable of bioaccumulation, and despite the relatively low 
acute toxicity to vertebrates, they have strong antibiotic properties against a wide 
range of microorganisms and can modify functional microflora of the rumen, thus 
violating the digestion of ruminants [76–79]. In addition to their antibiotic 
properties, enniatins and beauvericins have a cytotoxic effect on mammalian cells 
[80,81] and can inhibit the immune system [82–84]. 

An even higher content of lipophilic mycotoxins in feed can be noted when 
analyzing the degree of contamination of pasture grass samples (n = 106) in 
temperate grasslands of Chako province in Argentina and quantifying 77 
mycotoxins in them [20]. Among all mycotoxins detected during the study, only 21 
of them showed degree of contamination exceeding 60% of the total number of 
samples (n = 21). Eight of these, or 38%, were moderately lipophilic toxins, and 
thirteen of them, or 62% were presented by lipophilic mycotoxins. The 
contamination of grass samples with polar toxins was significantly lower than 60%. 
Among moderately lipophilic toxins, contamination of samples with emodin, 
alternariol and monocerin was up to 100%, while contamination with such lipophilic 
toxins as aurofuzarin, sterigmatocystin, chrysophanol, equisetin, skirin and 
beauvericin ranged from 90% to 100%.  

It should also be noted that well-known “pasture” endophytic mycotoxins—
lolitremes (n = 11 in Table S1), which cause the so-called “ryegrass staggers” [70] also 
belong to non-polar toxins (Log Pow = 3.9–6.0), as well as the majority of other 
tremorgenic mycotoxins (see Table S1). 

For this reason, we believe that it is lipophilic toxins that pose the greatest 
danger to the livestock of dairy cows. Hydrophilic mycotoxins, like other polar 
toxins, usually dissolve well in water and can be removed from the body through 
urine, while lipophilic toxins cannot be excreted in the urine, but are usually 
accumulated in adipose tissue. 

At present, work is underway to bring into better compliance mycotoxin 
producing fungi with their metabolites, presented in Table S1. Upon its completion, 
data will be presented on the polarity of mycotoxins and other metabolites, which 
are produced by micromycetes of a particular genus affiliation. We hope that after 
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completion of this study, it will be possible, at least within Table S1, to determine 
which fungi in plants are the most dangerous from the point of view of 
contamination of feed with non-polar mycotoxins. At this stage of the study, it is 
already becoming obvious that the proportion of non-polar metabolites produced 
by “pasture” endophytic fungi from Acremonium, Aureobasidium, Chaethomium, 
Cladosporium, Claviceps, Emericella, Neothyphodium, and Phoma species is significantly 
higher (50–90%) than the relative amount of non-polar metabolites produced by 
“field” fungi from Alternaria and Fusarium species (25–50%) or “storage” fungi from 
Aspergillus and Penicillium species (30–45%). 

Based on the discussed data, it can be assumed that endophytic fungi, as a rule, 
produce more lipophilic mycotoxins than phytopathogenic or saprophytic fungi. 
The degree of polarity of mycotoxins with high fungicidal activity, produced by 
endophytic fungi is also of great interest.  This interest is largely supported by data 
on the inhibition of the development of Aspergillus flavus and Fusarium verticillioides 
in growing maize by the metabolites of the endophytic fungus Acremonium zeae. The 
authors showed that two antibiotics isolated from the culture of Acremonium zeae, 
pyrrocidines A and B, have pronounced antibacterial and antifungal activity against 
Aspergillus flavus and Fusarium verticillioides [85]. In this case, it is known and should 
be stressed that both pyrrocidines are fairly hydrophobic compounds with the same 
values of distribution coefficients (Log Pow = 5.5) [63]. 

These data are consistent with the results of the study on pollution of five species 
of grassy pasture plants (fescue, festulolium, timothy, perennial ryegrass, hedgehog 
grass), their mixture with clover and timothy-alfalfa mixture by micromycetes, 
including endophytic ones, and their 16 metabolites before the first and the second 
mowing of raw grass materials [23]. The work was carried out in the northwestern 
region of the Russian Federation. 

Before the first mowing (June), the fungi of genera Cladosporium, Alternaria and 
Phoma were among the leaders in the number of colony-forming units per 1 g of raw 
material (CFU/g). Moreover, all three types of raw material were contaminated by 
fungi to a similar extent. Before the second mowing (August), the crop from which 
in Russia usually forms the basis of the “winter” dairy cattle diet, changes were 
noted in the leading group. Fungi of the genus Acremonium replaced the genus 
Alternaria in the “first three”, and the degree of contamination in terms of CFU/g 
changed significantly. In the herbal mixture, this indicator increased by 1.86 times, 
in the clover-herbal mixture by 15.9 times, mainly due to Cladosporium, Acremonium 
and Phoma, and in the mixture of timothy and alfalfa contamination decreased by 
2.26 times. As the cumulative CFU/g index diminishes, the types of feed tested can 
be distributed in the following order: the herbal mixture with clover (CFU/g = 
552533), the herbal mixture (CFU/g = 80360), and timothy–alfalfa mixture (CFU/g = 
16667) [23]. It should be noted that among the metabolites of the “leading trio” of 
fungi, lipophilic toxins may account for about 70% (see Table S1). Based on these 
data, it can be assumed that the use of alfalfa seems to be more preferable when used 
in herbal mixtures as compared with clover. 



