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Abstract: Pruriceptive itch originates following activation of peripheral sensory nerve terminals
when pruritogens come in contact with the skin. The ability of botulinum neurotoxins (BoNTs) to
attenuate transmitter release from afferent terminals provides a rationale for studying its effect on
pruritus. This study investigated the effects of BoNT/A1 and BoNT/B1 on mast cell dependent
(Compound 48/80:48/80) and independent (Chloroquine:CQ) scratching. C57Bl/6 male mice received
intradermal injection of 1.5 U of BoNT/A1, BoNT/B1 or saline 2, 7, 14 and 21 days prior to ipsilateral
48/80 or CQ at the nape of the neck. Ipsilateral hind paw scratching was determined using an
automated recording device. The effect of BoNTs on 48/80 mediated mast cell degranulation was
analyzed in human and murine mast cells and the presence of SNAREs was determined using qPCR,
immunostaining and Western blot. Pre-treatment with BoNT/A1 and BoNT/B1 reduced 48/80 and
CQ induced scratching behavior starting on day 2 with reversal by day 21. Both serotypes inhibited
48/80 induced mast cell degranulation. qPCR and immunostaining detected SNAP-25 mRNA and
protein, respectively, in mast cells, however, Western blots did not. This study demonstrates the
long-lasting anti-pruritic effects of two BoNT serotypes, in a murine pruritus model using two
different mechanistically driven pruritogens. These data also indicate that BoNTs may have a direct
effect upon mast cell degranulation.

Keywords: botulinum toxin; itch; SNARE; VAMP; mast cells; compound 48/80; chloroquine

Key Contribution: BoNT serotypes show long lasting anti-pruritic effects and may have a direct
effect on mast cells.

1. Introduction

Pruritus or itch is an unpleasant sensation that promotes scratching as a primary response.
Chronic itch is a debilitating and dominating symptom accompanying several disorders including
skin conditions such as atopic dermatitis (AD) as well as in systemic (renal and liver failure) [1–3]
and neurological disorders (diabetic neuropathy and shingles) [4,5]. Pruriceptive itch, as seen in
AD, originates following the activation of peripheral sensory nerve terminals associated with allergic
reactions induced by insect bites or when pruritogens come in contact with the skin. Among the several
subtypes of primary afferent nerve fibers, a role for C-fibers has been demonstrated in detecting and
transmitting pruriceptive signals to the neuraxis [6,7].
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Many forms of itch are mediated by histamine released from mast cells that activate a subset
of neurons expressing TRPV1 receptors as evidenced by the effects of TRPV1 antagonism in
histamine evoked activation of dorsal root ganglion (DRG) neurons [8] and reduced histamine evoked
scratching behavior [9]. Pruritogens, such as chloroquine (CQ), induce itch via mast cell-independent
pathways [10]. Mas-related G protein coupled receptor (Mrgpr) has emerged as a novel class of
receptors in histamine independent itch pathways and MrgprA3 is the receptor for CQ. In contrast
to histamine dependent pathways, where TRPV1 functions downstream of histamine receptors to
promote itch, the histamine-independent pathway utilizes TRPA1 as a key transduction channel
downstream of the MrgprA3 receptor [11,12].

