
nutrients

Article

Dietary Protein Consumption and the Risk of Type 2
Diabetes: A Systematic Review and Meta-Analysis of
Cohort Studies

Shuang Tian 1,2, Qian Xu 2, Ruyue Jiang 2, Tianshu Han 2, Changhao Sun 2,* and Lixin Na 2,*
1 Nutrition Department, Longgang Hospital of Traditional Chinese Medicine, Shenzhen 518000, Guangdong,

China; 18504541023@163.com
2 National Discipline, Department of Nutrition and Food Hygiene,

School of Public Health Harbin Medical University, Harbin 150081, China; XUQIAN9188@163.com (Q.X.);
jruyue@163.com (R.J.); snowcalendar@126.com (T.H.)

* Correspondence: changhaosun2002@163.com (C.S.); nalixin2003@163.com (L.N.)

Received: 28 June 2017; Accepted: 29 August 2017; Published: 6 September 2017

Abstract: Recently, some studies have focused on the relationship between dietary protein intake and
the risk of type 2 diabetes mellitus (T2DM), but the conclusions have been inconsistent. Therefore,
in this paper, a systematic review and meta-analysis of cohort studies regarding protein consumption
and T2DM risk are conducted in order to present the association between them. We searched the
PubMed and Embase databases for cohort studies on dietary protein, high-protein food consumption
and risk of T2DM, up to July 2017. A summary of relative risks was compiled by the fixed-effect
model or random-effect model. Eleven cohort studies regarded protein intake and T2DM (52,637 cases
among 483,174 participants). The summary RR and 95% CI (Confidence Interval) of T2DM was 1.12
(1.08–1.17) in all subjects, 1.13 (1.04–1.24) in men, and 1.09 (1.04–1.15) in women for total protein; 1.14
(1.09–1.19) in all subjects, 1.23 (1.09–1.38) in men, and 1.11 (1.03–1.19) in women for animal protein;
0.96 (0.88–1.06) in all subjects, 0.98 (0.72–1.34) in men, and 0.92 (0.86–0.98) in women for plant protein.
We also compared the association between different food sources of protein and the risk of T2DM.
The summary RR (Relative Risk) and 95% CI of T2DM was 1.22 (1.09–1.36) for red meat, 1.39 (1.29–1.49)
for processed meat, 1.03 (0.89–1.17) for fish, 1.03 (0.64–1.67) for egg, 0.89 (0.84–0.94) for total dairy
products, 0.87 (0.78–0.96) for whole milk, 0.83 (0.70–0.98) for yogurt, 0.74 (0.59–0.93) in women for soy.
This meta-analysis shows that total protein and animal protein could increase the risk of T2DM in both
males and females, and plant protein decreases the risk of T2DM in females. The association between
high-protein food types and T2DM are also different. Red meat and processed meat are risk factors of
T2DM, and soy, dairy and dairy products are the protective factors of T2DM. Egg and fish intake are
not associated with a decreased risk of T2DM. This research indicates the type of dietary protein and
food sources of protein that should be considered for the prevention of diabetes.
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1. Introduction

Type 2 diabetes is rapidly increasing in the world. Ninety percent of patients with diabetes
have type 2 diabetes [1]. Type 2 diabetes patients are at increased risk of cardiovascular disease,
neuropathies, nephropathies, gangrene, and leg ulcers [2]. From the date of diagnosis, patients with
T2DM have to face at least eight years of economic burden [3].

Evidence suggests that dietary factors may influence the risk of T2DM [4]. Many previous studies
have focused on dietary macronutrient intake associated with diabetes risk [5,6], but the main content
of those studies was carbohydrates and fats. Recently, some studies focused on the relationship
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between dietary protein intake and the risk of T2DM. High-protein diets have shown beneficial
effects on glucose homeostasis in some short–term trials [7,8]. Subsequent longitudinal studies have
evaluated the associations between dietary protein intake and risk of T2DM as well as the type of
dietary protein and risk of T2DM.A study focusing on the Mediterranean islands showed that animal
protein consumption was associated with a higher prevalence of diabetes among the elderly, and a
recommended range of protein from plant sources appears was seen to be considerably protective [9].
Some other publications have also reported an increased risk of T2DM with a high intake of total
protein [10–14] and animal protein [10,13–15], and a decreased risk of T2DM with a high intake of
plant protein [14,15]. However, there have been no reports that how an association between T2DM and
total protein [15–18], animal protein [16–18] and plant protein intake or a high risk of T2DM with a
high intake of plant protein [10,13].The association between dietary protein and T2DM is still debated.