Toxins 2019, 11, 256 11 of 27 

 

3.2. Other Non-Polar Cattle Feed Contaminants 

As already mentioned, cattle feeds, in addition to mycotoxins, almost always 
contain also PAHs and POPs [37,45,47–50]. The highest degree of bioaccumulation 
among these groups of chemical compounds is characteristic of POPs [46]. The fact 
is, that POPs are evolutionary atypical substrates for the xenobiotic metabolism 
system of the cytochrome P-450 family of the vertebrate liver. Before the start of 
large-scale human industrial activity in the twentieth century, they did not occur in 
nature at all, and their metabolic rates in this system, unlike PAHs or mycotoxins 
are extremely low and inversely proportional to the content of chlorine or bromine 
atoms in their molecules [86–88]. This may be due to the fact that the negative 
induction effects of halogen atoms (fluorine, chlorine, bromine) in the molecule of 
an aromatic compound can reduce the density of the electron cloud between 
adjacent carbon atoms (bond order). Therefore, the oxidation rate of such “electron-
depleted” bonds by cytochromes of the P-450 family decreases significantly with 
increasing degree of substitution of hydrogen atoms for chlorine or bromine in 
molecules of typical POPs [89]. A certain contribution to the difficulties of the 
metabolism of these compounds, as is commonly believed, is made by steric 
hindrances of substituents (chlorine and bromine) which are bulkier than the 
hydrogen atoms. As an example of such a "difficult" metabolism in vertebrates, we 
can give dieldrin. It is formed in the hepatic xenobiotic metabolism system by 
oxidation of one (least shielded) double bond C6-C7 in the aldrin molecule with a 
formation of the corresponding epoxide. In this case, the oxidation of the second 
double bond C2-C3, shielded by two chlorine atoms, usually does not occur. 
Therefore, POPs largely accumulate in adipose tissue and to a greater extent than 
PAHs and mycotoxins are transferred to animal products. 

3.3. The Use of Adsorbents to Reduce the Toxic Load of Feeds 

A study of the work and reviews on the use of feed adsorbents to protect animals 
from toxins from feed suggests that a large mass of adsorbents that are offered in the 
markets and are used in practice, are of two major types [59]. The first of them 
includes inexpensive natural minerals, in most cases, various clays built from 
silicates or aluminosilicates and their combinations, mined by the quarry method, 
and not requiring special expenses for their production. The second more expensive 
type of adsorbents for mycotoxins are yeast cell walls and combination products 
based on them, which are a processed by-product of the production of beer and 
strong alcoholic beverages. The yeasts itself as a waste from these industries, in 
particular, often without pretreatment, other than drying and grinding, is also used 
as feed additives to increase the level of amino acids, vitamins and trace elements in 
diets of farm animals.  

As an example of the successful application of adsorptive feed additives to 
reduce the toxic load of mycotoxins contained in feed, we can bring aflatoxin B1—a 
highly toxic, moderately (non-)polar mycotoxin (Log Pow = 1.6), produced by 
Aspergillus fungi. The beginning of a systematic study of the mycotoxins after the 
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dramatic case of poisoning of a large herd of young turkeys with a lot of peanut meal 
containing aflatoxin B1 in significant quantities is associated with this toxin [14–16]. 
Aflatoxins, due to their high prevalence in feeds in areas with a warm climate, high 
toxicity and carcinogenicity, have been the most studied mycotoxins since the 1960s. 
For this reason, the use of many mycotoxin’s adsorbents has been aimed at removing 
mainly aflatoxin B1 from the gastrointestinal tract of farm animals. Indeed, 
numerous studies, the results of which are discussed in reviews [54,57,59], have 
demonstrated a fairly high efficiency of traditional aluminosilicate adsorbents or 
adsorbents from yeast cell walls to reduce the toxic effects of this mycotoxin and 
reduce the degree of transfer of its main metabolite, aflatoxin M1 to milk [32,90,91]. 
However, the effectiveness of these adsorbents with respect to  more lipophilic 
mycotoxins, such as zearalenone (Log Pow = 3.6) or ochratoxin A (Log Pow = 4.7), 
was, as noted, significantly lower [54,56–61]. Zearalenone (ZEA) due to its lipophilic 
properties and a significant negative impact on the processes of reproduction of farm 
animals in many studies serves as a benchmark for assessing the effectiveness of the 
use of feed adsorbents. So in the study, in which in vitro the degree of binding of 
ZEA with 27 adsorbents from different manufacturers, at a toxin:adsorbent weight 
ratio 1:20000, was evaluated, was shown that even with such a high adsorbent load 
on the toxin, only 7 of 27 adsorbents demonstrated a measurable binding of ZEA 
(more than 70%). Among them, activated carbon and additives containing humic 
acids, but not aluminosilicates or yeast cells walls were noted [56].  

