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Abstract: The binding of compounds to nicotinic acetylcholine receptors is of great interest in
biomedical research. However, progress in this area is hampered by the lack of a high-throughput,
cost-effective, and taxonomically flexible platform. Current methods are low-throughput, consume
large quantities of sample, or are taxonomically limited in which targets can be tested. We describe
a novel assay which utilizes a label-free bio-layer interferometry technology, in combination with
adapted mimotope peptides, in order to measure ligand binding to the orthosteric site of nicotinic
acetylcholine receptor alpha-subunits of diverse organisms. We validated the method by testing the
evolutionary patterns of a generalist feeding species (Acanthophis antarcticus), a fish specialist species
(Aipysurus laevis), and a snake specialist species (Ophiophagus hannah) for comparative binding to
the orthosteric site of fish, amphibian, lizard, snake, bird, marsupial, and rodent alpha-1 nicotinic
acetylcholine receptors. Binding patterns corresponded with diet, with the Acanthophis antarcticus
not showing bias towards any particular lineage, while Aipysurus laevis showed selectivity for fish,
and Ophiophagus hannah a selectivity for snake. To validate the biodiscovery potential of this method,
we screened Acanthophis antarcticus and Tropidolaemus wagleri venom for binding to human alpha-1,
alpha-2, alpha-3, alpha-4, alpha-5, alpha-6, alpha-7, alpha-9, and alpha-10. While A. antarcticus was
broadly potent, T. wagleri showed very strong but selective binding, specifically to the alpha-1 target
which would be evolutionarily selected for, as well as the alpha-5 target which is of major interest for
drug design and development. Thus, we have shown that our novel method is broadly applicable for
studies including evolutionary patterns of venom diversification, predicting potential neurotoxic
effects in human envenomed patients, and searches for novel ligands of interest for laboratory tools
and in drug design and development.
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Key Contribution: This paper presents a novel method that allows for the first time high-throughput,
flexible testing of ligand binding to taxon-specific nicotinic acetylcholine receptors.

1. Introduction

Nicotinic acetylcholine receptors (nAChRs) are a family of ligand-gated ion channels located
throughout the body for many different physiological functions. One of their most vital roles is
signaling between neuronal junctions to skeletal-muscle cells [1–3]. At the neuromuscular junction, the
binding of acetylcholine to the 14-amino acid orthosteric site (i.e., active site) of the α-1 subtype triggers
the contraction of muscles [2,3]. In addition to their central role at the neuromuscular junction, nAChR
α-subunits are also widely distributed in the central nervous system and therefore of pharmacological
interest. There are approximately 17 characterized nAChR subunits (α-1-10, β1-4, γ, ε, σ), which
structurally link to form a pentamer in homomeric or heteromeric combinations. Nicotinic acetylcholine
receptors are of broad interest due to their central involvement in disease states and in mediating the
paralysis of prey and human victims upon envenoming by some venomous animals.

α-nAChR subunits are targeted by toxins within venoms from a diverse range of animals including
cone snails, scorpions, snakes, and spiders, as well as poisonous organisms such as dart frogs and
cyanobacteria [4–8]. The targeting of α-1 nAChR by these toxins allows effective immobilisation of
prey through the flaccid paralysis of voluntary muscles, leading to death by respiratory failure. Toxins
targeting the α-1 nAChR have evolved in snake venom on at least four separate occasions: three finger
toxins (e.g., α-bungarotoxin), which are widespread in the advanced snakes (Caenophidia), waglerin
peptides from the Tropidolaemus genus of Asian pit vipers, azemiopsin peptides from the Asian viper
genus Azemiops, and phospholipase A2 toxins from vipers within the Bitis genus [9–12]. As these four
neurotoxin classes are structurally unrelated to each other and possess different protein scaffolds, they
represent a remarkable functional convergence of toxins independently targeting the same neurological
target (α-1 nAChRs) at the neuromuscular junction of various prey types. Furthermore, due to
variations in the amino acid sequence alignments of nAChR subunits within different taxa, these
neurotoxin classes represent excellent study systems for investigating how prey specific toxins evolve
and, in parallel, how resistance evolves in prey and predators of venomous snakes.