Botulinum neurotoxins (BoNTs), including the A1 (Botox) and B1 (Myobloc) serotypes,
attenuate neurotransmitter release in neurons by the cleavage of terminal soluble N-ethylmaleimide-
sensitive-factor attachment protein receptors (SNAREs) [13–15]. Data indicate that when BoNT/A1
and B1 are given subcutaneously in the paw, the toxin is taken up in the peripheral terminal and
transported back to the central terminal of the primary afferent [16,17]. Studies from our lab as well
as from other groups have shown that both subcutaneous (sc) BoNT/A1 and BoNT/B1 reduce local
intradermal capsaicin evoked flares in animal [17,18] and human models [19–22], reflecting the local
inhibitory effect upon release of vasodilatory peptides (substance P (sP)/ calcitonin gene-related
peptide (CGRP)) from the peripheral terminal evoked by TRPV1 receptor. In addition, following
peripheral delivery of BoNTs, cleaved SNAREs are detected in the dorsal root ganglia and dorsal
horn along with an associated block of sP release [17]. While BoNTs primarily seem to affect motor
neurons in botulism, it is well known that BoNTs can efficiently enter and block neurotransmission in
other neuronal subpopulations as well. However, entry and effects on non-neuronal secreting cells,
such as mast cells, are less explored, in part because the vesicle release machinery utilizes different
(non-neuronal) SNARE proteins that based on the literature are not the targets of medically employed
BoNTs. However, an anti-pruritic effect of BoNT/A1 has been demonstrated clinically in several skin
disorders, including dermatitis [23], burn induced itch [24], and lichen simplex [25], a localized variant
of AD in which acetylcholine appears to be a dominant pruritic mediator. BoNT/A1 also reduced the
itch intensity, blood flow and neurogenic inflammation in response to the histamine prick test in human
skin [19]. These results jointly suggest the use of BoNTs in treating pruritus, although the mechanism
of action remains unknown including whether observed effects are a result of direct action of the BoNT
on mast cells or an indirect effect via neurons. The present study demonstrates anti-pruritic effects
of BoNT/A1 and BoNT/B1 on histamine dependent compound 48/80 and histamine-independent
CQ-induced scratching behavior in mice, and for the first time shows an effect of the BoNTs on cultured
murine and human mast cells.

2. Results

2.1. BoNT/A1 and BoNT/B1 Injection Reduced 48/80 and CQ Induced Scratching

Behavioral responses were recorded for 40 min in the C57Bl/6 mice following intradermal injection
of 48/80 and CQ at the nape of the neck. Both pruritogens injected unilaterally induced ipsilateral
scratching behavior. The total number of scratches in the 40 min period increased significantly following
intradermal injection of mast cell-dependent 48/80 and mast cell-independent CQ (Figure 1).

Bouts of scratching induced by 48/80 and CQ were reduced by 1.5 U of ipsilateral BoNT/A1
and BoNT/B1 given locally (intradermal) two days prior to the intradermal injections of pruritogens.
Analysis of total scratching in the 40 min period showed that this reduction was statistically significant.
Importantly, the 1.5 U of intradermal BoNT-A1 or BoNT-B1 did not produce detectable alterations in
motor function or strength. Animals displayed normal grasping behavior as measured by a suspension
test where the animals were required to grip onto the wire mesh for at least 1 min and showed normal
hind limb placing and stepping reflexes [17].
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Figure 1. Compound 48/80 and chloroquine induced scratches: (A) time course of scratching induced
by intradermal injection of compound 48/80 (50 µL of 1 mg/kg) (N = 8) or Chloroquine (50 µL of
2mg/mL) (N = 8) over a period of 40 min (CQ); (B) histogram showing cumulative scratch count
following compound 48/80 and CQ in 40 min. All data are expressed as Mean ± SEM. *** p < 0.001 as
compared to the saline treated group (N = 7).