In the study of the effectiveness of adsorbents for binding ZEA in the 
gastrointestinal model [60], it was shown that the only adsorbent used that could 
bind ZEA with a measurable capacity was activated carbon, but only at a 
concentrations from 0.5% to 2%. Such concentrations of adsorbents in feed 
(sometimes up to 5%) are often used in studies assessing their effectiveness, but are 
rarely used in real animal husbandry for economic reasons. Manufacturers of 
adsorbents usually recommend their use in doses of 0.1% to 0.2% by weight of the 
feed. 

In the study conducted in vivo it was noted that traditional aluminosilicate 
adsorbents are not able to protect the broiler population from the toxic effects of 
polychlorinated pesticides (typical POPs) [36]. The absence in the available scientific 
literature of reports on positive examples of the use of aluminosilicate adsorbents or 
adsorbents from yeast cell walls to relieve symptoms of the so-called “ryegrass 
staggers”, which are known to be triggered by lolitrems, lipophilic mycotoxins of 
endophytic Epichloë fungi [70], may indicate a lack of effectiveness of such 
adsorbents in this particular case. To combat this phenomenon, they usually follow 
the path of breeding new varieties of herbs with a low content of tremorgenic toxins. 
In most cases, such attempts fail. Another, less costly approach involves the use of 
non-polar feed adsorbents, which in this case seems more promising. 

3.4. The Use of Non-Polar Adsorbents to Reduce the Toxic Load of Feed 

In light of the above and based on the principle known in medicine "similia 
similibus curantur", there is an urgent need to use adsorbents of another type, 
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namely non-polar ones to protect animals from lipophilic toxins in feed. Such 
adsorbents are currently presented on the market mainly in two groups [59]: 1) 
activated carbons and 2) cholesteramine, based on porous polystyrene. 
Cholestyramine-based adsorbents are too expensive to be used in agriculture. 
Adsorbents based on activated carbon are not widely used because of their low 
capacity and, as a consequence, its inclusion in feeds in too high-doses. Often this is 
not economically viable. But, nevertheless, in studies evaluating the comparative 
capacity of sorbents in vitro, it was noted that the measurable efficiency towards 
ZEA (lipophilic toxin), as already mentioned, showed only activated carbon, and not 
aluminosilicate adsorbents or yeast cell walls [60], as well as some adsorbents 
containing humic acids [56]. When studying the ability of different adsorbents to 
bind in vitro highly toxic lipophilic mycotoxin ochratoxin A (Log Pow = 4.7) with a 
toxin:adsorbent ratio of 1:500, comparable to activated carbon and cholestyramine 
results showed “Myco AD A-Z”, as well as the combined adsorbent “Standard 
Q/FIS” consisting of a mixture of activated carbon, bentonite, yeast extract and 
aluminosilicates [61]. 

One more type of non-polar adsorbents is known, which were specially 
developed for the adsorption and separation of moderately lipophilic and lipophilic 
substances in high-performance liquid chromatography. We are talking about 
hydrophobized adsorbents on a polysilicate basis. Chromatographic adsorbents are 
usually obtained by treating specially synthesized, washed and dried porous silica 
gel particles (SiO2) of suitable size with the desired pore diameter in an anhydrous 
conditions with various reagents to obtain a covalent bond between the silica gel 
surface and the alkyl residues (-CnH2n+1), usually containing from 4 to 18 carbon 
atoms. These adsorbents, called reversed-phase (RP), are highly hydrophobic and 
are capable of effectively adsorbing in an aqueous medium any organic compounds 
with a partition coefficient greater than zero (Log Pow > 0). From the theory and 
practice of liquid chromatography, it follows that the binding strength of non-polar 
sorbates with such adsorbents is directly proportional to the value of the sorbate’s 
partition coefficient in the octanol/water system (Log Pow). RP-adsorbents are 
actually a solid-phase version of the partition of organic substances by lipophilicity 
in this system. First of all, this refers to adsorbents containing the octyl residue (-
C8H17) as the alkyl substituent. 

