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Abstract: Sea anemones have been understudied as a source of peptide and protein toxins,
with relatively few examined as a source of new pharmacological tools or therapeutic leads. This is
surprising given the success of some anemone peptides that have been tested, such as the potassium
channel blocker from Stichodactyla helianthus known as ShK. An analogue of this peptide, ShK-186,
which is now known as dalazatide, has successfully completed Phase 1 clinical trials and is about
to enter Phase 2 trials for the treatment of autoimmune diseases. One of the impediments to
the exploitation of sea anemone toxins in the pharmaceutical industry has been the difficulty
associated with their high-throughput discovery and isolation. Recent developments in multiple
‘omic’ technologies, including genomics, transcriptomics and proteomics, coupled with advanced
bioinformatics, have opened the way for large-scale discovery of novel sea anemone toxins from a
range of species. Many of these toxins will be useful pharmacological tools and some will hopefully
prove to be valuable therapeutic leads.

Keywords: sea anemone; peptide; ShK; potassium channel; autoimmune disease; genomics;
transcriptomics; proteomics; evolution

Key Contribution: The sea anemone peptide ShK highlights the potential of these venomous animals
to produce valuable therapeutic leads, and the abundance in nature of peptides related to ShK
suggests that this scaffold can support a range of functions. Current genomic, transcriptomic and
proteomic studies of sea anemones promise to greatly expand the number of ShK analogues and to
identify a range of novel peptide families.

1. Introduction

Sea anemones are members of the phylum Cnidaria, class Anthozoa, subclass Hexacorallia and
order Actiniaria, one of the oldest extant orders of venomous animals. In common with many other
venomous animals, they produce venom that is a complex mixture of small molecules, peptides and
proteins [1–7]. Unlike some of the better known groups of venomous animals such as snakes
and spiders, however, or even their fellow cnidarians the Australian box jellyfish or Irukandji,
which (quite appropriately) attract considerable public attention [8,9], the potentially harmful
consequences of contact with sea anemones are relatively unknown. Indeed, many members of the
public are not even aware that they are animals rather than plants, let alone venomous ones (Figure 1).
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While most injuries caused by sea anemones are associated with skin rashes and oedema,
more extreme reactions have been reported for several species, including Actinodendron plumosum and
other species from the family Actinodendronidae (species from this family are collectively known as
the hell’s fire anemones), Telmatactis species, Phyllodiscus semoni (night or wasp anemone), Actinia equina
(beadlet anemone) and Anemonia sulcata (the snakelocks anemone, synonomy Anemonia viridis) [10,11].
For example, a swimmer lost consciousness and underwent cardiopulmonary arrest after being stung
by the sea anemone, Actinia equina, although this may have been a consequence of an anaphylactic
reaction following prior exposure to unknown sea anemones [12]. Sea anemones from the family
Aliciideae are known to be particularly dangerous to humans, with severe reactions observed following
contact with both Triactis producta [13] and P. semoni [10]. In fact, P. semoni is responsible for one of the
few fatalities to result from sea anemone envenomation [14]. The venom from P. semoni has caused
acute renal failure in humans, with a protein toxin (PsTX-115) from this venom causing severe kidney
damage in rat models [15].
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australiensis. Photo credit: Ana Pavasovic. 
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stinging cells are equipped with organelles known as nematocysts (cnidae), which contain small 
threads that are forcefully everted when stimulated mechanically or chemically [17]. These 
nematocysts contain a complex cocktail of toxins that is used to envenomate predatory and prey 
species upon discharge [1,3,6]. Nematocysts show significant heterogeneity in their density and 
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Figure 1. Sea anemone species that are locally abundant in the waters off south-eastern Queensland,
Australia; these species have been largely unexplored for their toxin contents and are currently under
investigation in our labs to identify new peptide and protein toxins with potentially novel functions.
(A) Aulactinia veratra (B) undescribed species of Anthopleura (C) Calliactis polypus (D) Actinia australiensis.
Photo credit: Ana Pavasovic.