2.2. BoNT/A1 and BoNT/B1 Have a Long Duration of Effect in Reducing Compound 48/80 and CQ
Induced Scratching

One of the hallmarks of pharmaceutical BoNTs is their long duration of action, lasting 2–6 months
in humans after intramuscular injection. Local intramuscular injection of BoNT/A1 in mice results
in local paralysis that peaks at day 2 after injection and slowly decreases in effect over the following
2–3 weeks [26]. To determine whether effects of BoNT/A1 and B1 on 48/80 and CQ induced scratching
have a similarly long-lasting duration, 1.5 U BoNT/A1 or BoNT/B1 or saline were given on days 2,
7, 14 and 21 days prior to administration of 48/80 and CQ treatment on the same side of the neck.
BoNT/A1 and BoNT/B1 significantly reduced 48/80 induced scratching behavior on days 2, 7 and
14, but not on day 21 as compared to the saline treated group, suggesting a reversal of effect of BoNT
by day 21 (Figure 2). A similar long-lasting effect of BoNT/A1 and B1 was observed on CQ induced
scratching as well, where pretreatment with unilateral BoNT/A1 and B1 significantly reduced CQ
induced scratching behavior on days 2, 7 and 14 with a complete reversal by day 21 (Figure 2). In both
cases, a slow recovery to normal scratching behavior was observed over time, similarly as is seen with
muscle paralysis after BoNT treatment. Interestingly, even though BoNT/A1 has a significantly longer
duration of action than BoNT/B1 in causing muscle paralysis, in the pruritus assay, both toxins had a
similar duration of action in suppressing 48/80 or CQ induced scratching behavior.
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Figure 2. Duration of action of BoNT/A1 and BoNT/B1 in reducing compound 48/80 and chloroquine
induced scratching: Mice were treated with intradermal saline (control), BoNT/A1 (1.5 U), or BoNT/B1
(1.5 U) at 2, 7, 14, or 21 days prior to intradermal administration of compound 48/80 (A,B) or
Chloroquine (C,D). The total scratches per minute were observed over a 40 min time interval after
administration of compound 48/80 or chloroquine. Plots indicate mean ± SEM for cumulative flinches
observed at days 2, 7, 14 and 21. ** p < 0.01, *** p < 0.001 vs. saline; # p < 0.05, ## p < 0.01, ### p < 0.001 as
compared to saline, N = 8 animals per group.

2.3. BoNT/A1 and BoNT/B1 Reduce Compound 48/80 Induced Murine and Human Mast Cell Degranulation

The inhibitory effects of BoNT/A1 and B1 on 48/80 induced scratching observed in the in vivo
studies could be due to a direct effect of the BoNTs on mast cells or secondary to the inhibition of
mediator release from primary afferents inhibited by BoNTs. In order to determine whether BoNT/A1
and B1 directly affected the functioning of mast cells, an in vitro assay using isolated murine and
human iPSC derived mast cells was performed. The primary murine mast cells were treated with 48/80
for 20 min at 37 ◦C, leading to degranulation as evidenced by β-hexosaminidase release compared
to untreated control cells. As expected, treatment with CQ did not induce mast cell degranulation.
Interestingly, pre-treatment of both murine and human mast cells with 0.5 U of BoNT/A1 and /B1 for
24 h significantly reduced 48/80 mast cell degranulation (Figure 3). This indicates a direct effect of
BoNT/A1 and B1 on mast cells.
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Figure 3. Effect of BoNT on compound 48/80 induced mast cell degranulation in human (hMC) and
mouse mast cell culture (mMC): Mast cellβ-hexosaminidase release (as index of mast cell degranulation)
following compound 48/80 (48/80, 10 µg/mL) and chloroquine (CQ) (A); mast cell β-hexosaminidase
release induced by 48/80 (1µg/mL) 24 h after treatment with 0.5 U of BoNT/A1 or BoNT/B1 in murine
mast cell culture (B) and in human mast cell culture (C). *** p < 0.001 compared to other groups.

2.4. Western Blot Analysis of Expression and Effect of BoNT/A1 and BoNT/B1 on SNAP-25 and VAMP 1/2/3
in Human and Murine Mast Cells

The cellular target of BoNT/A1 is the neuronal SNAP-25 and for BoNT/B1 is VAMP-1 and 2,
which are essential components in the neuronal vesicle release machinery. The BoNTs cleave their
respective target SNARE proteins, which is the mode of action by which BoNTs block neurotransmitter
release. While the degranulation machinery identified in mast cells utilizes SNAP-23 and VAMP-7/8,
which are not cleaved by BoNT/A1 and /B1, the observed inhibition of degranulation of mast
cells by BoNTs indicates a mechanism other than SNARE cleavage. In order to confirm this in our
model, cultured murine and human mast cells were treated with BoNT/A1 and BoNT/B1 for 24 h
and SNAP-25 and VAMP isoforms were analyzed using Western blot. Consistent with previous
reports, Western blot analysis did not detect expression of SNAP-25 (Figure 4). It should be noted
that spinal cord samples loaded as a positive control on the same immunoblot membrane clearly
showed SNAP-25 expression, suggesting that mast cells do not express SNAP-25 at detectable levels.
Though expression of VAMP-1/2/3 was observed in mast cells, BoNT/B1 surprisingly did not reduce
full-length VAMP 1/2/3 levels in these BoNT treated mast cells, suggesting no cleavage of BoNT-B1
specific VAMP proteins.