A lack of high-throughput assays that measure effects upon specific-species nAChRs or receptor
subtypes has been a major limitation hampering studies on the evolution of these neurotoxins, their
clinical effects, and their biodiscovery. Current analytical methods to determine the binding of toxins
to nAChRs are either low-throughput (in vitro skeletal muscle preparations, such as the chick biventer
cervicis nerve-muscle preparation or mouse/rat phrenic nerve hemidiaphragm), cumbersome (oocyte
patch-clamp systems), and/or taxonomically limited (cellular screening techniques such as Fluorescence
Imaging Plate Reader (FLIPR)) [13]. In addition to limitations such as requiring animal dissections
and high consumption of precious venoms and pure toxins, these assays cannot test for taxon-specific
venom effects upon prey or the evolution of toxin resistance by prey. Thus, there is an unmet need
for a flexible, high-throughput method that can accurately measure such biomolecular interactions.
A newer, more robust biomolecular detection method of analyte-ligand binding of nAChRs is vital to
overcome these hindrances.

Short synthetic peptides (mimotopes) corresponding to the orthosteric site of nAChRs have been
utilized in ligand binding studies of α-bungarotoxin to investigate their use as first aid or antivenom
supplements [14–17]. These studies include the use of surface plasmon resonance (SPR), a microfluidics
delivery system which clogs easily, requires experienced operators and expensive gold sensor chips,
is low throughput, and has high running and maintenance costs. Consequently, the use of mimotopes
to study ligand binding to nAChR orthosteric sites has remained dormant for over 15 years. Previous
approaches using mimotope peptides also did not take a taxonomically diverse approach, investigating
only human and rodent chimeric analogs.
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More recent research used the mollusk acetylcholine binding protein [18] and chimeric forms with
human α-7 residues at the orthosteric site [19] to investigate snake venom relative potencies and the
potential therapeutic usefulness as ‘decoy proteins’. In both cases, studies were hampered by the fact
that snake venom nAChR targeting neurotoxins have been evolutionarily selected for the muscle-type
α-1 subunit [8]. Thus, human α-7 orthosteric sequence results may be misleading for evolutionary or
potential clinical effects studies and the dramatically lower affinity relative to the α-1 orthosteric site
would limit the usefulness of α-7 based proteins as antivenom supplements. The mollusk acetylcholine
binding protein is vastly more evolutionarily distant and therefore studies which investigated snake
venom evolutionary patterns using this assay would be skewed, as was shown in one such study in
which known neurotoxic snakes, such as within the Boiga genus, did not bind in the assay [18].

We have developed a high-throughput method which has many advantages that overcome the
aforementioned limitations of current analytical approaches of nAChR binding. Our method is based
upon mimotope peptides corresponding to α-nAChR subunit orthosteric sites spanning the full range
of nAChR α-subunits (1–10)—not only from humans but from a wide range of model systems of
potential prey types (fish, amphibian, lizard, snake, marsupial, and rodent). Combining specifically
designed mimotopes with biolayer interferometry (BLI) precision enables a taxonomically robust assay
to measure analyte binding to α-nAChR subunits.

BLI is an innovative label-free, microfluidics-free, optical technique that accurately measures, in
real time, the thickness of biomolecules progressively accumulating on the interaction surface of an
optical-fiber coated biosensor [20]. The binding of molecules to the biosensor causes a measurable
spectral shift in the waves of light being reflected through the fiber-optic biosensor, yielding quantitative,
kinetic interaction information (kon, koff and KD (koff/kon)). Measuring binding strength and speed
between interacting molecules of interest is essential, for example, in testing the efficacy of drugs,
quantifying neurotoxic potency of venom toxins, or in determining the quality of an antibody.
Unlike existing analyte-ligand binding assays of nAChRs, the versatility, high-throughput nature,
taxon-specificity, and low analyte-consumption aspects of our novel assay enables the fast and accurate
characterisation of the orthosteric binding profiles of analytes to nAChRs across numerous taxa.

This study investigated the use of mimotope peptides corresponding to the native orthosteric sites
of a wide range of potential prey lineages in order to ascertain evolutionary patterns in snake venom
neurotoxin targeting and evolution. This novel method allows for selective, taxon-specific testing
of ligand binding to nAChRs for the first time. In addition, this study investigates the usefulness of
this method for biodiscovery by testing for ligands that selectively bind to the full range of human
α-nAChR subunits. This tool, therefore, can fast-track compound screening and purification protocols,
ascertain potency rank order of neurotoxic venoms, and quantify drug binding for the progress of
drug design and development.