In the present study, we conducted a systematic review and meta-analysis of cohort studies to
clarify the association of protein consumption with risk of T2DM. In order to provide a better dietary
instruction for the lay public, we also conducted a systematic review and meta-analysis of cohort
studies to study the association between different kinds of high-protein food and the risk of T2DM.

2. Materials and Methods

2.1. Search Strategy

We searched relevant studies from the Embase and PubMed electronic databases from their
starting dates to July 2017.

Protein: search items included: ‘dietary protein’ or ‘protein intake’ or ‘plant protein’ or ‘animal
protein’ or ‘food’ and ‘diabetes’ or ‘diabetes mellitus’ or ‘T2DM’ and ‘population’ or ‘human’.

Meat: search items included: ‘red meat’ or ‘processed meat’ or ‘food’ and ‘diabetes’ or
‘diabetes mellitus’ or ‘T2DM’ and ‘population’ or ‘human’.

Fish: search items included: ‘fish’ or ‘seafood’ or ‘food’ and ‘diabetes’ or ‘diabetes mellitus’ or
‘T2DM’ and ‘population’ or ‘human’.

Egg: search items included: ‘egg’ or ‘food’ and ‘diabetes’ or ‘diabetes mellitus’ or ‘T2DM’ and
‘population’ or ‘human’.

Dairy: search items included: ‘dairy’ or ‘milk’ or ‘dairy product’ or ‘yogurt’ or ‘food’ and ‘diabetes’
or ‘diabetes mellitus’ or ‘T2DM’ and ‘population’ or ‘human’.

Soy: search items included: ‘soy’ or ‘legume’ or ‘soy product’ or ‘food’ and ‘diabetes’ or ‘diabetes
mellitus’ or ‘T2DM’ and ‘population’ or ‘human’.

Eligible studies are selected by further manual scanning of all included studies and relevant
reference lists.

2.2. Study Selection

All included studies should match the following criteria:(1) the study must have a cohort design;
(2) the endpoint of the study was the incidence or mortality of the T2DM; (3) the study had to report
risk ratios and the results had to be within a 95% CI in the paper (if this not clear, we requested this
information from the authors); and (4) the study had to show the participants’ intake of dietary protein
or other high-protein foods such as meat, fish, egg, dairy, soy.

2.3. Data Extraction

We extracted the following information from each publication we selected: first the author of the
publication, publication year, the country where the study was conducted, the number of the samples
and cases, T2DM diagnosis and criteria, the year the study began and finished, the years of follow-up,
the methods of diet exposure assessment, the RRs and 95% CI, and the adjustment factors (Tables S1–S12).
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2.4. Statistical Methods

We used effect models to calculate the summary RRs and 95% confidence to compare the highest
dietary protein consumption with the lowest dietary protein consumption [19]. Two-sided p < 0.05 was
considered statistically significant. The black square in the forest plots represents the weight contribution
of every study. In order to evaluate the extent of variability, the I2-test statistic was adapted to estimate
the heterogeneity [20].When I2 < 50% and p > 0.05, there was no heterogeneity; we used the fixed-effect
model. The random-effect model was selected when I2 > 50% or p < 0.05. We used the Egger linear
regression test and Begg rank correlation test to search for publication bias. When p > 0.05, there was no
publication bias. Comprehensive Meta-Analysis V2 was employed for data analysis.

3. Results

3.1. Dietary Protein Intake and Risk of T2DM

We included 11 cohort studies in the analysis (Figure 1, Tables S1 and S2). Six of the studies were
from the Unite States, three from Europe, one from Asia, one from Melboume, one from Finland.
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Total Protein Eleven cohort studies [10–18] researched the association between total protein
intake and the risk of T2DM, included 52,637 cases among 483,174 participants. The summary RR and
95% CI for high vs. low values of all studies was 1.12 (1.08–1.17) (Figure 2a), (I2 = 18.72, p = 0.25) in
all subjects, 1.13 (1.04–1.24) (Figure 2b) (I2 = 11.78, p = 0.34) in men, and 1.09(1.04–1.15) (Figure 2c)
(I2 = 43.39, p = 0.10) in women.
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Figure 2. Total protein and type 2 diabetes relative risks(RRs) for (a) the highest vs. the lowest intake
in all subjects and (b) the highest vs. the lowest intake in men (c) the highest vs. the lowest intake in
women. The RR of each study is represented by a square, 95% CI are represented by the horizontal
lines, and the diamond represents the estimate and its 95% CI.

