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Abstract: Oxidative stress is known to impair architecture and function of cells, which may lead
to various chronic diseases, and therefore therapeutic and nutritional interventions to reduce
oxidative damages represent a viable strategy in the amelioration of oxidative stress-related
disorders, including neurodegenerative diseases. Over the past decade, a variety of natural
polysaccharides from functional and medicinal foods have attracted great interest due to their
antioxidant functions such as scavenging free radicals and reducing oxidative damages. Interestingly,
these antioxidant polysaccharides are also found to attenuate neuronal damages and alleviate
cognitive and motor decline in a range of neurodegenerative models. It has recently been established
that the neuroprotective mechanisms of polysaccharides are related to oxidative stress-related
pathways, including mitochondrial function, antioxidant defense system and pathogenic protein
aggregation. Here, we first summarize the current status of antioxidant function of food-derived
polysaccharides and then attempt to appraise their anti-neurodegeneration activities.

Keywords: polysaccharide; antioxidant; oxidative stress; inflammatory stress; proteotoxic stress;
neurodegeneration

1. Introduction

Oxygen is essential for normal life of aerobic organisms. Due to its high redox potential, oxygen
is inevitably involved in the production of reactive oxygen species (ROS) such as superoxide anion,
hydroxyl radical and hydrogen peroxide. ROS are known to play an important role in a variety of
cellular functions including signal transduction and regulation of enzyme activity [1,2]. Excessive
ROS, on the other hand, can also interact with biological molecules and generate by-products such
as peroxides and aldehydes, which can cause damages to architecture and function of cells [3,4].
Under normal circumstances, cells have a set of antioxidant defense system, including enzymatic
antioxidants such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)
and non-enzymatic antioxidants such as glutathione and vitamins, to combat excessive ROS [5,6].
However, when a detrimental stress compromises the antioxidant defense system, a fraction of ROS
may escape the intrinsic clearance machinery and induce a state of oxidative stress, leading to cell
dysfunction [7,8].

Growing evidence has demonstrated that oxidative stress is implicated in the development and
progression of many chronic diseases such as neurodegenerative diseases (NDD) and diabetes [9–11].
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NDD, including Alzheimer’s disease (AD), Parkinson’s disease (PD) and Huntington’s disease (HD),
are a group of chronic disorders pathologically characterized by selective and progressive loss of
neurons [12]. Clinical evidence has shown that NDD patients display an oxidative stress-related
manifestation, including increases of ROS level, lipid peroxidation and protein oxidation [13,14].
Recent studies have revealed that ROS-induced peroxidation products, such as the lipid peroxidation
product malondialdehyde (MDA) and the protein oxidation product carbonyl groups, can damage
other cellular components and exacerbate neuronal dysfunction, further demonstrating the detrimental
consequence of oxidative stress in neurodegeneration [4,15,16]. Therefore, strategies to reduce oxidative
damages are shown to be beneficial to alleviate neurodegenerative symptoms. For example, intake
of foods rich in antioxidant ingredients has shown potentials to prevent oxidative stress-related
conditions, including NDD [17–19]. Among the reported ingredients, polysaccharides, an important
type of natural polymers consisting of monosaccharide units that contain multiple free hydroxyl
groups, are shown to have both in vitro and in vivo antioxidant activities [20,21]. Here, we first review
the antioxidant effects of food-derived polysaccharides and then focus on their protective function
against neurodegeneration.

2. Reduction of Oxidative Stress by Food-Derived Polysaccharides

During the last decade, a large body of evidence has shown that polysaccharides and
glycoconjugates from a variety of natural sources, including bacteria, fungi, algae, plants and animals,
have antioxidant potentials [20–23]. In particular, polysaccharides isolated from functional and
medicinal foods as well as from common foods have drawn great attention in antioxidant studies.
Here, we attempt to summarize recent studies of antioxidant polysaccharides from food resources,
including vegetables, fruits, cereals, beans, mushrooms, tea, milk products and meat (Table 1) [24–73].
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Table 1. The antioxidant activities and mechanisms of food-derived polysaccharides.

Source Polysaccharide Test Model Protective Effect Potential Mechanism Ref.