2. Results and Discussion

To validate our assay we first tested Bungarus multicinctus as a positive control, as it has been
shown to bind to α-1 mimotope peptides [14,15,17,21], a negative control of water with 50% glycerol
(which was subsequently diluted 20× to correspond to the testing condition concentration of venoms),
and also three snake venoms from species known to have a generalist diet (Acanthophis antarcticus), a
fish-specific diet (Aipysurus laevis), or a snake-specific diet (Ophiophagus hannah). The B. multicinctus
venom bound to the mimotopes in the assay, thus confirming the validity of the approach (Figure 1),
while the negative control showed no binding to the mimotopes (File S1). The dietary test species
each showed an expected pattern when tested on the orthosteric sites from diverse target species: the
generalist feeder (A. antarcticus) did not show phylogenetic bias; the fish specialist (Aipysurus laevis)
showed a bias towards the fish target; and the snake specialist (O. hannah) showed a bias towards the
snake target (Figure 1). More specifically, there was only a 46% binding increase between the least
(lizard) and the most affected (amphibian) targets for A. antarcticus, while the specialized venoms
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displayed a much greater binding increase between the least and most affected targets, such as for the
large increase (340%) between the lizard and snake for O. hannah.

These results thus validate the usefulness of our method for determining binding to the orthosteric
site of nAChRs of specific taxa, thereby allowing for investigations into prey-specific venom evolution
and analyte specificity to these mimotope ligands in general. Previous studies which showed that
snake venoms can have prey-specific effects were restricted to the use of model organisms (e.g.,
domestic chicken to test for bird-specific activity or laboratory mice to test for mammal specific activity).
In contrast, our method allows for the testing of activity upon precise prey species, as the orthosteric
site sequence can be easily obtained through routine PCR methods, or may already be available on
public databases, and the capture peptide synthesized accordingly.

The ability to discover ligands for specific neurological targets has been limited due to either the
difficulty in expressing nAChR within oocytes or the unreliability of receptors expressed on the cell
surface in FLIPR assays [13]. We next ascertained the usefulness of our new method for the discovery
of novel ligands binding to human nAChRs of therapeutic interest (Figure 2). While the venom of
Acanthophis antarcticus did not show significant selectivity towards any particular α-nAChR subunit,
using this approach we unexpectedly discovered that Tropidolaemus wagleri venom contains toxins
with a high degree of selectivity for the α-5 subunit. This is an important finding because the α-5
subunit site is of particular interest for the development of anti-smoking medications and colitis [22,23].
Previous studies on neurotoxic peptides from T. wagleri venom only examined their interaction with
α-1 nAChR [24,25]. Our data, which indicate the presence of molecules in this venom which interact
with α-5, demonstrates the power of this new assay to discover future pharmaceuticals and research
tools. Specifically, the relevant molecules in T. wagleri venom can be used as a probe to deepen our
understanding of the subunit structure/function relationship and how this may play a role in the
modulation of colitis.

The differential targeting of human receptors is also important in testing venoms for potential
clinical effects in the envenomed patient. Previous studies which have relied upon the mollusk
acetylcholine binding protein (ACP) used a target that is a very different amino acid sequence in the
orthosteric site relative to the human α-1 sequence, including being an amino acid shorter (ACP =

SVTYSCCPEAYED compared to human α-1 = SVTYSCCPDTPYLD) or have used a chimera with the
human neuronal α-7 at the orthosteric site in the expressed ACP, with human α-7 also differing sharply
from human α-1 while also a being a residue shorter (human α-7 = ERFYECCKEPYPD compared to
human α-1 = SVTYSCCPDTPYLD) [18,19]. Thus, both approaches use sequences (ACP or α-7) that are
bound with less affinity than the venom target (α-1). The limitations of the ACP assay are underscored
by some venoms previously well-characterized as neurotoxic (e.g., Boiga [26–28]) not being active in
the ACP assay [18].