Animal Protein Nine cohort studies [10,13–18] researched the association between animal protein
intake and the risk of T2DM. This included 31,557 cases among 380,689 participants. The summary RR
and 95% CI for high vs. low values of all studies was 1.14 (1.09–1.19) (Figure 3a), (I2 = 43.39, p = 0.30)
in all subjects, 1.23 (1.09–1.38) (Figure 3b), (I2 = 0.00, p = 0.44) in men, and 1.11 (1.03–1.19) (Figure 3c),
(I2 = 32.04, p = 0.21) in women.

Plant Protein Nine cohort studies [10,13–18] researched the association between plant protein
and the risk of T2DM, included 31,817 cases among 381,879 participants. The summary RR and 95% CI
for high vs. low values of all studies was 0.96 (0.88–1.06) (Figure 4a), (I2 = 59.01, p = 0.07) in all subjects.
We used a sensitivity analysis to exclude the most influential studies: the summary RR and 95% CI
ranged from 0.92 (0.87–0.98) when the European men’s study [10] was excluded to 0.98 (0.87–1.10)
when the USA men’s study [14] was excluded. The heterogeneity was partly because of the European
men’s study [10] and when we excluded this study, there was moderate heterogeneity (I2 = 14.85,
p = 0.31). The summary RR and 95% CI was 0.98 (0.72–1.34) (Figure 4b) (I2 = 78.57, p = 0.003) in men.
A sensitivity analysis was used to exclude the most influential studies: the summary RR and 95% CI
ranged from 0.88 (0.76–1.02) when the European study [10] was excluded to 1.07 (0.75–1.52) when the
Finnish men’s study [18] was excluded. The heterogeneity in men still existed after sensitivity analysis,
partly because there were only four cohort studies about the association between plant protein intake
and the risk of T2DM in men. The summary RR and 95% CI was 0.92 (0.86–0.97) (Figure 4c) (I2 = 45.72,
p = 0.12) in women.
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3.2. High-Protein Food and Risk of T2DM

We also conducted a systematic review and meta-analysis of cohort studies to clarify the
association with high dietary protein food consumption and the risk of T2DM.

Red Meat Thirteen cohort studies [6,18,21–31] researched the association between red meat
consumption and the risk of T2DM (Figure 1, Tables S3 and S4).The summary RR and 95% CI for
high vs. low red meat consumption was 1.22 (1.09–1.36) (Figure 5a) (I2 = 51.11, p = 0.01). We used
a sensitivity analysis to exclude the most influential studies: the summary RR and 95% CI ranged
from1.20 (1.07–1.35) when the U.S. Study [24] was excluded to 1.26 (1.15–1.38) when the Chinese
study [25] was excluded. The heterogeneity was partly because of the Chinese study [25], and when
we excluded this study, there was moderate heterogeneity (I2 = 27.68, p = 0.17).
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Processed Meat Eleven cohort studies [6,18,21–26,29–31] researched the association between
processed meat consumption and the risk of T2DM (Figure 1, Tables S3 and S4), the summary RR and
95% CI for high vs. low of processed meat consumption was 1.39 (1.29–1.49) (Figure 5b) (I2 = 49.32,
p = 0.03).