Aluminosilicate adsorbents and yeast cell walls have long been used in practical 
animal husbandry, but there is still no single theory that could explain the 
mechanisms for binding mycotoxins to their matrices. In the literature, many 
mechanisms of interaction of mycotoxins with these matrices are discussed, complex 
geometric models of the layered or spatial-crystalline structure of aluminosilicates 
and the geometric correspondence of the sizes of mycotoxin’s molecules to the 
distance between layers of phyllosilicates or the size of voids in the crystal lattice of 
tectosilicates are constructed. Almost all types of intermolecular interaction are also 
attracted to describe these mechanisms. All this is widely discussed in research 
articles and reviews on the topic [54–61]. However, the authors of these studies agree 
that a unified approach to explaining the preferred interaction of matrices with 
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mycotoxins, and the rules by which one could predict the effectiveness of a specific 
adsorbent in relation to a particular toxin have not yet been developed. An 
overwhelming number of results with these adsorbents were obtained and are 
obtained empirically. 

The model of hydrophobic interaction of a solute with a non-polar RP-matrix in 
the aquatic environment looks less complicated and relies on a single concept - 
minimizing the free energy of the system by maintaining the integrity of the water 
structure. The essence of the hydrophobic interaction is that lipophilic substances 
that are not capable of forming enough hydrogen bonds with water molecules 
violate its structure, and it is energetically more profitable for the system to bring 
such substances by means of Brownian motion either to the interface or to any 
hydrophobic surface inside the system and thus to restore the structure of water in 
the system. In this model, the binding strength of non-polar substances with the RP-
matrix is barely related to the size and shape of the molecule and is directly 
proportional to the degree of substance lipophilicity, or Log Pow value [59,75,92,93]. 
For this reason, this concept has the ability to predict. In practice, this means 
complete prediction confidence, that ochratoxin A (Log Pow = 4.7), lolitrem B (Log 
Pow = 5.8), enniatin A1 (Log Pow = 7.4) or beauvericin C (Log Pow = 9.5) will be 
bound to the non-polar RP-matrix stronger and more efficiently eliminated from the 
alimentary tract than, for example, aflatoxin A1 (Log Pow = 1.6) or zearalenone (Log 
Pow = 3.6), and PAH benzo[a]pyrene (Log Pow = 6.0) or POPs p, p-DDT (Log Pow = 
6.9) or dioxin (Log Pow = 6.4) will be bound stronger than PAH naphthalene (Log 
Pow = 3.3), or POP endrin (Log Pow = 3.7). 

It should be noted, however, that RP-adsorbents on a polysilicate basis, that have 
successfully proven themselves in liquid chromatography, cannot be used as 
efficiently in agriculture as feed additives for at least two reasons. The first is the 
high price. The second reason lies in the relatively low capacity of such adsorbents 
in the aquatic environment. Activated carbon in an aquatic media also manifests 
similar properties. Unlike hydrated aluminosilicate adsorbents and yeast cell walls, 
RP-adsorbents in the form of dry matter (xerogel) and dry activated carbon are not 
able to swell in an aqueous solution. Due to the high hydrophobicity of the outer 
and inner surfaces, these substances are poorly or not at all moistened with water; 
and water, due to the high surface tension and small diameter of the internal pores, 
does not penetrate within the adsorbent particles. In chromatography, this problem 
is solved with the help of mobile phases containing water and organic solvents in 
different proportions, which better wet the surface of RP-adsorbent particles, and 
the wetting of internal pores is achieved by applying to the column with adsorbent 
an external pressure from 10 to 400 bar which allows to overcome surface tension 
forces and fill the internal pores of particles with a mobile phase. Therefore, at 
atmospheric pressure in an aquatic solutions, only the outer surface of RP-
adsorbents and activated carbon, the value of which depends on the particle size, 
can have a measurable sorption capacity. 

Recently there have been reports on the use in agriculture of a reversed-phase 
polysilicate adsorbent made according to another technology and produced as a 
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partially hydrophobized polysilicate hydrogel containing hydrophobic octyl groups 
covalently bound to a hydrated insoluble polysilicate matrix [24,94]. Since this 
adsorbent is manufactured in an aqueous medium and it is a hydrogel, it does not 
need time for swelling, is initially well wetted by saliva, and begins to “work” in the 
mouth of animals and is thus able to more effectively protect the oral cavity, 
esophagus and rumen from the action of toxins. 

This RP-adsorbent No. 4 (Figure 2) based on a polyoctylated polysilicate 
hydrogel (POPSH) in vivo has also demonstrated high efficiency in a herd of 
lactating cows [95]. For example, the use of this adsorbent in a herd of Holstein-
Frisian lactating cows led to a significant decrease in SCC and to an increase in milk 
yield in comparison with the control group for 40 days. At the same time, the rate 
and degree of decrease in SCC (−64%) in milk and the increase in milk yield (+11%) 
were higher [95] than those observed when other “traditional” adsorbents were used 
under similar conditions [65,90,91,96,97]. Despite this fact, final conclusions on the 
degree of effectiveness of the use of one or another adsorbent can be made only after 
conducting joint comparative tests of adsorbents under the same conditions and on 
the same feed base. 