One of the recent studies above attempted to use ACP with the orthosteric site replaced with the
human α-7 to act as a ‘decoy’ molecule (attracting the enzyme away from its intended target via a
pseudosubstrate) as a form of novel antivenom [19]. However, as our results strongly suggest (Figure 2),
human neuronal α-7 is targeted by venoms at a much lower level than human neuromuscular α-1.
In contrast, prior mimotope ‘decoy’ research was based upon the neuromuscularα-1 sequence [14,15,17]
and therefore displayed a much greater affinity for venoms than the more recent study using neuronal
α-7 [19]. This differential binding is consistent with the venoms being selected for their action on
neuromuscular α-1, as this is the only physiologically relevant and likely target reachable by the
bloodstream in humans. Therefore, assays based upon the neuronal α-7 subunit target are not valid for
ascertaining potential clinical effects or evolutionary patterns due to the lack of real-world relevance
combined with the dramatically lower affinity of venoms for α-7 versus α-1. Further, as we have shown
taxon-selectivity for α-1, such as fish for the sea snake Aipysurus laevis and snakes for Ophiophagus
hannah, work involving the use of mimotopes as ‘decoys’ with the intent of being a novel antivenom
should investigate use of taxon-specific α-1 mimotopes for particular species or basal target species
which react broadly yet strongly such as amphibian.
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Figure 1. Comparisons of a generalist-feeding species (Acanthophis antarcticus), a fish-prey specialist 
(Aipysurus laevis), and a snake-prey specialist (Ophiophagus hannah). Colored rectangles next to the 
orthosteric site sequences (top left image) correspond to the results for the particular target in the line 
graphs (B. multcinctus image and left side images of A. antarcticus, A. laevis, and O. hannah panels). 
Green highlights show ancestral residues. Phylogenetic tree colouring is heat mapping, with lower 
values colored cooler while higher values are colored warmer (right side images of A. antarcticus, A. 
laevis, and O. hannah panels). Note the different scale bars for each heat map. Phylogenetic tree node 
bars indicate ancestral state reconstruction error range, which rapidly becomes broad due to the 
dynamic variation in target specificity. All values are N = 3 mean and SEM, with the very small error 
range reflective of assay precision. 

Figure 1. Comparisons of a generalist-feeding species (Acanthophis antarcticus), a fish-prey specialist
(Aipysurus laevis), and a snake-prey specialist (Ophiophagus hannah). Colored rectangles next to the
orthosteric site sequences (top left image) correspond to the results for the particular target in the line
graphs (B. multcinctus image and left side images of A. antarcticus, A. laevis, and O. hannah panels).
Green highlights show ancestral residues. Phylogenetic tree colouring is heat mapping, with lower
values colored cooler while higher values are colored warmer (right side images of A. antarcticus,
A. laevis, and O. hannah panels). Note the different scale bars for each heat map. Phylogenetic tree
node bars indicate ancestral state reconstruction error range, which rapidly becomes broad due to the
dynamic variation in target specificity. All values are N = 3 mean and SEM, with the very small error
range reflective of assay precision.
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The proposed use of ACP-based decoy molecules as a therapeutics for snakebite treatment [19] 
would face several technological and immunological challenges. As ACP is a large, globular protein, 
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economically limit its use. In addition, it is a very heat-label protein and thus the use of it as a 
therapeutic would be limited by the requirement for specialized cold storage. Further, as it is a large 
foreign protein, it would be very immunogenic and therefore repeated use may result in a violent 
allergic reaction. In addition to significant limitations in target affinity in the recent work based upon 
the acetylcholine binding protein and human α-7 chimeras [18,19], the method used in these prior 
studies also could not provide any binding kinetics data, being able to only separate results into 
bound or unbound columns.  

In contrast, the mimotope peptides presented in this study are small peptides (14 amino acids) 
and therefore are both heat stable and also less immunogenic. In contrast to prior work using human 
α-1 mimotope peptides as decoy molecules [14,15,17], the results in this study show that the affinity 

Figure 2. Use of the method for biodiscovery screening for selective ligands of α-nicotinic acetylcholine
receptor orthosteric sites. Colored rectangles next to the orthosteric site sequences (top left image)
correspond to the results for the particular target in the line and bar graphs. Values are N = 3 mean and
SEM, with the very small error bars reflective of assay precision.

The proposed use of ACP-based decoy molecules as a therapeutics for snakebite treatment [19]
would face several technological and immunological challenges. As ACP is a large, globular protein,
it is difficult and expensive to synthetically produce through recombinant expression, which would
economically limit its use. In addition, it is a very heat-label protein and thus the use of it as a
therapeutic would be limited by the requirement for specialized cold storage. Further, as it is a large
foreign protein, it would be very immunogenic and therefore repeated use may result in a violent
allergic reaction. In addition to significant limitations in target affinity in the recent work based upon
the acetylcholine binding protein and human α-7 chimeras [18,19], the method used in these prior
studies also could not provide any binding kinetics data, being able to only separate results into bound
or unbound columns.