2. Venom Apparatus

Sea anemones, in common with other members of the phylum Cnidaria, possess numerous
specialized stinging cells (cnidocytes) that are widely distributed throughout the body [16].
These stinging cells are equipped with organelles known as nematocysts (cnidae), which contain small
threads that are forcefully everted when stimulated mechanically or chemically [17]. These nematocysts
contain a complex cocktail of toxins that is used to envenomate predatory and prey species upon
discharge [1,3,6]. Nematocysts show significant heterogeneity in their density and morphology across
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different structures within sea anemones [18]. For example, in Actinia tenebrosa (or its northern
hemisphere relatives Actinia equina and Actinia fragacea), acrorhagi (which are used in aggressive
intra-specific combat (Figure 2)) contain holotrichs and basitrichs [19] (Figure 3), while the tentacles
(which are used in prey capture and defence) contain basitrichs and spirocysts; basitrichs are also found
in the mesenteric filaments, column, pedal disc and actinopharynx [19] (Figure 3). The differences
in cnidae composition are related to differences in the functional specialization of morphological
structures, i.e., the capture of prey (crustaceans, small fish), defence against predators and intraspecific
aggression [19–22].
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Figure 2. This photograph shows the bright blue acrorhagi used in intraspecific combat [20] and
red tentacles used in prey capture and defence against predators of the Australian sea anemone,
Actinia tenebrosa. Both structures have a high density of nematocysts, but they have different
nematocysts complements (for example, holotrichs are abundant in acrorhagi and basitrichs in
tentacles). Photo credit: Chloe van der Burg.

Toxins 2018, 10, 36  3 of 14 

 

tentacles (which are used in prey capture and defence) contain basitrichs and spirocysts; basitrichs 
are also found in the mesenteric filaments, column, pedal disc and actinopharynx [19] (Figure 3). The 
differences in cnidae composition are related to differences in the functional specialization of 
morphological structures, i.e., the capture of prey (crustaceans, small fish), defence against predators 
and intraspecific aggression [19–22].  

 
Figure 2. This photograph shows the bright blue acrorhagi used in intraspecific combat [20] and red 
tentacles used in prey capture and defence against predators of the Australian sea anemone, Actinia 
tenebrosa. Both structures have a high density of nematocysts, but they have different nematocysts 
complements (for example, holotrichs are abundant in acrorhagi and basitrichs in tentacles). Photo 
credit: Chloe van der Burg. 

 
Figure 3. Photomicrographs of cnidae from Actinia tenebrosa. (A) holotrich from acrorhagi; (B) 
spirocyst from tentacles; (C) basitrich from tentacles. Scale bars are 5 µ in each case. Photo credit: 
Michela Mitchell. 

3. Peptide Toxins from Anemones 

While many families of sea anemone toxins have been described already [7,23], much still 
remains to be discovered about toxins in this group. In fact, there are only 236 peptide or protein 
toxins in the manually curated ToxProt database [24], which have been isolated from just 45 sea 
anemone species. This means that fewer than four percent (45 of more than 1100 species) of all sea 
anemones have had their venom peptides and proteins examined. Currently, anemone toxins can be 
classified into 15 known families (Table 1), but 19 toxin peptides and proteins remain largely 
uncharacterized. The four most common toxin protein families isolated from anemones are the 
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3. Peptide Toxins from Anemones

While many families of sea anemone toxins have been described already [7,23], much still remains
to be discovered about toxins in this group. In fact, there are only 236 peptide or protein toxins in
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the manually curated ToxProt database [24], which have been isolated from just 45 sea anemone
species. This means that fewer than four percent (45 of more than 1100 species) of all sea anemones
have had their venom peptides and proteins examined. Currently, anemone toxins can be classified
into 15 known families (Table 1), but 19 toxin peptides and proteins remain largely uncharacterized.
The four most common toxin protein families isolated from anemones are the actinoporin family,
sea anemone subfamily (30 proteins found in the ToxProt database); sea anemone sodium channel
inhibitory toxin family, type I subfamily (52 proteins found in the ToxProt database); sea anemone
type 3 (BDS) potassium channel toxin family (32 proteins found in the ToxProt database), and venom
Kunitz-type family, sea anemone type 2 potassium channel toxin subfamily (26 proteins found in the
ToxProt database). Of these four toxin protein families, only the actinoporin family, sea anemone
subfamily, has been found outside the Actinioidea superfamily of anemones based on sequences
currently available in the ToxProt database. In fact, 206 of the 236 toxin proteins in the ToxProt database
are from the Actinioidea superfamily. This indicates that the species that have been examined show a
strong taxonomic bias (Table 1), and we therefore need to examine the venom peptide profile from
sea anemone species from other superfamilies. Consequently, there is every reason for optimism
that the remaining 96% of species, particularly those distantly related to the superfamily Actinioidea,
will provide interesting new peptides, some of which will no doubt have therapeutic potential. Some of
the more venomous species, such as Telmatactis australiensis, Dofleinia armata and Triactis producta,
should be especially interesting in this context.