As one more example of the successful use of non-polar adsorbents in vivo, data 
on the use of activated carbon and humic acids to control Clostridium botulinum in 
dairy cows can be cited [98]. 

It can be assumed that, at present, control over non-polar mycotoxins, PAHs and 
POPs is becoming particularly urgent, since they are only slightly absorbed by the 
“traditional” adsorbents of mycotoxins. At the same time, it is non-polar toxins that 
are capable of bioaccumulation, and their concentration in adipose tissue and their 
degree of influence on animal health, as well as transfer to milk and other animal 
products can significantly increase with long-term consumption of feed, even with 
low contamination levels. It is necessary to take into account the kinetic parameters 
of the enzymatic systems of the vertebrate liver detoxification system. It can be 
assumed that the lipophilic toxins that are present in the feed in low concentrations 
and their concentrations in the bloodstream are significantly lower than those 
necessary for the implementation of enzymatic transformations with a noticeable or 
optimal speed (Michaelis constant), and have every chance to go through the 
animal’s liver without biotransformation and reach unchanged fat depots for 
deposition. As a result of long-term use of food contaminated with non-polar toxins, 
sooner or later a situation arises when, due to bioaccumulation, the concentration of 
these toxins in adipose tissue and in the bloodstream is converted into toxic with all 
the negative consequences for the body. Therefore, the primary task for the chemical 
safety of feeding animals is to block the flow of lipophilic toxins from the 
gastrointestinal tract into the bloodstream, even at their low concentrations in feed. 
Hence, it is necessary, along with traditional adsorbents, to use non-polar adsorbents 
such as activated carbons, adsorbents containing humic acids or POPSH, as well as 
their combinations. There is also an urgent need for the development and 
implementation of new efficient and cost-effective non-polar feed adsorbents in the 
practice of dairy farming. 
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As already mentioned, this work demonstrated the high efficiency of this 
adsorbent for reducing the transfer to milk of lipophilic chlorinated pesticides aldrin 
(Log Pow = 4.5), dieldrin (Log Pow = 3.7) and heptachlor (Log Pow = 4.3), which are 
typical POPs (see Table 1). During 2018, the POPSH testing was carried out in several 
dairy farms in Moscow and Kaluga regions. Under tests the content in raw milk of 
chlorinated pesticides: isomers of hexachlorocyclohexane, DDT and its metabolites, 
DDD and DDE, as well as aldrin, dieldrin and heptachlor was also determined. In 
appreciable quantities, pesticides (DDT, DDD, DDE, aldrin, dieldrin and heptachlor) 
were found in the milk of the control group of a single farm located in the northeast 
of the Kaluga region. The concentrations of DDT and its metabolites were below the 
lower limits of quantification, so they were not included in Table 1. DDT and its 
metabolites, aldrin, dieldrin, and heptachlor in the experimental samples of milk 
from this farm after the application of POPSH for 40 days were not detected. This 
means that DDT (Log Pow = 6.9), DDE (Log Pow = 7.0) and DDD (Log Pow = 6.2) 
were also effectively removed from milk using POPSH. It can be assumed on this 
basis that its effectiveness in binding the most toxic tetra- and pentachlorobiphenyls, 
dibenzodioxins and dibenzofurans or polybrominated diphenyl ethers will not be 
lower than that of DDT and its metabolites, since the distribution coefficients of these 
substances range from 6.0 to 7.0. 

By analogy, it is possible to predict with high probability that POPSH will also 
be able to effectively remove from the digestive tract of vertebrates the main 
causative factor for the development of the ryegrass staggers—lipophilic mycotoxin 
lolitrem B (Log Pow = 5.8). Confirmation will be obtained after a more complete 
study of this issue in practice. 

It can be assumed that the use of POPSH or similar non-polar adsorbents will 
not only reduce the transfer of POPs into milk, but also reduce the contamination of 
other animal products (meat, eggs, caviar) with POPs and other lipophilic toxins, 
and further and help us to remove red meat from the WHO black list. 