Vegetables

Zizania latifolia ZLPs-W In vitro assays Scavenging activity against DPPH and ·OH [24]

Daucus carota CWSP In vitro assays Scavenging activity against DPPH, reducing power,
prevention of β-carotene bleaching Ferrous chelating ability [25]

Cucurbita maxima
Duchesne WSP In vitro assays Scavenging activity against DPPH, inhibition of

ascorbic acid oxidation SOD-like activity [26]

Solanum tuberosum PPPWs In vitro assays Scavenging activity against DPPH and ABTS, reducing
power, total antioxidant capacity [27]

Potentilla anserine PAP H2O2-exposed murine
splenic lymphocytes Apoptosis rate↓ [28]

Psidium guajava PS-PGL
In vitro assays;
H2O2-exposed Vero cells
and zebrafish

Scavenging activity against DPPH, ·OH and alkyl
radicals in vitro; Cell viability↑, DNA fragmentation↓,
nuclear condensation and morphological disruption↓ in
Vero cells; Survival↑, heart-beating rate↓, cell death↓ in
zebrafish embryos

ROS level↓ in Vero cells; ROS
level↓, MDA content↓ in
zebrafish embryos

[29]

Fruits

Malus pumila APPS In vitro assays Scavenging activity against DPPH, O2
−· and ·OH,

reducing power [30]

Diospyros kaki L. PFP In vitro assays Scavenging activity against DPPH, O2
−· and ·OH,

reducing power [31]

Seed watermelon SWP H2O2-exposed PC12 cells Cell viability↑, LDH release↓
ROS level↓, 8-OHdG content↓,
caspase-3 and caspase-9
activities↓, MMP↑

[32]

Cereals and Beans

Rice bran RBP2 In vitro assays Scavenging activity against DPPH, O2
−·, ·OH and

ABTS, reducing power Ferrous chelating ability [33]

Wheat bran Feruloyl
oligosaccharides

AAPH-exposed human
erythrocytes Erythrocyte hemolysis↓ GSH level↓, MDA content↓,

PCG level↓ [34]

Glycine max (L.) Merr. MSF In vitro assays Scavenging activity against ABTS, reducing power [35]

Cicer arietinum L. hull CHPS In vitro assays;
H2O2-exposed PC12 cells

Scavenging activity against ABTS, DPPH O2
−; reducing

power in vitro; Cell viability↑ [36]
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Table 1. Cont.

Source Polysaccharide Test Model Protective Effect Potential Mechanism Ref.

Herbs

Dioscorea opposita Yam
polysaccharide In vitro assays Scavenging activity against O2

−· and ·OH [37]

Epimedium brevicornum
Maxim. EbPS-A1 In vitro assays;

PQ-exposed C. elegans
Scavenging activity against DPPH and ·OH in vitro;
Survival rate↑ in C. elegans

ROS level↓, MDA content↓,
SOD and CAT activities↑ in
C. elegans

[38]

Chuanminshen violaceum CVPS In vitro assays;
D-Gal-treated ICR mice

Scavenging activity against DPPH, O2
−· and ·OH

in vitro; Body weights and spleen indices↑ in mice

Activities and mRNA levels of
Mn-SOD, Cu/Zn-SOD, GPx
and CAT↑, MDA content↓ in
mouse liver, heart and brain

[39]

Radix Rehmanniae RRPs UV-irradiated mice
GSH level↑, SOD, CAT and
GPx activities↑, MDA content↓,
IL-2, IL-4 and IL-10 levels↑

[40]

Lycium barbarum LBPs H2O2-exposed SRA01/04
cells

Cell viability↑, apoptotic rate↓, ratio of ageing cells↓,
G0/G1 cell cycle phase arrest↓

ROS level↓, MMP↑, Bcl-2
protein level↑, Bax protein
level↓, MDA content↓, SOD
activity↑, GSH level↑

[41]

Angelica sinensis ASP
H2O2-exposed PC12 cells;
SD rats with middle
cerebral artery occlusion

Cell viability↑, apoptosis rate↓ in PC12 cells; Number of
microvessels in rat brain↑

ROS level↓, MMP↑ in PC12
cells; SOD and GPx activities↑
in rat cortex

[42]