Fish Nine cohort studies [18,29,32–38] researched the association between fish consumption and
the risk of T2DM (Figure 1, Tables S5 and S6), the summary RR and 95% CI for high vs. low values
of fish consumption was 1.03 (0.89–1.17) (Figure 6) (I2 = 79.71, p < 0.001). We used a sensitivity
analysis to exclude the most influential studies: the summary RR ranged from0.99 (0.89–1.10) when
the American study [33] was excluded to 1.50 (0.92–1.20) when the Japanese study [35] was excluded.
The heterogeneity was partly because of the Japanese study [35], and when we excluded this study,
there was moderate heterogeneity (I2 = 79.41, p < 0.001).
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Egg Five cohort studies [18,39–42] researched the association between egg consumption and the
risk of T2DM (Figure 1, Tables S7 and S8), the summary RR and 95% CI for high vs. low of egg
consumption was 1.03 (0.64–1.67) (Figure 7) (I2 = 91.12, p < 0.001). We used a sensitivity analysis
to exclude the most influential studies: the summary RR ranged from 0.97 (0.49–1.88) when the
Lithuanian study [39] was excluded to 1.57 (1.30–1.89) when the Finnish study [42] was excluded.
The heterogeneity was partly because of the Finnish study [42], and when we excluded this study,
there was moderate heterogeneity (I2 = 69.43, p = 0.06).
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TotalDairyProduct Consumption Eleven cohort studies [18,43–52] researched the association
between total dairy product consumption and the risk of T2DM (Figure 1, Tables S9 and S10),
the summary RR and 95% CI for high vs. low total dairy product consumption was 0.89 (0.84–0.94)
(Figure 8a) (I2 = 48.81, p = 0.03).
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Whole Milk Seven cohort studies [18,43–48] researched the association between whole milk
consumption and risk of T2DM (Figure 1, Tables S9 and S10), the summary RR and 95% CI for high vs.
low of fat dairy consumption was 0.87 (0.78–0.96) (Figure 8b) (I2 = 52.20, p = 0.01). We used a sensitivity
analysis to exclude the most influential studies: the summary RR ranged from 0.85 (0.76–0.94) when
the American study [46] was excluded to 0.89 (0.80–0.99) when the Japanese study [44] was excluded.
The heterogeneity was partly because of the American study [46], and when we excluded this study,
there was moderate heterogeneity (I2 = 46.87, p = 0.04).

Yogurt Seven cohort studies [18,43,44,47–49] researched the association between yogurt
consumption and the risk of T2DM (Figure 1, Tables S9 and S10).The summary RR for high vs. low
yogurt consumption was 0.83 (0.70–0.98) (Figure 8c) (I2 = 62.06, p = 0.01). We used a sensitivity analysis
to exclude the most influential studies: the summary RR ranged from 0.81 (0.67–0.97) when the Japanese
study [49] was excluded to 0.88 (0.76–1.00) when USA study [48] was excluded. The heterogeneity
was partly because of the Japanese study [49], and when we excluded this study there was moderate
heterogeneity (I2 = 40.61, p = 0.11).
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Soy Eight cohort studies [52–57] researched the association between legume consumption and
the risk of T2DM (Figure 1, Tables S11 and S12), the summary RR for high vs. low soy consumption
was 0.87 (0.74–1.01) (Figure 9a) (I2 = 86.57, p < 0.01). We used a sensitivity analysis to exclude the
most influential studies: the summary RR ranged from0.82 (0.68–0.98) when the American study [56]
was excluded to 0.93 (0.81–1.06) when the Chinese study [53] was excluded. The heterogeneity was
partly because of the American study [56], and when we excluded this study, there was moderate
heterogeneity (I2 = 69.34, p < 0.01). However, the summary RR for high vs. low soy was 0.74 (0.59–0.93)
(Figure 9b), (I2 = 82.09, p < 0.001) in women. We used a sensitivity analysis to exclude the most
influential studies: the summary RR ranged from0.66 (0.49–0.90) when the American study [57]
was excluded to 0.81 (0.65–1.00) when the Chinese study [54] was excluded. The heterogeneity was
partly because of the American study [57], and when we excluded this study, there was moderate
heterogeneity (I2 = 0.00, p = 0.67).
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3.3. Publication Bias

No significant publication bias was detected in the Begg-Mazumdar’s test and Egger’s test of our
meta-analyses, provided in Table 1.

Table 1. Public bias and meta-analysis.

Proteins and Foods Sources Begg-Mazumdar’s Test Egger’s Test

Total protein (all) 0.74 0.38
Total protein (men) 0.46 0.74

Total protein (women) 0.55 0.33
Animal protein (all) 0.64 0.07

Animal protein (men) 0.73 0.57
Animal protein (women) 0.22 0.10

Plant protein (all) 0.76 0.50
Plant protein (men) 0.73 0.90

Plant protein (women) 0.81 0.91
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Table 1. Cont.

Proteins and Foods Sources Begg-Mazumdar’s Test Egger’s Test

Red meat 0.30 0.33
Processed meat 0.88 0.99

Fish 0.58 0.43
Total dairy product 0.45 0.43

Whole milk 0.67 0.35
Yogurt 0.92 0.99

Egg 0.23 0.50
Soy 0.46 0.13

4. Discussion

According to the results of this meta-analysis, the intake of total protein and animal protein was
associated with a high risk of T2DM both in males and females. The intake of plant protein was
associated with low risk of T2DM in females, but not in males. In high animal protein food, red meat,
and processed meat were associated with a high risk of T2DM in all subjects, while total dairy products,
low-fat dairy, and yogurt were associated with a low risk of T2DM in all subjects, and egg and fish
were not associated with a decreased risk of T2DM. In high plant protein food, soy was associated
with a low risk of T2DM in females.