Figure 4. Expression of SNARE proteins in mast cells: Representative image of Western blots showing
expression of SNAP-25 or VAMP-1/2/3 in the mast cells with or without BoNT/A1 or B1 treatment
(0.5 U for 24 h). Spinal cord (SC) tissue was used as a positive control for SNAP-25 expression. Mast cells
did not express SNAP-25 and hence no effect of BoNT/A1 on SNAP-25 was observed. VAMP 1/2/3
were expressed in mast cells; however, they were not affected by pre-treatment with BoNT/B1; this was
repeated three times.



Toxins 2018, 10, 134 6 of 13

2.5. Expression of SNAP-25 and VAMP 1/2/3 Cleavage with or without BoNT/A1 or B1 Treatment,
Respectively, in Human and Murine Mast Cells

Although Western blot did not detect any expression of SNAP-25 in human and mast cell culture,
immunostaining was able to detect cleaved products of SNAP-25 following BoNT/A1 treatment on
both human and murine mast cells. The SNAP-25 antibody used in the present study detects only the
cleaved products (cSNAP-25). The control groups of murine and human MC did not show cSNAP-25
staining; however pre-treatment of the mast cells with BoNT/A1 for 4 h showed a dose-dependent
increase in cSNAP-25 staining. DAPI was used to stain the nuclei of the mast cells (Figure 5A).
RT-qPCR analysis on human and mouse mast cells showed expression of SNAP-25 mRNA, suggesting
the presence of at least low levels of SNAP-25 in mast cells (Figure 5B). The VAMP antibody used
recognizes the intact molecule. Therefore, reduction of VAMP protein expression was used as a
measure of VAMP cleavage. In control animals, VAMP expression was observed in the control group
along with the DAPI stained nuclei. Following pre-treatment with BoNT/B1, the cells showed a
reduction in VAMP expression. Thus, VAMP cleavage was significantly greater in the BoNT/B1 treated
group as compared to PBS control (Figure 5A).

Figure 5. Detection of cSNAP-25 and VAMP-2, respectively, in mouse and human mast cell culture:
(A) representative images of BoNT/A1-cleaved SNAP-25 and VAMP-2 immunostaining following
treatment with BoNT/A1 and BoNT/B1 (10 pM); (B) RT-qPCR of SNAP-25 expression in mouse and
human mast cell culture. N = 3.
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3. Discussion

The present study demonstrated the anti-pruritic effects of two well characterized and clinically
employed BoNT serotypes, Botulinum Toxin A1 (Botox©) and Botulinum Toxin B1 (MyoBloc©)
over time in a murine pruritus model using two different mechanistically driven pruritogens.
While involvement of SNARE proteins in release of pruritus stimulating mediators from mast cells
has been demonstrated [27,28], effects of BoNT/A1 and BoNT/B1 on mast cell release has not been
explored. The present study showed that BoNTs may have a direct effect on mast cells in altering its
local degranulation, and that this effect may be independent of SNARE cleavage.

3.1. Mast Cell Dependent and Independent Pruritogens

Pruriceptive itch is induced peripherally due to the activation of nerve fibers located in the epidermis
and is the type of itch observed in several dermatological conditions such as atopic dermatitis, psoriasis,
etc. [29]. Pruriceptive itch can be experimentally triggered by several exogenous and endogenous
substances. In the present study, we utilized two pruritogens, mast cell dependent, 48/80 and mast cell
independent, CQ. Compound 48/80 degranulates mast cells to release histamine [30], which induces
itch by binding to and activating C-fibers via gating the TRPV1 channel [8,9]. Other mediators released
from mast cells such as serotonin, bradykinin, and prostaglandin can potentiate the effects of histamine
induced itch sensation [31]. CQ, on the other hand, elicits itch in a mast cell independent pathway,
presumably by activating Mrgpr /TRPA1 receptors [11,12]. A recent study shows that 48/80 may have
a direct action on neurons in addition to degranulating mast cells [32] and the interpretation of the
results in this study does consider this possibility. However, it should be noted that a previous study
has reported mast cell mediated neuronal activity of 48/80 [33].