Sophora subprosrate SSP PCV-2 infection
RAW264.7 cells

Activities of Total-SOD,
Cu/Zn-SOD and Mn-SOD↑,
mRNA levels of Mn-SOD↑ and
NOX2↓, NOX2 protein level↓,
MMP↑

[43]

Cynomorium songaricum
Rupr. CSP H2O2-exposed PC12 cells Cell viability↑, ratio of sub G1and S phase↓, ratio of

G2/M phase↑, apoptosis rate↓, LDH release↓

ROS level↓,MDA content↓,
8-OHdG content↓, SOD and
GPx activities↑, capase-3 and
capase-9 activities↓

[44]

Tea

Black tea BTPS In vitro assays Scavenging activity against DPPH and ·OH [45]

Green tea TPS1 In vitro assays
Scavenging activity against DPPH, O2

−· and ·OH,
ferrous chelating ability, reducing power, total
antioxidant capacity, inhibition of lipid hydroperoxide

[46]

Gynostemma pentaphyllum
Makino GPMMP Cyclophosphamide-treated

C57BL/6 mice
Spleen and thymus indices↑, CD4+ T lymphocyte
counts↑, total antioxidant capacity↑

CAT, SOD and GPx activities↑,
MDA content↓, GSH level↑,
IL-2 level in sera and spleen↑

[47]
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Table 1. Cont.

Source Polysaccharide Test Model Protective Effect Potential Mechanism Ref.

Nuts

Juglans regia L. SJP In vitro assays Scavenging activity against DPPH, ·OH and ABTS,
reducing power [48]

Ginkgo biloba L. GNP In vitro assays;
Hyperlipemia mice

Scavenging activity against DPPH, O2
−· and ·OH

in vitro

CAT, SOD and GPx activities↑,
MDA content↓ in mouse serum
and liver

[49]

Other Plants

Zizyphus jujuba Mill ZJPa In vitro assays Scavenging activity against O2
−· and ·OH Ferrous chelating ability [50]

Aloe barbadensis Miller GAPS-1 and
SAPS-1 In vitro assays Scavenging activity against O2

−·, ·OH and H2O2,
reducing power, MDA content↓ Ferrous chelating ability [51]

Anoectochilus roxburghii ARPT CCl4-treated Kunming
mice

Hepatocyte necrosis↓, serum alanine transaminase and
aspartate transaminase activities↓

MDA level↓, SOD, CAT and
GPx activities↑, GSH level↓,
mRNA levels of TNF-α, IL-6
and Bax↓, protein levels of
TNF-α, IL-6, NF-κB and
cleaved-caspase 3↓ in liver

[52]

Opuntia dillenii Haw CP H2O2-exposed PC12 cells Cell viability↑, LDH release↓, apoptosis rate↓ ROS level↓, ratio of Bax/Bcl-2
mRNA level↑ [53]

Camellia oleifera Abel SCP1 In vitro assays;
PQ-exposed C. elegans

Scavenging activity against O2
−· and ·OH in vitro;

Survival rate↑ in C. elegans

Ferric chelating ability in vitro;
SOD, CAT and GPx activities↑,
MDA content↓ in C. elegans

[54]

Taraxacum officinale TOP2 LPS or t-BHP-exposed
RAW 264.7 cells

NO production↓ in LPS-exposed cells; Cell viability↑ in
t-BHP-exposed cells

Protein levels of TNF-α, p-IκBα,
p-p65, p-Akt, iNOS and heme
oxygenase 1↓

[55]
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Table 1. Cont.

Source Polysaccharide Test Model Protective Effect Potential Mechanism Ref.

Mushrooms

Ganoderma lucidum G. lucidum
polysaccharide

Isoproterenol-treated
albino rats

Creatinine kinase and LDH activities↓ in serum, cardiac
muscle fibers with mild hyalinization

ROS level↓, MDA content↓,
SOD and GPx activities↑, GSH
level↑, activities of Krebs cycle
dehydrogenases and
mitochondrial complexes↑,
MMP↑

[56]

Lentinus edodes,
Ganoderma applanatum,
Trametes versicolor

Mushroom
polysaccharides In vitro assays Scavenging activity against DPPH, reducing power,

inhibition of linoleic acid peroxidation Ferric chelating ability [57]