Higher intake of dietary protein is often associated with lifestyles, including physical activity,
body weight, smoking, drinking. For example, we already know that overweight and obesity are
risk factors for T2DM, and a meta-analysis showed that each unit increase of BMI would increase
the risk for T2DM by approximately 20% [58]. In our meta-analysis, most studies were adjusted for
known influencing factors, including age, BMI (Body Mass Index), smoking, physical activity, alcohol
consumption, energy intake, family history of T2DM and menopausal status (among women).

The statistical power of the results could be significantly increased as the number of studies
and the sample size increase, but it could also lead to heterogeneity. Some heterogeneity was due to
different participants’ characteristics and regions, and different dietary assessment methods. Thus,
heterogeneity is usually used to explain the study characteristics and is difficult to interpret. In our
study, the heterogeneities of total protein and animal protein were in the acceptable range, but the
heterogeneity of plant protein was outside of the range. We found that the European study [10]
contributed to the heterogeneity. When this study was excluded, the heterogeneities of both the
overall and subgroup analyses were much lower. The reason that the European study [10] had
inconsistent results compared with other studies was not clear, but it could partly be due to the
participants in this study having a lower plant protein intake than other studies [13–18]. For red meat
and processed meat, we found that the Chinese study [25] contributed to the heterogeneity. When
this study is excluded, the heterogeneities were much lower. The reason that the Chinese study [25]
had inconsistent results may be due to the participants in this study having a lower meat intake than
other participants [6,18,21–24,26–31]. For fish, we found that the Japanese study [35] contributed to
the heterogeneity, but the heterogeneity was not moderate when it was excluded, which means the
association between fish and T2DM needs further refinement. For egg, we found that the Finnish
study [42] contributed to the heterogeneity. When this study is excluded, the heterogeneity was
much lower. The reason why the Finnish study [42] had inconsistent results compared with other
studies was not clear, but it could partly be due to the participants in this study being older than
the other studies [18,39–41]. For whole milk, we found that the American study [46] contributed to
the heterogeneity, and the heterogeneity was moderate when it was excluded. The reason why the
American study [46] had heterogeneity may be due to the milk intake of black women in America being
different from the participants of other studies’ [18,43–45,47,48]. For yogurt, the Japanese study [49]
contributed to the heterogeneity. The reason why the Japanese study [49] had inconsistent results was
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not clear, but it could partly be due to the female participants in this study being older than other
studies [18,43,44,47,48].

As meta-analysis is based on published studies, the publication bias affect is inevitable. It is
particularly important to evaluate publication bias. In our meta-analysis, we used the Egger linear
regression test and Begg rank correlation test to determine publication bias, and we found that there
was no publication bias in our study.

Dietary protein and amino acids are involved in the modulations of insulin sensitivity and
glucose metabolism. However, the results from human studies were still inconsistent. Some studies
showed that high intake of dietary protein had negative effects on glucose homeostasis by facilitating
insulin resistance and increasing gluconeogenesis [7,59,60]. Amino acid signaling may facilitate
insulin resistance, by activation of the mammalian target of rapamycin (mTOR), a nutrient sensor that
operates a detrimental feedback loop toward insulin receptor substrate 1 signaling [61–64]. Moreover,
amino acids may also inhibit glucose uptake through phosphorylation of downstream factors of
the insulin signaling cascade by the translation initiation factor serine-kinase-6-1 [63,65]. On the
other hand, in vivo and in vitro studies also demonstrated that amino acids play a beneficial role
in glucose homeostasis by modulating insulin action on hepatic glucose production and muscle
glucose transport, secretion of glucagon and insulin, as well as various tissues gene and protein
expression [64,66]. One of the possible mechanisms that might explain this was that higher protein
reduced the amount of carbohydrate intake under isoenergy conditions and thus a smaller amount
of glucose was absorbed after ingestion of the meals, with the consequence of a reduced store of
glycogen and, thus, a decrease in glycogenolysis rate [67,68]. The other possible causal mechanism
was amino acids stimulating the insulin secretion to intervene in the glucose metabolism and serve
as substrates for gluconeogenesis; thus, increased gluconeogenesis could stimulate insulin secretion,
which might prevent hyperglycemia [69].Additionally, some scientists think that different qualities
rather than quantities of proteins play a more important role in insulin resistance [69]. Our study
supported the hypothesis that animal proteins caused a high risk of T2DM in males and females,
and plant proteins were protection factors of T2DM in females. We can find some support for this from
the literature. The abundance in certain amino acids are different between animal proteins and plant
proteins. This may contribute to the different effects between them on the risk of T2DM. Typically, plant
protein contains lower levels of the branched chain amino acids leucine, isoleucine and valine and of
the sulfur amino acid methionine as compared with animal proteins [70]. Branched chain amino acids
and higher methionine intake have been associated with insulin resistance and type 2 diabetes [71,72].
In addition, dietary glycine is also mainly consumed from animal-based foods and some cohort studies
have shown that glycine was positively associated with T2DM, and hypertension [72,73]. On the other
hand, dietary glutamic acid, an amino acid that is mainly consumed from plant protein was found to be
inversely associated with risks of hypertension and arterial stiffness [73,74]. So far, three intervention
studies have compared the effects of animal protein with plant protein meals on glycaemic variables in
people with T2DM, but they were obtained from three different results [75–77]. This should be further
investigated in future studies.