3.2. Anti-Pruritic Effect of Botulinum Toxin

BoNT/A1 and BoNT/B1 have been extensively used in clinical and pre-clinical studies for
elucidating the mechanisms by which they can inhibit pain transduction in several pain related disorders.
Ample evidence now suggests that BoNTs influence release of several neurotransmitters such as
acetylcholine, glutamate, CGRP, sP, and serotonin [34–36]. The release of these neurotransmitters
may play a contributing role in induced itch [37,38]. Patients with AD show an increase in density
of nerve fibers containing CGRP and sP [39]. Furthermore, pre-clinical studies in pain models have
shown that peripheral BoNT can block the release of neurotransmitters from the local afferents as
well as from the central nerve terminals [17,18,40–43], suggesting a possible pathway in which BoNTs
may influence the transmission of itch signals to higher brain centers. Our data from the present
study suggests that both BoNT/A1 and BoNT/B1 significantly inhibited the scratching behavior
induced by two mechanistically different pruritogens. These findings are in accordance with a clinical
study showing that BoNT/A1 could reduce the histamine pin prick induced itch intensity in human
skin along with diminished blood flow and neurogenic inflammation [19]. Further clinical studies
have suggested anti-pruritic effects of BoNT/A1 on conditions accompanied with itch such as lichen
simplex, rhinitis, inverse psoriasis, burn induced itch and dermatitis [23–25]. However, no studies
have determined the effect of BoNT/B1 in pruritus so far.

3.3. Duration of Action of BoNT

Activity of BoNT is attributed to neuronal cell entry by the toxin, release of the light chain (LC)
into the cells cytosol, and cleavage of terminal SNAREs by the LC, blocking vesicular transmitter
release [13]. The duration of action of BoNT depends on the persistence of the catalytically active
intracellular LC [44,45]. While in humans the duration of pharmaceutical BoNTs varies from two to six
months, depending on the dose, mice usually recover from paralytic effects after local intramuscular
injection within three weeks [26,46]. Similarly, the BoNT/A1 and B1 induced reduction in itch behavior
in the murine model used in this study lasted for about two weeks, with mice showing gradual reversal
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that was complete by day 21 (Figure 3). This similarity in duration and gradual reversal indicates
a possibly similar mechanism of action of BoNTs in mast cells as in neurons, or an indirect effect of
BoNTs in pruritus due to neuronal release inhibition.

3.4. Possible Mechanism of Action of BoNT/A1 and BoNT/B1 in Reducing Induced Itch

Effects of both the pruritogens, 48/80 and CQ are believed to be mediated by the activation of
C-fiber terminals in the epidermis. Compelling evidence suggests the role of TRPV1 and TRPA1 ion
channels in these subsets of neurons downstream to histamine and CQ [11,12] to mediate calcium
induced activation of SNAREs that mobilize synaptic vesicle release, thereby promoting itch sensation.
Patients with AD show intense staining of CGRP and substance P-immunoreactive fibers, and uptake of
BoNT has previously shown to inhibit the release of these neurotransmitters. Therefore, the reduction
in induced itch behavior in mice by BoNT/A1 and B1 could be at least in part due to an effect of the
toxins on the C-fibers, rather than a direct effect on mast cells.