Dictyophora indusiata DiPS PQ-exposed C. elegans Survival rate↑
ROS level↓, SOD activity↑,
MDA content↓, MMP↑, ATP
content↑, DAF-16 activation↑

[58]

Other Fungi

Auricularia auricula AAP1 In vitro assays; PQ or
H2O2-exposed C. elegans

Scavenging activity against DPPH, O2
−· and ·OH,

reducing power in vitro; Survival rate↑ in C. elegans

Ferric chelating ability in vitro;
ROS level↓, SOD and CAT
activities↑ in C. elegans

[59]

Tremella fuciformis TP UV-irradiated SD rats
Water and collagen content↑, glycosaminoglycan↓,
endogenous collagen breakdown↓, ratio of type I/III
collagen↑ in rat skin

SOD, GPx and CAT activities↑ [60]

Algae

Porphyra haitanesis P. haitanesis
polysaccharide

In vitro assays;
H2O2-exposed rat
erythrocytes and liver
microsome

Scavenging activity against O2
−· and ·OH in vitro;

Erythrocyte hemolysis↓; lipid peroxidation of rat liver
microsome↓

[61]

Laminaria japonica LJPA-P3 In vitro assays Oxygen radical absorbance capacity, scavenging activity
against ABTS [62]

Fucus vesiculosus F. vesiculosus
polysaccharide In vitro assays Ferric reducing antioxidant power [63]

Ulva pertusa U. pertusa
polysaccharide In vitro assays Scavenging activity against O2

−· and ·OH, reducing
power Ferric chelating ability [64]

Brown seaweed Fucoidan UV-irradiated HS68 cells ROS level↓, MDA content↓,
GSH level↑ [65]

Nostoc commune Nostoc
polysaccharide

In vitro assays;
PQ-exposed C. elegans

Scavenging activity against O2
−· and ·OH in vitro;

Survival rate↑ in C. elegans
SOD, CAT and GPx activities↑,
MDA content↓ in C. elegans [66]
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Table 1. Cont.

Source Polysaccharide Test Model Protective Effect Potential Mechanism Ref.

Milkproducts

Milk fermented with
lactic acid bacteria Exopolysaccharides UV-irradiated hairless

mice

Erythema formation, dryness and epidermal
proliferation, cyclobutane pyrimidine dimers↓
in mouse skin

mRNA levels of xeroderma
pigmentosum complementation
group A↑, ratio of mRNA levels
of IL10/IL12α and
IL10/IFN-γ↓ in mouse skin

[67]

Wine

Red wine PS-SI In vitro assays Scavenging activity against ·OH, oxygen radical
absorbance capacity [68]

Probiotics

Bifidobacterium animalis
RH EPS

In vitro assays;
D-Gal-treated Kunming
mice

Inhibition of linoleic acid peroxidation, total antioxidant
capacity, scavenging activity against DPPH, O2

−· and
·OH in vitro

Total antioxidant capacity, SOD,
CAT and GPx activities↑, MDA
content↓ in serum, GST activity
and MDA content↓ in liver,
MAO activity and lipofuscin
level↓ in brain

[69]

Bifidobacterium bifidum
WBIN03, Lactobacillus
plantarum R31

B-EPS and L-EPS
In vitro assays;
H2O2-exposed rat
erythrocytes

Scavenging activity against DPPH, O2
−· and ·OH,

inhibition of lipid peroxidation in vitro; Erythrocyte
hemolysis↓

[70]

Meat

Haliotis discus hannai Ino ASP-1 In vitro assays Scavenging activity against O2
−· [71]

Crassostrea hongkongensis CHPs In vitro assays Scavenging activity against DPPH, ·OH and ABTS,
inhibition of linoleic acid peroxidation [72]

Mytilus coruscus MP-I CCl4-treated Kunming
mice

Serum alanine transaminase and aspartate
transaminase levels↓, necrosis of liver cells↓,
immigration of inflammatory cells↓

MDA content↓, SOD activity↑
in liver [73]