From the current literature available, the inconsistency in association between plant protein and
T2DM was probably due to gender difference. The negative association between plant protein or
soy and T2DM was observed mainly in women, while most of the studies in men found null results.
Therefore, results from all subjects without considering gender difference were different and the
proportion of women in the study may influence the results. However, the exact mechanism is unclear.

In order to further refine and compare the association between different food sources of protein
and T2DM, and facilitate dietary guidance, we have analyzed the relationship between different
high-protein food and the risk of type 2 diabetes. We found that different high-protein foods play
different roles in T2DM, even if they are all animal-based foods. Our results indicated that the intake of
red meat and processed meat are risk factors for T2DM. They are also positively associated with weight
gain [78], stroke [79], coronary heart disease [80] and mortality [81].First, the increased meat protein
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may increase iron load, which was associated with the increased risk of T2DM [82]. Moreover, the other
nutrients in red and processed meat, including nitrites and advanced glycation end products, were also
thought to mediate the association between meat intake and the risk of T2DM [83].The relationship
between egg consumption and T2DM was not clear. Some studies have shown that egg intake was
associated with a lower risk of T2DM [42].Some research showed that egg consumption was positively
associated with the risk of T2DM in our study [39,84,85], and this result was supported by the AHA
dietary guidelines which advise restricted egg consumption in adults for preventing cardiometabolic
diseases [86–88].We found that total dairy products, whole milk, and yogurt intake were protective
factors for T2DM. Some studies showed that milk proteins, like whey protein, may enhance satiety
and reduce risk factors for T2DM [89]. The calcium and vitamin D in milk and its products may also
contribute to its beneficial effects on T2DM [90].In our study, fish consumption was not associated
with decreased risk of T2DM. This result may partly relate on the increase in plasma selenium level
with the increment of fish intake, which may increase the risk of diabetes [91,92].The relationship
between fish intake and the risk of T2DM needs further refinement. For high plant protein-based
foods, there was a negative association between soy consumption and the risk of T2DM in this study.
Soy protein may inhibit insulin secretion from pancreatic β cells or inhibit lipogenesis and enhance
lipolysis in the adipose and liver to reduce adiposity [93].This protective effect may also be associated
with biologically active ingredients such as phytoestrogen in soybeans [94].

Our meta-analysis also had limitations. First, publications into our research were adjusted for BMI,
but some studies had measurement errors because of self-reporting of height and weight, resulting in
the BMI relying on self-reporting, which could lead to confounding results. Second, some important
factors that influence T2DM such as fiber, lipids, and carbohydrates, were only adjusted in some of
these studies, which may also lead to confounding results. Additionally, limitations might be due
to temporal bias. Studies with longer follow-up might beless influenced by temporal bias. In our
studies, the follow-up period of each research study was different, so the temporal bias might impact
the association between dietary protein intake and the risk of T2DM.

5. Conclusions

In summary, we found that total protein and animal protein consumption were the risk factors for
T2DM, and plant protein was the protective factor for T2DM in women, but not in men. We also found
that different high-protein foods have a different effect on T2DM risk, even if they all belong to animal
proteins. These results underline the significance of taking into account what kind of dietary protein
and food sources of protein are recommended for the prevention of diabetes.
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