Table 1. Characterized toxin protein families identified in sea anemone species in the current
ToxProt database, and the number of proteins from each toxin protein family identified in each
of the sea anemone superfamilies. Act—Actinioidea; Edw—Edwardsioidea; Met—Metridioidea;
Acti—Actinernoidea.

Toxin Protein Family
Anemone Superfamily

Act Edw Met Acti

Actinoporin family, Sea anemone subfamily 25 0 5 0
Cnidaria small cysteine-rich protein (SCRiP) family 2 0 1 0
Peptidase M12A family 0 1 0 0
Phospholipase A2 family 3 0 1 0
Sea anemone 8 toxin family 5 0 0 0
Sea anemone short toxin (type III) family 8 0 0 0
Sea anemone sodium channel inhibitory toxin family 0 0 3 0
Sea anemone sodium channel inhibitory toxin family, Type I subfamily 52 0 0 0
Sea anemone sodium channel inhibitory toxin family, Type II subfamily 13 9 0 1
Sea anemone structural class 9a family 6 0 0 0
Sea anemone type 1 potassium channel toxin family, Type 1a subfamily 9 0 0 0
Sea anemone type 1 potassium channel toxin family, Type 1b subfamily 11 0 1 0
Sea anemone type 3 (BDS) potassium channel toxin family 32 0 0 0
Sea anemone type 5 potassium channel toxin family 1 1 1 0
Venom Kunitz-type family, Sea anemone type 2 potassium channel toxin
subfamily 26 0 0 0

Unknown 15 0 4 0

This article will focus mainly on ShK domains (which, in sea anemones, are members of the type 1
potassium channel toxin family, Type 1b subfamily, Table 1) because of their demonstrated therapeutic
potential and broad distribution in nature, as documented in the next section. However, several other
classes of peptide toxins from sea anemones have been investigated as therapeutic leads or
pharmacological tools. For example, the sodium channel toxins anthopleurin-A and -B showed
initial promise as positive inotropes for use in cardiovascular disease [25,26], although they and
their homologues from other anemones, for example ATX-I and -II and ShI [27,28], have also proven
to be valuable probes of site 3 on voltage-gated sodium channels [29], which mediates channel
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inactivation. APETx2, from Anthopleura elegantissima, inhibits the acid-sensing ion channel ASIC3,
which is a proton-gated Na+ channel that has been implicated in pain transduction associated with
acidosis in inflamed or ischemic tissues [30]. However, this peptide also inhibits NaV1.2 and NaV1.8
channels, and to a lesser extent NaV1.6 [31], as well as the human ether-a-go-go-related (hERG)
potassium channel (KV11.1) [32]. APETx1 was identified initially as a gating modifier of the hERG
channel [33], but is also promiscuous, inhibiting mammalian NaV1.2–NaV1.6 and NaV1.8 channels [31].
Recently, a new member of the APETx family, APETx4, was shown to have activity on a potential
anti-cancer target, the human ether-à-go-go channel (hEag1 or KV10.1), but this peptide also inhibits
other KV and NaV channels [34]. The demonstrated lack of target specificity for members of the APETx
family limits their application as pharmacological tools, although analogues with specific mutations
have the potential to overcome this limitation [31]. Peptides from the sea anemone Heteractis crispa
(APHC1, APHC2 and APHC3) are active on TRPV1 receptors [35,36].

The structures of APETx1, APETx2 and BDS-I (which acts on channels containing KV3 subunits,
including KV3.4 [37], but also modulates NaV channels [38]) are similar to those of the Na+-channel
toxins such as AP-A although quite distinct from those of the ShK/BgK family of toxins (see below).
As noted previously [5], sea anemones use common structural scaffolds to create blockers for distinct
targets (AP-A, APETx1 and APETx2 act on VGSC, hERG and ASIC channels, respectively), while also
using different scaffolds (all-β in APETx1 vs. all-α in ShK) to block similar channels (hERG and
KV1, respectively).