AAPH, 2,2′-Azobis(2-amidinopropane) dihydrochloride; ABTS, 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); CAT, catalase; CCl4, carbon tetrachloride; Cu/Zn-SOD, copper-zinc
superoxide dismutase; D-Gal, D-galactose; DPPH, 2,2-diphenyl-1-picrylhydrazyl radical; GPx, glutathione peroxidase; GSH, glutathione; GST, glutathione S-transferase; H2O2, hydrogen
peroxide; HS68 cells, human foreskin fibroblast line; IFN-γ, interferon-γ; IκBα, NF-κB inhibitor α; ILs, interleukins; iNOS, inducible nitric oxide synthase; LDH, lactate dehydrogenases; LPS,
lipopolysaccharide; MAO, monoamine oxidase; MDA, malondialdehyde; MMP, mitochondrial membrane potential; Mn-SOD, manganese superoxide dismutase; NF-κB, nuclear factor-κB;
NO, nitric oxide; NOX2, cytochrome b-245β chain; O2

−·, superoxide anion; ·OH, hydroxyl radical; RAW 264.7 cells, murine macrophage cell line; PC12 cells, rat pheochromocytoma cell
line; PCG, protein carbonyl group; PCV-2, porcine circovirus type 2; PQ, paraquat; ROS, reactive oxygen species; SOD, superoxide dismutase; SRA01/04 cells, SV40 T-antigen-transformed
human lens epithelial cell line; t-BHP, tert-Butyl hydroperoxide; TNF-α, tumor necrosis factor α; UV, ultraviolet; 8-OHdG, 8-hydroxy-2’-deoxyguanosine.
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2.1. Reduction of Free Radical and Peroxidation Product Levels

Many food-derived polysaccharides are reported to have potent reducing power and free
radical scavenging ability in vitro. For example, we have previously isolated a polysaccharide
from Nostoc commune, a widespread microalga with a long history as food and medicine, and
found that the polysaccharide is capable of scavenging both superoxide anion and hydroxyl radicals
in vitro [66]. The antioxidant capability of polysaccharides is shown to be related with their functional
groups such as hydroxyl, amino, carbonyl and carboxyl groups, e.g., the scavenging capacity of
chitosan against superoxide radicals is correlated with its number of hydroxyl and amino groups [74].
The polysaccharide fractions from Zizyphus jujuba with higher uronic acid content exhibit stronger free
radical scavenging activities than other polysaccharide fractions from the same species containing no
uronic acid [75]. These functional groups in polysaccharides can donate hydrogen to electron-deficient
free radicals to generate alkoxyl products, which accelerate intramolecular hydrogen abstraction
and further induce spirocyclization reaction to prevent radical chain reaction [22,76]. Interestingly,
free radicals are usually generated via transition metal ions in in vitro antioxidant assays. In Fenton
reaction, for instance, ferrous ion is used to catalyze superoxide or hydrogen peroxide to generate
hydroxyl radicals [77]. Therefore, the direct scavenging effect of polysaccharides against free radicals
may also be through chelating ions. For example, the polysaccharide fraction GAPS-1 isolated from
Aloe barbadensis has a higher chelating ability against ferrous ion and meanwhile exhibits stronger
scavenging effect against hydroxyl radicals as compared to SAPS-1, another polysaccharide fraction
isolated from the same species [51]. Moreover, monosaccharide composition and substitution groups
of polysaccharides are reported to play important roles in their chelating capacity, e.g., the chelating
ability of the polysaccharides from Zizyphus jujuba, a well-known traditional food, against ferrous ion
is positively correlated with their galacturonic acid contents [50].

In addition to scavenge free radicals in vitro, antioxidant polysaccharides are also shown to
reduce the levels of ROS and associated peroxidation products in cellular and animal models under
oxidative stress. For instance, a polysaccharide from the common fungus Auricularia auricular is
capable of increasing the survival rate and reducing the ROS level in hydrogen peroxide-stressed
Caenorhabditis elegans [59], while the wheat bran-derived feruloyl oligosaccharides can reduce
MDA content and suppress protein carbonyl formation in human erythrocytes exposed to
2,2′-Azobis(2-amidinopropane) dihydrochloride, a potent free radical generator [34]. It is well
established that peroxidation products can modify cellular components, leading to cell damages.
For instance, MDA interacts with proteins and DNA to generate covalent adducts with mutagenic and
carcinogenic effects [3], while protein carbonyl groups can cause rapid degradation of proteins [78].
Therefore, reduction of peroxidation product contents may contribute to the protective effects of
feruloyl oligosaccharides against oxidative stress.