The use of non-polar adsorbents will presumably have a positive effect on the 
solution of problems associated with such negative phenomena in dairy farming as 
the “summer slump”, “summer mastitis”, “fescue toxicosis” or “ryegrass staggers”. 
Mycotoxins of endophytic fungi, which are most actively produced in the warm 
season, together with PAHs and POPs can play a significant role in their occurrence 
and development, along with heat stress. According to the data given in Table S1, it 
is evident that among the metabolites of endophytic fungi, a significant part, as was 
mentioned above, is represented by non-polar substances, the share of which, 
among other metabolites, exceeds 50%. In addition, during the summer grazing 
period, dairy cattle are subject to an additional toxic load from PAHs and POPs, 
which are 100% non-polar compounds. In the warm season, with increasing 
temperature, sublimation into the atmosphere and transfer of dust particles 
containing PAHs and POPs to significant distances and their deposition onto the 
surface of grass and soil significantly increases [44,47]. While grazing, cows along 
with grass can also ingest some quantity of the soil particles (up to 1 kg per day). 
The content of PAHs and POPs in the soil can be hundreds of times greater than 
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their content on the grass surface [47]. Probably for this reason, all the above-
mentioned “summer disasters” are most pronounced at the end of the summer 
season, as a result of the gradual bioaccumulation of non-polar toxins during the 
warm period. We cannot also exclude from consideration the inhalation pathway of 
accumulation of PAHs and POPs in a pasture, when animals during grazing can 
inhale air from surface layers, which may at elevated temperatures contain high 
concentrations of sublimated PAHs and POPs.  

This is confirmed by literature data. So the authors of one of the article on the 
study of the effect of seasonality on the level of milk yields and SCC noted that the 
lowest level of SCC and the highest yields in the majority of the dairy farms in 
Florida are observed from February to April. They also called for new programs to 
improve the quality of milk, which should be focused on the conditions of animals 
between August and October, because at this time, most farms show a marked 
increase in SCC in collected milk and a decrease in milk yields [99]. 

3.5. Selection of the "Right" Adsorbents for the Protection of the Dairy Cattle Digestive Tract 

Seeing as in practical dairy cattle breeding the standardization of feeds 
according to the level of toxic impurities is fundamentally impossible, it is advisable 
to use test panels of different adsorbents, both polar and non-polar, to determine the 
most suitable of them or their combinations, and the necessary dosages for each 
large enough feed lot. It should be noted that the dosage of the adsorbent is inversely 
related to the quality of the feed used, the concentration of toxic impurities and the 
period of toxic feed in use (bioaccumulation). Cattle present a convenient model for 
such testing, since even with quality care, they respond very flexibly to the quality 
of feed and clearly demonstrate this with the help of such an important indicator of 
milk quality as SCC. 

It is known that SCC increases significantly with the use of toxic feed 
[65,90,91,95–97]. Most likely, this is due to the negative effect of toxic components of 
feed on the immune system of animals, whose function can be suppressed both by 
representatives of mycotoxins [66,82–84,100–102] and PAHs and POPs [103–106]. It 
is also known that many mycotoxins in vitro exhibit cytotoxic and cytostatic 
properties. A recent review on this topic compared the data on the biological activity 
of different mycotoxins in relation to model mammalian tumor cells, including 
human ones [107]. The information presented in this review allows us to conclude 
that dozens of mycotoxins exhibit in vitro antitumor activity in the micromolar 
concentration range, some for example, including austocystin D, brefeldin A, 
gliotoxin, leucinostatin A, ophiobolin A and wortmannin are already active in the 
nanomolar range, and at least one of them, for example, a metabolite of endophytic 
Chaetomium fungi, 11-epichaetomugilin I, shows cytotoxic activity against model 
tumor cells already in the picomolar range. In this regard, it can be assumed that the 
same cytotoxic activity of mycotoxins in vivo can be directed against rapidly 
dividing cells of the small intestine, as well as cellular elements of the immune 
system of animals, which can lead to digestive disorders and acquired immune 
deficiency and, as a result, to the development of inflammatory diseases. PAHs, 
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POPs and their metabolites can also contribute to the development of immune 
deficiency in addition to, and in parallel with mycotoxins. Therefore, the need to use 
truly effective non-polar feed adsorbents is high. 

In this model, the "ideal" adsorbent, which can be matched only empirically, is 
able to bind sufficient amounts of toxins, especially non-polar, in the gastrointestinal 
tract. Therefore, the high capacity of the adsorbent and the binding strength of the 
sorbate in an aqueous medium are very important. Depending on the age of the 
animals and the history of the use of contaminated feeds, in the first stage, it may be 
necessary to use higher doses of the non-polar adsorbents to remove lipophilic 
toxins from the fat depots. In the future, this dosage under the control of SCC can be 
adjusted downward. Effective from a practical point of view can be considered an 
adsorbent (or a combination of 2–3 adsorbents, one of which must be non-polar), 
which, when using available feed and applied dosages, is capable of maintaining 
SCC at the level of 80,000–120,000 cells/mL for a long time, and the use of which is 
economically proven. 