Interestingly, we observed that pre-treatment with both BoNT/A1 and BoNT/B1 impaired 48/80
induced mast cell degranulation in cultured murine and human mast cells, indicating that BoNTs
may also have a direct effect on mast cells. This is in agreement with previous experiments conducted
by Park and colleagues that showed a decrease in mast cell activity seven days following BoNT/A1
treatment in rat skin tissue [47]. While the mast cell release machinery involves SNAREs, which are the
target of BoNTs in neurons, the SNARE isoforms considered to be required for mast cell degranulation
(SNAP-23 and VAMP-7 and 8) are insensitive to BoNT/A1 and /B1 [28,48,49]. In our study, very low
levels of SNAP-25 mRNA expression were observed in both murine and human mast cells, with
immunohistochemistry studies confirming the findings for both SNAP-25 and VAMP-1/2/3 and
indicating cleavage of these SNARE isoforms by BoNT/A1 and B1. However, western blot data
suggested absence or very low levels of SNAP-25 in mast cells, and levels of the BoNT/B1 sensitive
VAMP-1/2/3 in mast cells appeared to be unaffected by BoNT/B1. Similar discrepancy in the SNAP-25
expression in mast cells using various detection methods has been previously reported [50]. This result,
although confounding, is intriguing and leads to the speculation that BoNTs may utilize a non-canonical
mechanism other than SNARE cleavage to inhibit release of secretory granules from mast cells. For
example, one possibility could be hindrance in the trafficking of membrane proteins such as TRP
receptor subunits to the plasma membrane of mast cells. The role of BoNT/A1 in inhibiting TRPV1
receptor function by affecting regulated endocytosis and reduction in TRPV1 receptor expression
has been previously demonstrated in the trigeminal as well as in suburothelial nerve fibers [51,52]
(Shimizu et al., Apostolidis et al.). Furthermore, studies have shown that 48/80 degranulation of mast
cells employ calcium induced exocytosis in mast cells [53] and BoNTs primarily inhibit the normal
depolarization- evoked calcium currents [54]. More studies are required to elucidate the inhibitory
mechanism of botulinum toxins on mast cell degranulation and whether the observed in vivo effects
are due to direct or indirect action of BoNTs on mast cells.

4. Materials and Methods

4.1. Animals

Adult male C57Bl/6 mice, 25–30 g (Harlan Sprague Dawley Inc., Indianapolis, IN, USA),
were housed in the vivarium for a minimum of 2 days before use, maintained on a 12/12-h day-night
cycle and given free access to food and water. All studies were carried out according to protocols
approved by the Institutional Animal Care and Use Committee of the University of California, San
Diego, CA, USA. Ethical approval code and date: S00137M and 26 March 2015 (IACUC).

4.2. Drugs

Drugs employed were compound 48/80 (48/80) (1 mg/mL) or CQ (2 mg/mL) (Sigma Aldrich,
St Louis, MO, USA). BoNT/A1 (Botox©, onabotulinumtoxin A, Allergan Inc., Carlsbad, CA, USA) and
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BoNT/B1 (Myobloc©, Rimabotulinumtoxin B, Solstice Neurosciences, Louisville, KY, USA) solutions
were prepared from stock solutions of 50 U/mL and 5000 U/mL, respectively. These products were
then serially diluted to the final concentration in 0.9% saline. All solutions were stored at 4 ◦C and
brought to room temperature prior to use.

4.3. Drug Delivery

Mice were anesthetized (2.5% isoflurane, with 80% oxygen and 20% room air) and were shaven
on the dorsolateral aspect of the neck and upper shoulder. Using a 29 G needle (insulin syringe)
intradermal injection of 50 µL of BoNT/A1 or BoNT/B1 (1.5 U) or saline was administered. Intradermal
injections of 48/80 or CQ (50 µL) were administered on the day of behavioral testing.

4.4. Behavior

On the day of testing, animals were placed in a plexiglass cylindrical chamber and a detection
band was placed around the hind paw ipsilateral to the shaven area. To initiate scratching behavior,
intradermal (ID) injection of 48/80 or CQ was administered in the middle of the shaven area of skin
using a 29 G needle. The itch behavior is recorded over the period of 40 min using a paw motion
detector (PMD). The PMD detects the movement of a non-ferrous metal band placed around one hind
paw of the rodent (band weight = 0.1 g). The testing apparatus consists of cylindrical chambers (mouse:
8.5 cm diameter/22.5 cm tall). Under each cylinder is a pair of circular concentric electromagnetic
coils, which serve respectively as antennae for transmission and reception. The transmitter coil
assembly emits a 5–8 mW, 6–8 kHz, sinusoidal electromagnetic field. The detection principal is
that Eddy currents created by the movements of the ferrous and nonferrous metals perturb the
EM field. Such perturbations are detected and produce an output waveform [55,56]. Data were
acquired electronically.