Mitochondria are the main source of ROS and energy production in cells. However, mitochondrial
dysfunction, including mitochondrial membrane potential (MMP) decline, respiratory chain
malfunction and calcium dysregulation, can accelerate ROS generation and reduce ATP generation,
leading to oxidative damage and energy deficiency [79,80]. In a vicious cycle, excessive ROS further
impair mitochondrial components such as membrane lipids and DNA, resulting in a secondary
mitochondrial dysfunction that amplifies oxidative stress [81,82]. Therefore, restoring mitochondrial
function is a beneficial strategy to reduce oxidative impairment. Interestingly, recent reports have
revealed that the antioxidant function of food-derived polysaccharides is associated with the alleviation
of mitochondrial dysfunction. For example, we have recently shown that the polysaccharide DiPS
from Dictyophora indusiata, an edible mushroom traditionally used for inflammatory and neural
diseases, can reduce paraquat-mediated increase of ROS level through elevating MMP in C. elegans [58].
A polysaccharide from Ganoderma lucidum, a well-known mushroom traditionally used to delay ageing
and enhance immune function, is able to attenuate isoproterenol-induced cardiotoxicity via increasing
MMP and mitochondrial complex activity in rats [56]. In addition to mitochondria, several other
biochemical pathways such as NADPH oxidase also contribute to ROS production [9]. Interestingly,
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a recent study has found that a polysaccharide from Sophora subprosrate, a medicinal food used for
inflammatory disorders, can reduce superoxide anion in porcine circovirus type 2-infected murine
macrophage RAW264.7 cells by inhibiting the expression of NADPH oxidase, which is a major enzyme
responsible for generating superoxide anion in phagocytes [43]. Together, these findings demonstrate
that antioxidant polysaccharides can inhibit cellular ROS generation through multiple pathways.

2.2. Improvement of the Antioxidant Defense System

A number of studies have revealed that food-derived polysaccharides can reduce oxidative stress
and associated damages through modulation of antioxidant enzymes in experimental models. For
example, we have recently found that the acidic polysaccharide EbPS-A1 from Epimedium brevicornum,
a functional food used for a variety of medical conditions including neurological disorders, can increase
oxidative survival and reduce ROS level and MDA content of both wild-type and polyglutamine
(polyQ) C. elegans under paraquat-induced oxidative stress. The protective effect of EbPS-A1 against
paraquat toxicity is shown to be related with increasing SOD and CAT activities [38]. Interestingly,
the polysaccharides isolated from the tonic food Chuanminshen violaceum are also shown to up-regulate
the mRNA expression levels of SOD isoforms and CAT and enhance the activities of these antioxidant
enzymes in mice injected with D-galactose [39], an ageing-promoting agent that induces cognitive
and motor performance deterioration similar to AD symptoms via oxidative stress and mitochondrial
dysfunction [83].

In addition to their effect on antioxidant enzymes, several food-derived polysaccharides are
also reported to have modulatory function on non-enzyme components of the cellular antioxidant
system. For example, a polysaccharide from Anoectochilus roxburghii, a medicinal food used to treat a
variety of chronic diseases such as hepatitis and diabetes, is shown to attenuate oxidative stress
by increasing glutathione level as well as antioxidant enzyme activities in the hepatic tissue of
mice injected with carbon tetrachloride, an organic chemical that can induce hepatotoxicity through
increased oxidative stress [84]. Interestingly, A. roxburghii polysaccharide is also shown to reduce
the mRNA levels of inflammation-related genes including tumor necrosis factor alpha (TNF-α) and
interleukin-6 (IL-6) [52]. Oxidative stress is known to increase the expression of TNF-α, a key cytokine
that promotes inflammation, while elevated TNF-α level can activate NADPH oxidase, ultimately
leading to ROS overproduction [85,86].