It is known that with a decrease in SCC in bulk milk, an increase in milk yield is 
usually observed [1,2,11,95,97] that can serve as a bonus to justify the material costs 
of the purchase of adsorbents. An additional bonus in this case is also provided by 
a higher price for milk with lower SCC. In addition, with the effective protection of 
the animals from non-polar toxins with the help of the “right” adsorbents, we can 
expect an increase in the number of lactations in cows, and obtaining from them 
better-quality offspring and safer commodity products, namely meat and milk. 

Since the choice of the “right” adsorbent and, especially, an effective 
combination of several adsorbents in a herd of lactating cows is a long, labor-
intensive and rather expensive process, it seems appropriate to carry out a 
preliminary check of the effect of adsorbents of choice on feed toxicity in more 
simple biological systems. Such test systems may include toxicity tests on brine 
shrimp larvae [108,109], the protozoa [110] or on mammalian cell lines [107]. 

For the selection of the "right" adsorbents, we are primarily interested in the ratio 
of polar and non-polar toxins in feed samples. Therefore, the most suitable system 
for the extraction of toxins before determining the toxicity of feed seems to be the 
same system that is used to determine the degree of polarity of organic substances, 
the octanol/water system [74]. After extraction and centrifugation, this system is 
stratified, which simplifies the independent determination of the toxicity of polar 
and non-polar toxins in the aqueous and octanol phases, respectively. The parallel 
determination of the toxicity of these phases without the use of adsorbents and in 
the presence of adsorbents of different polarities in concentrations of 0.1%–0.5% will 
make it possible to conduct a preliminary assessment of the effectiveness of different 
adsorbents or their combinations with minimal cost. 

4. Conclusions 

The ratio of polar, moderately polar and non-polar (lipophilic, or hydrophobic) 
mycotoxins was evaluated on a database of some physico-chemical properties of 
mycotoxins (n = 1500) formed in this work. It was shown that the share of lipophilic 
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mycotoxins exceeds the share of polar (14%) and moderately polar (40%) 
mycotoxins, and is greater than 46%. Similar results were obtained when analyzing 
data from the literature on the contamination of real feeds for dairy cattle with 
lipophilic mycotoxins [20,26]. In addition, two more groups of lipophilic toxins—
PAHs and POPs—are always present in dairy cattle feed [45,47]. It can be concluded 
that the presence of a greater variety of non-polar toxins in the feed of dairy cattle, 
as compared with feed for poultry and pig breeding indicates that non-polar feed 
adsorbents should be more widely used in dairy farms. This need is confirmed by 
the results of this work. It was shown that a new hydrophobic adsorbent based on 
POPSH is superior to “traditional” adsorbents, including activated carbon, in their 
ability to bind lipophilic toxins in vitro. We have previously reported that in vivo 
POPSH effectively protects lactating cows from non-polar toxins in their feed. This 
was reflected in a rapid decrease in SCC (−64%) and an increase in milk yields (+11%) 
[95]. In this study, it was established that in vivo in a herd of lactating cows, POPSH 
can significantly reduce the transfer of chlorinated pesticides, DDT and its major 
metabolites, and also aldrin, dieldrin and heptachlor into milk in a short time. This 
is highly likely due to their elimination from the gastrointestinal tract of animals 
with the help of the adsorbent. On this basis, it is highly likely that the use of POPSH 
may be useful for alleviating the symptoms of “ryegrass staggers” and other 
negative effects associated with the “summer slump”. 

In this regard, it is necessary to pay special attention to the development and 
implementation of new and effective non-polar adsorbents in the practice of dairy 
farming. The results obtained allow to predict that after a thorough study of their 
properties and the wider use of non-polar adsorbents for protecting livestock against 
nonpolar toxins in feeds, an increase in terms of the productive life of dairy cows, 
the quality of repair heifers, as well the productivity, quality and safety of dairy and 
meat products for consumers can be expected. 

All of the above may be useful in dairy farms that are not always able to maintain 
an adequate quality of food supply. It must be recognized, however, that these 
considerations have a practical meaning and the maximum benefit from the use of 
adsorbents can be obtained only in cases where all the regulatory conditions for the 
care and maintenance of animals are observed, and only the quality of the feed is 
critical. 

5. Materials and Methods 

5.1. Chemicals 

Phosphate buffered saline (PBS, Cat.No.P3813, Merck KGaA, Darmstadt, 
Germany) and naphthalene (analytical standard, Cat.No.84679, 250 mg, Merck 
KGaA, Darmstadt, Germany) were purchased from Merck (Merck KGaA, 
Darmstadt, Germany). Zearalenone (Cat.No.3975/10, Tocris Bioscienses, Bristol, UK) 
was purchased from Tocris Bioscienses, UK and used without further purification. 
For the preparation of the mobile phase for HPLC, acetonitrile 2 grade (Cryochrome, 
LLC, Saint-Petersburg, Russian Federation, and distilled water were used. The 
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aluminosilicate adsorbent and the adsorbent from yeast cell walls were purchased 
from local manufacturers' dealers and did not undergo any treatment other than 
drying to constant weight at 105 °C. Activated carbon was purchased at the nearest 
pharmacy. Feed additive "Alvisorb"® (POPSH) was purchased from RPC “Fox and 
Co”, LLC (Moscow, Russian Federation). 