4.5. Mast Cell Culture

Primary murine MCs were generated from C57BL/6 mouse bone marrow and cultured in RPMI 1640
medium (Life Technologies, Carlsbad, CA, USA) supplemented with 10% heat-inactivated fetal bovine
serum (Life Technologies, Carlsbad, CA, USA), 25 mM HEPES (pH 7.4), 4 mM L-glutamine, 0.1 mM
nonessential amino acids, 1 mM sodium pyruvate, 50 µM 2-mercaptoethanol, 100 IU/mL penicillin, and
100 µg/mL streptomycin. Recombinant murine IL-3 (1 ng/mL, R&D Systems, Minneapolis, MN, USA)
and recombinant murine stem cell factor (20 ng/mL, R&D Systems, Minneapolis, MN, USA) were
also included to allow for in vitro differentiation. After 4 weeks, the MCs were fully differentiated,
as confirmed by the expression of CD117 (c-Kit) and FcεRI. Cell maturation was confirmed by
metachromatic staining with toluidine blue. The purity of MCs was greater than 98%. For the detailed
procedure, see [57].

Primary human MCs were derived from human cord blood CD34+CD45+ cells from healthy
donors (STEMCELL Technologies, Seattle, WA, USA) according to Kirshenbaum and Metcalfe [58].
They were cultured in Stemline II hematopoietic stem cell medium (Sigma Aldrich, St. Louis, MO, USA)
with recombinant human SCF and IL-6 (100 ng/mL, Peprotech, Rock Hill, NJ, USA) for 9 weeks.
MC differentiation was confirmed by CD117 (c-Kit) and FcεRI expression, and maturation was
confirmed by metachromatic staining with toluidine blue. The purity of MCs was greater than 98%.

4.6. Mast Cell Degranulation Assay

Degranulation was assessed by measuring the activity of β-hexosaminidase in the supernatants
of 1 × 105 MCs in 200 µL Tyrode’s buffer (0.1% BSA, 0.1% glucose, 2 mmol/L MgCl2, 137.5 mmol/L
NaCl, 12 mmol/L NaHCO3, 2.6 mmol/L KCl, pH 7.4) incubated for 24 h with 0.5 U of BoNT-A1
or -B1 before the addition of 1 µg/mL 48/80 (Sigma Aldrich, St Louis, MO, USA). For comparison
of mast cell degranulation by 48/80 to CQ, 10 µg/mL 48/80 was used. For each sample assayed,
supernatant aliquots (20 µL) were mixed with substrate solution (100 µL) which consisted of 10 mM
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4-methylumbelliferyl-2-acetamide-2-deoxy-b-D-glucopyranoside (EMD Millipore, Billerica, MA, USA)
in 0.1 M sodium citrate buffer (pH 4.5) and were incubated for 2 h at 37 ◦C in the dark. The reaction
mixtures were excited at 365 nm and measured at 460 nm in a fluorescence plate reader (Gemini
EM microplate spectrofluorometer; Molecular Devices, Sunnyvale, CA, USA). To determine the total
cellular content of this enzyme, an equivalent number of cells were lysed with 1% Triton X-100 (Sigma
Aldrich, St Louis, MO, USA). Release of β-hexosaminidase was calculated as the percentage of the
total enzyme content.

4.7. Immunohistochemistry on Mast Cells

Mast cells were attached to a glass slide by using Shandon Cytospin 2 cytocentrifuge (Thermo
Fisher Scientific, Waltham, MC, USA). The cells were stained with 1 mg/mL anti BoNT/A1-cleaved-
SNAP-25 Ab, which recognizes only the BoNT/A1cleavage product of SNAP-25 and not the
full-length SNAP-25, and anti-VAMP-2 Ab (Synaptic Systems, Goettingen, Germany) according to
the manufacturer’s instructions. Slides were mounted in ProLong Anti-Fade reagent with DAPI
(Molecular Probes, Eugene, OR, USA). We imaged the cells using the Bx51 research microscope
(Olympus, Center Valley, PA, USA) and X-Cite 120 fluorescence illumination systems (EXFO Photonic
Solutions, Mississauga, ON, Canada).