Recent proteomic analyses of the venoms of Stichodactyla haddoni [39] and Aulactinia japonicus
(designated Cnidopus japonicas in the title of the paper) [40] identified many new toxin families,
a number of them with novel cysteine frameworks. A similar analysis of the mucus of Heteractis magnifica
revealed the presence of hundreds of peptides [41]. No doubt some of these new peptide families
will prove to have useful pharmacological properties and may eventually become therapeutic leads.
The next section focuses on a peptide for which this clearly is the case.

4. Potassium Channel Blockers from Sea Anemones: Therapeutic Leads for the Treatment of
Autoimmune Diseases

The voltage-gated K+ channel KV1.3 is involved in the activation of a sub-set of T lymphocytes
known as effector memory T (TEM) cells as it regulates the membrane potential during activation by
allowing K+ efflux to counterbalance the influx of Ca2+ from intracellular stores and through CRAC
channels [42]. Blocking KV1.3 channels in TEM cells blocks their activation and proliferation. As TEM

cells are key mediators of autoimmune diseases, KV1.3 blockers are attractive leads as a new class of
therapeutic for these conditions [43,44].

Several peptide toxins from scorpions were found to be potent blockers of KV1.3 [45,46], but did
not progress to clinical trials for a variety of reasons, including the lack of desired specificity for this
channel over related KV1 channels [47]. Around the same time, a novel peptide, ShK, was isolated
from the Caribbean sun anemone, Stichodactyla helianthus [48]. This 35-residue peptide was found to
be a potent competitive inhibitor of α-dendrotoxin binding to rat brain synaptosomes and blocked
K+ current in dorsal root ganglion cells. Its amino acid sequence [48] (Figure 4), disulfide bonding
pattern [49] and solution structure [50] were all very different from the scorpion toxins, although Lys22
and Tyr23 in ShK, the two key residues for KV1.3 blockade, are spatially conserved in an arrangement
common to KV-channel blocking peptides from widely different species [51]. ShK has a very high
affinity (Ki ~10 pM) for KV1.3 channels but also displays high pM affinity for KV1.1, KV1.4 and KV1.6,
which are present in brain and cardiac tissues [52,53]. In order for this promising peptide toxin to
progress to clinical trials, therefore, more selective analogues had to be developed [54]. This eventually
led to ShK-186, which had a 100-fold improvement in selectivity for KV1.3 over KV1.1, KV1.4 and
KV1.6 [55].

ShK and its analogues had already shown efficacy in animal models of human autoimmune
diseases such as multiple sclerosis and rheumatoid arthritis [56,57], and preclinical testing of ShK-186
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yielded favourable results in both rats and monkeys [58]. Unexpectedly, ShK-186 was found to have a
long half-life at the site of sub-cutaneous injection, resulting in sustained high pM levels in plasma and
a prolonged therapeutic efficacy [58]. ShK-186, which is now known as dalazatide, completed Phase
1a and 1b trials in 2016. The Phase 1b trial in mild-to-moderate plaque psoriasis patients showed that
dalazatide was well tolerated and reduced psoriatic skin lesions [59]. It is expected to begin Phase 2a
trails in 2018. Dalazatide is being advanced as a treatment for various autoimmune diseases, including
inclusion body myositis, lupus, ANCA vasculitis, multiple sclerosis, psoriasis, psoriatic arthritis,
rheumatoid arthritis, type 1 diabetes and inflammatory bowel diseases [44,45]. New analogues of ShK
with good selectivity for KV1.3 over other KV1 channels have also been developed [60–64].Toxins 2018, 10, 36  6 of 14 
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Danio rerio and pufferfish Takifugu rubripes; Caenorhabditis, C. elegans and C. brigssae; Rhabditida, 
rhabditid nematodes other than Caenorhabditis sp.; Ophidia, snakes; Xenopus, Xenopus tropicalis; 
Aves, chicken Gallus gallus; Mammalia. Many of these proteins (~70) were metallopeptidases, 
whereas others were prolyl-4-hydroxylases, tyrosinases, peroxidases, oxidoreductases, or proteins 
containing epidermal growth factor-like domains, thrombospondin-type repeats, or trypsin-like 
serine protease domains [71]. 