5.2. Adsorbent Binding 

The binding of sorbates with adsorbents was carried out in a solution of PBS 
with pH = 7.4, prepared in distilled water, at room temperature in a glass test tube. 
Naphthalene and zearalenone were dissolved in acetonitrile at a concentration of 1.0 
mg/mL. The adsorbents (except of POPSH) were dried to constant weight at 105 °C 
and suspended with PBS at a concentration of 3.5 mg/mL on a magnetic stirrer. With 
constant stirring, from the suspensions of each adsorbent aliquots were taken and 6 
g of the suspension was placed in three glass tubes with ground stoppers. In the 
control tubes 6 g of PBS was placed, and 0.1 mL of sorbate solution was added to 
each tube. The tubes were closed, the plugs were fixed using a Parafilm strip and the 
tubes were placed in a Multi Bio RS-24 rotary mixer (Bio San Ltd., Latvia). The 
samples were incubated for 3 h at room temperature and the turning speed of 30 
rpm. Samples were centrifuged for 15 min at 2000 rpm and the concentrations of 
sorbates in the supernatant from all the tubes were analyzed by RP-HPLC.  

5.3. Chromatographic Analysis 

The samples were analyzed in a chromatographic system consisting of a K-501 
high-pressure pump, a JetStream Plus thermostat with an A1365 manual injector 
with a 20 µL loop, a K-2501 UV detector (Knauer GmbH, Germany) and the 
“Multichrom” data processing system (Ampersand, Ltd., Russian Federation). 
Column—Phenomenex Luna C8 (2), 3 µm, 4.6 × 100 mm (Part No.00D-4248-E0, 
Phenomenex Inc., Torrance, CA, USA). The analysis was carried out at a flow rate of 
0.75 mL/min and a column thermostat temperature of 35 °C in an isocratic system 
acetonitrile:water = 60:40 (v/v). Naphthalene was detected at 221 nm and 
zearalenone at 236 nm.  

Quantitative determination was carried out according to the external standard 
method. Each tube was analyzed three times and the average value of the residual 
concentration of sorbate was calculated. The concentration of sorbates in the control 
tubes was taken as the initial concentration. All the results of measuring the 
concentrations of naphthalene and ZEA did not go beyond the linearity ranges of 
analytical methods used. The sorption capacity of the adsorbents for each of the 
sorbates was calculated from the difference between the initial and residual 
concentrations. To determine the sorption capacity of POPSH, its three exact weights 
were dried at 105 °C to a constant weight, and the capacity of all four adsorbents 
was calculated versus their dry weights. 

5.4. Determination of Pesticides in Raw Milk 
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Cows from the experimental group (n = 65) received the feed additive POPSH 
together with feed during the morning feeding at a dose of 2 g per 1 kg of feed for 
40 days. Cows from the control group (n = 65) received the same feed without 
additive. The conditions of housing, feeding, and milking of cows have been 
described previously [95]. On the day 40 of the experiment, samples of raw milk 
were taken in each group after morning milking, frozen and kept at a temperature 
not higher than −18 °C until analysis. Pesticides were analyzed by GLC-MS using 
standard methods. The limits of detection and quantification in the method used 
were 2 and 3 µg/kg, respectively.  

5.5. Tables of Partition Coefficients for Mycotoxins, Polyaromatic Hydrocarbons and Persistent Organic 
Pollutants 

In the study to assess the degree of polarity of mycotoxins, PAHs, and POPs the 
calculated values of the partition coefficients in the octanol/water system (Log Pow): 
XLOGP3-AA (XLOGP3 pure atom-additive model) [62], presented in the PubChem 
database [63] for various chemical compounds, were used.  

The database on mycotoxins was initially based on the technical method for 
determining 243 mycotoxins using liquid chromatography with mass spectrometric 
detection [111], which cited the values of the calculated partition coefficients of 
mycotoxins and some other metabolites in the octanol/water system. Additional 
data on mycotoxins and producing fungi were obtained by analyzing scientific 
reviews and articles on the study of their properties [22,23,26,69,70,112–117] and 
other sources from the literature or Internet. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: Calculated 
partition coefficients of some fungal and bacterial metabolites. Table S2: Calculated partition coefficients of some 
polyaromatic hydrocarbons. Table S3: Calculated partition coefficients of some persistent organic pollutants. 
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