4.8. mRNA Isolation and Real-Time Quantitative PCR

Total RNA was isolated using Trizol Reagent (Invitrogen, Carlsbad, CA, USA) and 1 µg of total
RNA was used for cDNA synthesis by using iScript cDNA Synthesis Kit (Bio-Rad Laboratories,
Hercules, CA, USA) according to the manufacturer’s instructions. cDNA was amplified using Real
time-PCR in an ABI 7300 Real-Time PCR system (Applied Biosystems, Foster City, CA, USA).
RNA analysis reagents (SYBR Green Master Mix) were from Bio-Rad, Hercules, CA, USA. We used
the comparative ∆∆ cycle threshold method to quantify gene expression. Target gene expression
levels in the test samples were normalized to the endogenous reference glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) (F: 5′-CCA ACC GCG AGA AGA TGA CC-3′ and R: 5′-GAT CTT CAT GAG
GTA GTC AGT-3′) levels and reported as the fold difference relative to GAPDH gene expression in
untreated baseline control. All assays were performed in triplicate and the experiments were repeated
at least three times.

4.9. Western Blot Analysis

Following 24 h treatment with BoNT-A1 or BoNT-B1 on murine and human mast cells, cell lysates
were prepared by solubilizing cells in RIPA buffer (Life Technologies, Carlsbad, CA, USA) with
protease inhibitor cocktail (Sigma Aldrich, St Louis, MO, USA), at 1 × 107 cells/mL. Cells were
incubated for 1 h on ice for complete lysis, and the lysates clarified by centrifugation at 4 ◦C, for 10 min
at 12,000 RPM. Supernatants were collected and stored on ice for immediate use, or at –80 ◦C until
needed. Total protein concentration of the clarified cell lysates was determined by BCA protein assay
(Life Technologies, Carlsbad, CA, USA) prior to loading on a gel.

For the Western blot analysis, five micrograms of total cell lysate of each sample were separated
on a 12% Bis-Tris NuPAGE gel with MES running buffer (all from Life Technologies). For the mouse
spinal cord cell lysate (SC) controls, primary mouse spinal cord cell lysates were prepared as previously
described [45], and 8 µl of untreated primary mouse spinal cord cell lysates were used. Proteins were
transferred to a PVDF membrane (Millipore 0.45 micron for the SNAP-25 blots, and GE Healthcare
(Little Chalfont, UK) 0.2 micron for the VAMP blots) by semi-dry transfer. The membranes were
probed with antibodies to beta-actin (Abcam, Cambridge, UK) and VAMP-1/2/3 (Synaptic Systems)
(top gel), a polyclonal anti-SNAP-25 antibody (Synaptic Systems) (middle gel), or a monoclonal
anti-SNAP-25 antibody (Synaptic Systems) (bottom gel). Images were obtained using PhosphaGlo
reagent (KPL, Gaithersburg, MD, USA) and a Fotodyne/FOTO/Analyst FX imaging system (Fotodyne,
Hartland, WI, USA).
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4.10. Statistical Analysis

The data for each variable was put in tabular form (i.e., Excel worksheet). Summary statistics
were computed and include group means and standard deviations and numbers of animals per group.
Statistical analysis was performed using GraphPad Prism 6, v6.0c (GraphPad Software, San Diego, CA,
USA). For comparison of 48/80 and CQ induced scratching, results were compared using a one-way
ANOVA across doses or time. Bonferroni post hoc tests were used to compare groups at similar doses
or times. For all post hoc comparisons, multiplicity adjusted p-values were calculated. In each case,
Bonferroni post hoc tests (e.g., t-tests with Bonferroni corrections) were undertaken and presented in
the graphics and figure legends for values between p < 0.01 and p < 0.0001.
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