The only human protein containing a ShKT domain in the SMART data base was matrix 
metalloprotease 23 (MMP23) [72,73]. A second human protein with an ShKT domain, microfibril 
associated protein MFAP2, was not mentioned in the SMART database at that time [74]. The cysteine-

Figure 4. (A) Amino acid sequences of ShK (UniProt entry P29187) [48], BgK (P29186) [65],
AsK (Q9TWG1), also known as kaliseptine [66], and HmK (O16846) [67] with the three disulfide
bonds indicated. (B) Structures of ShK (pdb id 1ROO) [50] and BgK (pdb id 1BGK) [51] are shown,
with backbones in lightblue and disulfides in orange. The side chains of the Lys and Tyr that constitute
the functional dyad [51] in each peptide are shown in blue and magenta, respectively. This dyad
is displayed on a helical scaffold in ShK but a β-sheet in the scorpion toxins charybdotoxin and
margatoxin (not shown).

The progress of ShK analogues towards the clinic has stimulated interest in this class of peptides,
driven partly by the potential for finding additional members of this family of peptides in sea
anemones that might be selective for KV1.3 or the many other KV channels that are potential therapeutic
targets [45]. As a result, it has become apparent that the ‘ShK fold’, typified by ShK [50] and BgK [51],
is widely distributed not only in sea anemones and other cnidarians [68–70], but also throughout
nature. The next section highlights this broad distribution.

5. ShK: A Privileged Scaffold in Nature?

In 2010, the Simple Modular Architecture Research Tool (SMART) database (http://smart.
embl-heidelberg.de/) predicted the existence of a large superfamily of proteins that contain
domains resembling ShK or BgK, which were referred to collectively as ShKT domains [71].
These domains were distributed across nearly 400 proteins from both the plant and animal kingdoms,

http://smart.embl-heidelberg.de/
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including Viridiplantae, Arabidopsis thaliana, Oryza sativa, and green alga Ostreococcus sp.; Protozoa,
Cryptosporidium parvum; Cnidaria, sea anemones, hydra, and jellyfish; Echinodermata, sea urchin;
Mollusca, bivalve clams and oysters; Ciona, sea squirt Ciona intestinalis; Actinopterygii, zebrafish
Danio rerio and pufferfish Takifugu rubripes; Caenorhabditis, C. elegans and C. brigssae; Rhabditida,
rhabditid nematodes other than Caenorhabditis sp.; Ophidia, snakes; Xenopus, Xenopus tropicalis; Aves,
chicken Gallus gallus; Mammalia. Many of these proteins (~70) were metallopeptidases, whereas
others were prolyl-4-hydroxylases, tyrosinases, peroxidases, oxidoreductases, or proteins containing
epidermal growth factor-like domains, thrombospondin-type repeats, or trypsin-like serine protease
domains [71].

The only human protein containing a ShKT domain in the SMART data base was matrix
metalloprotease 23 (MMP23) [72,73]. A second human protein with an ShKT domain, microfibril
associated protein MFAP2, was not mentioned in the SMART database at that time [74].
The cysteine-rich secretory proteins (Crisp), which are found predominantly in the mammalian male
reproductive tract as well as in the venom of reptiles, are two-domain proteins, one domain of which
is an ShKT domain. For example, murine Tpx-1 (testis specific protein-1) contains two subdomains,
one of which has a similar fold to BgK and ShK [75]. The Tpx-1 Crisp domain inhibited the cardiac
ryanodine receptor (RyR2) and activated the skeletal RyR1.