In contrast, the mimotope peptides presented in this study are small peptides (14 amino acids)
and therefore are both heat stable and also less immunogenic. In contrast to prior work using human
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α-1 mimotope peptides as decoy molecules [14,15,17], the results in this study show that the affinity
for human α-1 may be dramatically lower than that for α-1 from other species. Therefore, mimotope
peptides based upon prey lineages may have higher affinity for the toxin molecules, thereby preventing
their docking to the pathophysiological target. The method described here may also be useful for
investigations of small, linear decoy proteins for potential therapeutic use as antivenom supplements.
In addition to target improvements as revealed in this study, our method also provides full kinetics data
every 0.2 s, thereby providing a dramatic improvement in understanding the biomolecular interactions.

In summary, our novel method allows for the reliable, high-throughput screening for quantifying
the binding kinetics of ligands to nAChRs of any α-subtype from any taxonomical lineage. The high
throughput nature of this system combined with the assay set-up we have designed allows for
16 samples to be tested in triplicate in a 45–55-minute period using the Octet RED96 platform. This
method enables the examination of evolutionary patterns, the design and testing of new mimotope
peptides for use as decoy peptides to supplement antivenom, and for the discovery of novel compounds
for drug design and development. This breakthrough in innovation enables for the first time precise
measurements of ligand binding to nAChRs spanning the full functional and taxonomical range of
potentially affected taxa. As such, our revolutionary assay enables comprehensive characterization of
venom/analyte specificity that will shed tremendous light on ecologically, evolutionarily, medically,
and economically important analytes and their ligand targets. Our proven technique excelled in
the present validation tests investigating both taxon specificity and biodiscovery. Thus, this assay is
now validated for use in investigating nAChR binding ligands from multiple perspectives such as
potential neurotoxic effects of envenomation on prey and humans and also searching for novel ligands
of interest in drug design and development. The flexibility of the approach allows for any potential
target to be tested and thus we anticipate that this method will prove to be useful for a broad range of
research streams.

3. Materials and Methods

3.1. Venom Collection and Preparation

Venoms were sourced from individual adult snakes (captive and wild-caught) from either the
long-term cryogenic collection of the Venom Evolution Laboratory or donated by Venom Supplies Pty
Ltd. All venoms were lyophilized and reconstituted in deionized water, centrifuged (4 ◦C, 5 min at
14,000 RCF), and the supernatant made into a ‘working stock’ (1 mg/mL) with 50% glycerol to prevent
freezing at −20 ◦C where they were stored until use. Protein concentrations were determined in
triplicate using a NanoDrop 2000 UV-Vis Spectrophotometer (Thermofisher, Sydney, NSW, Australia)
at an absorbance of 280 nm.

3.2. Mimotope Production and Preparation

The amino acid sequences for the α-1 orthosteric site for each species were obtained from public
databases with the following accession codes: fish α-1 (uniprot P02710), amphibian α-1 (uniprot
F6RLA9), lizard α-1 (genbank XM_015426640), avian α-1 (uniprot E1BT92), marsupial α-1 (uniprot
G3W0J0), rodent α-1 (uniprot P25108), human α-1 (uniprot G5E9G9), human α-2 (uniprot Q15822),
human α-3 (uniprot P32297), human α-4 (uniprot P43681), human α-5 (uniprot P30532), human α-6
(uniprot Q15825), human α-7 (uniprot P36544), human α-9 (uniprot Q9UGM1), and human α-10
(uniprot Q9GZZ6). The only exception was the α-1 sequence for the snake Coelognathus radiatus, which
was Sanger sequenced by us using the primers (with the M13 primer extension shown in italics):
Forward primer sequence – TGTAAAACGACGGCCAGTGGAAGCATTTTCCTTTTCAGGAA; Reverse
primer sequence-CAGGAAACAGCTATGACGAATGAGAAGAGAAGGCAAGGAAT.