By 2014, the SMART database identified 668 proteins that contained 1315 ShKT domains.
The largest family was found in worms, with 276 of those 668 proteins coming from
Caenorhabditis elegans, C. briggsae, Brugia malayi, B. pahangi, Ancylostoma ceylanicum, Schistosoma mansoni
and Toxocara canis [76]. This prompted an investigation of whether worm ShKTs share structural
similarity to ShK, block KV1.3, and exhibit immunomodulatory activity. Based on phylogenetic analysis,
two worm peptides were selected for study: AcK1, a 51-residue peptide expressed in the anterior
secretory glands of both the dog-infecting hookworm Ancylostoma caninum and the human-infecting
hookworm Ancylostoma ceylanicum, and BmK1, the C-terminal domain of a metalloprotease from the
filarial worm Brugia malayi. These peptides proved to have helical structures closely resembling that of
ShK [76]. They also blocked KV1.3 channels, selectively suppressed the function of TEM lymphocytes,
and inhibited delayed-type hypersensitivity. It was suggested that ShK-like worm peptides may be
among the active principles that contribute to the well-known protective effect of parasitic worms in
autoimmune diseases [76], although further work is required to confirm this hypothesis.

Recently, we have investigated several new ShK-like peptides identified in anemone
transcriptomes. One such peptide is AsK132958, from Anemonia sulcata, which had an ShKT
cysteine framework but was six amino acid residues shorter [77]. The disulfide connectivities and
structural scaffold were very similar to those of ShK, although the structure was more constrained.
However, AsK132958 showed no activity against grass shrimp, Artemia nauplii, or any of the KV

channels tested, owing partly to the absence of a functional Lys-Tyr dyad. It appears that Lys19,
which would be expected to occupy the pore of the channel, was not sufficiently accessible for
binding, and therefore that AsK132958 must have a distinct functional role that does not involve KV

channels. The evolutionary relationship between AsK132958 and other ShK-like amino acid sequences
is unclear. AsK132958 may represent the shortest peptide sequence that can support a stable ShKT
fold, although this remains to be confirmed.

Another peptide, identified in the transcriptome of an Oulactis species, was similar to BgK in
terms of amino acid sequence and three-dimensional structure, and furthermore contained a Lys-Tyr
dyad, but was inactive against KV channels tested to date (our unpublished results). These findings
highlight the likely diversity of functions supported by this versatile scaffold.

At the time of writing, the SMART database includes 3345 ShKT domains spread across
1797 proteins, a huge increase over the numbers documented in 2010 [71] and 2014 [76]. These domains
are found mainly in animals and plants, but also occur in fungi, viruses and undefined kingdoms.
With the dramatic expansion in the number of genomes and transcriptomes spanning all kingdoms,



Toxins 2018, 10, 36 8 of 15

this number is set to increase rapidly. The next section discusses these developments in more detail
and outlines how we might begin to assess the functions of these domains.

6. New Methods for the Large-Scale Detection of Known and Novel Peptide Toxins

The large-scale identification of new peptide toxins, as well as the evolutionary analysis of
known peptide toxins, in sea anemones has been limited by a lack of genomic resources for many
species. This is changing rapidly, however, as transcriptome and genome assemblies are being
generated using next generation sequencing platforms for a number of sea anemone species [39,78–80].
Currently, the genome sequences of Nematostella vectensis [81] and Exaiptasia pallida are publicly
available, as well as transcriptomes of ~30 anemone species from a range of anemone superfamilies.
These genomic resources have enabled the in-depth characterization of gene families in sea anemones,
including immune gene families [82], and some detailed investigations of select toxin gene families
(e.g., actinoporins, which are cytolytic proteins [83]). These genomic resources can be used to study
the number, distribution and evolution of a range of candidate toxin gene families in anemones.
For example, we were able to identify 71 and 90 non-redundant open reading frames with ShKT
domains from previously-published, high-quality transcriptome assemblies for Calliactis polypus and
Actinia tenebrosa [82], respectively (our unpublished results). From these peptide sequences, we were
able to identify canonical ShK (Type I KTxs) toxin peptides with a single domain, as well as a many
proteins with multiple ShKT domains, and in some instances ShKT domains with other toxin domains.
Proteins with multiple ShKT domains have been identified previously in other anemone species,
including Megalactis griffithsi and Anemonia sulcata [79]. Further information about the expression
of toxin gene families can be derived by application of state-of-the-art transcriptomic based gene
expression studies across nematocyst-rich tissues in anemone species.

Gene expression analysis across morphological structures in sea anemones has shown that many
toxin genes are differentially expressed across tissues, presumably resulting in the production of
distinct venom combinations in different structures [79]. In fact, specific genes from toxin gene families
are expressed precisely in a region-specific pattern, with different gene copies expressed in specific
structures, such as tentacles, acrorhagi or mesenteric filaments, as exemplified for the venom Kunitz
peptides in Figure 5. This highlights that different genes from known toxin gene families show strong
regionalization in their expression patterns across nematocyst-rich tissues in a pattern consistent with
changes in nematocyst morphology and density (our unpublished results). Testing whether different
nematocyte populations are contributing directly to the changes in toxin gene expression across
tissues will require an examination of single-cell gene expression changes in nematocyte populations
isolated from specific tissues. The analysis of gene expression profiles from single cell populations
has improved greatly over recent years [84] and has led to a precise understanding of the function
of individual cell types in a range of species [85]. Determining single-cell venom gene expression
patterns in nematocyte populations will provide unprecedented insight into the evolution of venom
composition and how functionally different venoms can be produced by a single animal. While this
information is useful in understanding the evolution and composition of venoms, the identification of
peptide toxins with new modes of action will require proteomic analyses of the venom.
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transcripts in purple (our unpublished data).

High-throughput proteomic analyses of sea anemone venoms have been greatly accelerated
through the use of mass spectrometry [86] coupled with the availability of complete genome and
transcriptome sequences for sea anemones species. MALDI imaging [87,88] also offers the prospect
of mapping the tissue distributions of numerous peptides, and thus providing a clue to their
possible function in the anemone. Recent proteomic research has assayed venom composition in
the nematocytes of a few anemone species [69,86], revealing a high frequency of novel peptides
and proteins in nematocysts, and in some cases detecting peptides that had not been identified
in earlier proteomics studies [89–91]. Many of these represent novel candidate toxins and show
little overlap among species, highlighting the potential for proteogenomic approaches to identify
previously uncharacterized toxins. Another recent study used a combination of proteomic and
transcriptomic techniques to analyse the protein composition of milked venom from the sea anemone
Stichodactyla haddoni [39]; the milked venom contained 23 putative toxin families, 12 of which showed
no identity to any known peptide or protein in current databases. The identification of these
12 cysteine-rich, but previously unknown, putative toxins further emphasizes that a proteogenomic
approach can greatly accelerate the discovery of novel proteins with potential therapeutic applications.

Continual improvements in the efficiency of peptide synthesis and recombinant expression will
facilitate the production of such peptides for biological evaluation, although the challenge will remain
to define the native disulfide connectivities for novel sequences containing multiple cysteine residues.
New peptides need to be assessed against a range of targets, and in multiple functional assays, in order
to identify those with the potential to be new therapeutic leads or at least pharmacological tools.
For the most part, these assays will focus on mammalian targets, leaving open the intriguing but
often neglected question of what function(s) these peptides have in the anemones in which they are
identified. As noteFigured above, MALDI imaging studies of peptide distribution in the anemone
should assist in identifying their endogenous functions.
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It is to be hoped that new bioinformatic approaches, such as weighted gene co-expression network
analysis, may provide preliminary information on the function of candidate peptides and proteins.
Weighted gene co-expression analysis categorizes genes into groups whose expression levels are highly
correlated across samples [92]. This approach has been used to identify gene clusters with functions in
development and lipid metabolism, among others [93,94]. In sea anemones, identifying gene clusters
with correlated expression levels that contain known toxins may offer a way to detect novel toxin
genes with similar or novel functions.

7. Conclusions

Sea anemones remain relatively under-explored as a source of peptide toxins, although that is
beginning to change as the transcriptomes and genomes of several species from different geographic
regions and different habitats are being investigated. Proteomics studies on sea anemones [39] are more
challenging than for other venomous species, where the venom apparatus can be readily milked or
dissected, but ongoing enhancements in the resolution and sensitivity of liquid chromatography-mass
spectrometry methods will enable characterization of the complete peptide repertoires of even limited
quantities of venom when it can be obtained.

The progress of an analogue of ShK through clinical trials for autoimmune diseases emphasizes
the promise of this scaffold and, more broadly, of sea anemone peptides. The abundance of ShKT
domains in nature and their distribution across different phyla pose questions about the diversity
of functions supported by this scaffold. Defining the relationships among sequence, structure and
function remains one of the exciting challenges of ongoing studies.
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