Subsequently, following previous protocols [14–16,21] a 13–14 amino acid mimotopes of the
acetylcholine orthosteric site of vertebrate α-1 to α-10 nAChRs subunits were synthesized by GenicBio
Ltd. (Shanghai, China) based on requested specifications which were adapted from publicly available
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GenBank sequences and unpublished sequences of cholinergic receptors. As per previous studies [14],
the Cys-Cys bridge of the native form was replaced with Ser-Ser for the mimotopes during peptide
synthesis steps to avoid uncontrolled postsynthetic thiol oxidation. Research has shown this has no
effect on the analyte-ligand complex formation [29–31]. The mimotope peptide was then joined to
two aminohaxanoic acid (Ahx) spacers to form a 30 Å linker, with the end Ahx then bound to biotin,
thereby providing crucial clearance between the biotin and mimotope so that the mimotope maintains
its natural conformational freedom when binding to the analyte in solution.

Dried stocks of synthesized mimotopes were solubilized in 100% dimethyl sulfoxide (DMSO) and
then diluted 1:10 in deionized water to make a final working stock concentration of 50 µg/mL and
stored at −80 ◦C until use.

3.3. Bio-Layer Interferometry (BLI)

Binding kinetics were analyzed by BLI utilizing the Octet Red 96 system (ForteBio). All assays
were conducted in standard Greiner black 96 microtiter well plates. Analyte (venom) samples were
diluted 1:20 from the working stock to make a final experimental concentration of 50 µg/mL in the
well (10 µg per well). Mimotope aliquots were diluted 1:50 to have a final concentration of 1 µg/mL in
the well (0.2 µg per well). Assay running buffer was 1X DPBS with 0.1% BSA and 0.05% Tween-20.
This buffer inhibits non-specific binding to the surface of the sensor and other proteins. Prior to
experimentation, streptavidin sensors were hydrated in the running buffer for 30–60 min, whilst
being agitated at 2.0 RPM on a shaker. To regenerate the sensor tips during experimentation, the
dissociation of analytes occurs using a standard acidic solution (glycine buffer), made up of 10mM
glycine (pH 1.5–1.7) in deionized water.

Octet RED 96 assay methodology in the ForteBio Data Acquisition 9.0 program was set as
follows: 60 s baseline, 50 s loading, 120 s baseline, 120 s association, 120 s dissociation, and 80 s
regeneration/neutralization step. The regeneration/neutralization step consists of four cycles, lasting
10 s each, alternating between dipping in glycine buffer (regeneration) and then in running buffer
(neutralization) per cycle. For each baseline step throughout the experiment the same running buffer
was used a maximum of three times per well. Experiments were run at 30 ◦C with the orbital agitation
of the microplate set to 1000 rpm. Experiments were limited to less than 1 h to limit the change in
analyte concentration due to evaporation on the warmed plate [32].

Analytes were set up in rows A-H, with triplicates set up in columns 1–3 and 4–6. To account for
any potential evaporation effect in the wells during experimentation, the column running order was
set to 1, 4, 2, 5, 3, 6 (rather than 1, 2, 3, 4, 5, 6). The mimotopes were set in column 7, running buffer was
set in columns 8–10, and regeneration step (glycine buffer) and neutralization step (running buffer)
were columns 11 and 12 respectively.

Negative controls consisted of deionized water:glycerol 1:1 mix in replacement of the sample in
the wells. Bungarus multicinctus venom was used as a positive control, as it has been shown to bind
nAChR mimotopes [14–16].

3.4. Data Processing and Statistical Analysis

Data were processed as follows: 1) raw output folders (one per plate run) containing multiple
running files were opened in the ForteBio Data Analysis 9.0 program, and in this program: 2) the
‘sensor tray’ was aligned with the location of sensors on our experimental plate, 3) an inter-step
correction was performed whereby the data was aligned to baseline according to the Y-axis of the initial
baseline step (0.1–59.9 s), 4) a Savitsky-Golay filter was applied to the data (to remove high-frequency
noise from the data), 5) the data were processed according to the above parameters, and 6) exported
to Microsoft Excel as a .csv file. The association step data from this .csv file was extracted for each
triplicate and imported into Prism 7.0 software (GraphPad Software Inc., La Jolla, CA, USA) where
Area Under the Curve (AUC) analyses were conducted and graphs produced.
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The phylogenetic trees used were obtained by entering the taxa into timetree.org. These trees
were manually recreated using Mesquite software (version 3.2) and then imported to Rstudio (R Core
Team, 2015) for all comparative analyses using the APE package for basic data manipulation [33].
In order to investigate the evolutionary relationships of traits, ancestral state reconstructions (ASR)
were estimated over the tree using maximum likelihood in the contMap function of the R package
phytools [34].

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/11/10/600/s1,
File S1: Water/glycerol negative control mean and standard deviation values.
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