2.3. Regulation of Oxidative Stress-Related Signaling

A number of signaling pathways, such as those involving nuclear factor erythroid 2-related
factor 2/antioxidant response element (Nrf2/ARE), mitogen-activated protein kinases (MAPKs),
phosphoinositide 3 kinase/Akt (PI3K/Akt) and insulin/insulin-like growth factor-1 signaling (IIS), are
known to be associated with cellular responses to multiple stresses including oxidative stress [87–89].
For instance, Nrf2, a basic region leucine-zipper transcription factor, plays an important role in cellular
antioxidant response. When Nrf2 is activated, it translocates into nucleus and binds to ARE, leading
to up-regulation of genes involved in cellular antioxidant and anti-inflammatory defense as well as
mitochondrial protection [87]. Interestingly, some food-derived polysaccharides are recently reported
to exert their antioxidant activity via Nrf2/ARE pathway in cellular and animal models. For instance,
a polysaccharide from Lycium barbarum, a medicinal food traditionally used to retard ageing and
improve neuronal function, is shown to attenuate ultraviolet B-induced cell viability decrease and
ROS level increase in human keratinocytes HaCaT cells by promoting the nuclear translocation of
Nrf2 and the expression of Nrf2-dependent ARE target genes [90]. This protective effect of L. barbarum
polysaccharide can be neutralized by siRNA-mediated Nrf2 silencing, indicating an involvement
of Nrf2/ARE pathway in the antioxidant effect of the polysaccharide [90]. Intriguingly, however,
the above-mentioned polysaccharide DiPS is shown to increase oxidative survival through promoting
nuclear translocation of transcription factor DAF-16/FOXO transcription factor but not SKN-1 (worm
homologue of Nrf2) in wild-type C. elegans under paraquat exposure, demonstrating the antioxidant
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activity of the polysaccharide is associated with IIS, an evolutionarily conserved pathway that regulates
organismal metabolism and lifespan, as DAF-16 is a key regulator in IIS [58].

Several signaling pathways related to cell death and survival are also involved in the antioxidant
effect of food-derived polysaccharides. For example, hydrogen peroxide can induce apoptosis of
rat pheochromocytoma PC12 cells via activation of p38 MAPK, while a polysaccharide from the
fruiting bodies of the edible mushroom Morchella importuna increases the viability of hydrogen
peroxide-exposed PC12 cells by inhibiting p38 MAPK phosphorylation [91]. In addition, hydrogen
peroxide can inhibit the activation of PI3K/Akt signaling in human neuroblastoma SH-SY5Y cells,
while sulfated polysaccharides prepared from fucoidan are able to increase the phosphorylation of
PI3K/Akt and inhibit cell apoptosis [92]. Interestingly, the PI3K inhibitor LY294002 can partially
prevent the beneficial role of the polysaccharide, demonstrating that modulation of PI3K/Akt
pathway contributes to the protective effect of the sulfated polysaccharides against hydrogen peroxide
cytotoxicity [92].

Recent studies provide clear evidence for the protective effects of food-derived polysaccharides
against oxidative stress. Many polysaccharides exhibit potent reducing power, total antioxidant
capacity and scavenging ability against free radicals in vitro. Moreover, some polysaccharides can
decrease ROS and peroxidation product levels, improve antioxidant defense system and regulate
stress-related signaling events to attenuate oxidative damage in cellular and animal models exposed
to a variety of external stimuli, such as hydrogen peroxide, paraquat, ultraviolet radiation and virus.
Together, these findings suggest a potential of these dietary polysaccharides to maintain health and
prevent oxidative stress-related disorders.

3. Alleviation of Neurodegeneration by Food-Derived Antioxidant Polysaccharides

It is known that oxidative stress and chronic inflammation are two intertwined pathological events
in NDD [85]. Excessive ROS can modulate inflammatory signaling to up-regulate the expression of
pro-inflammatory factors such as cytokines, which act as potent stimuli in brain inflammation [93,94].
In turn, elevated inflammatory stress further provokes ROS generation via multiple pathways such
as nuclear factor κB (NF-κB) signaling [85]. On the other hand, abnormal protein aggregation
is known to be a common pathological hallmark of late-onset NDD. These protein aggregates,
including amyloid-β peptide (Aβ) aggregates in AD and polyQ aggregates in HD, can induce neuronal
damages through induction of oxidative stress, inflammation and mitochondrial dysfunction [95–97].
Oxidative stress can also promote the aggregation of pathogenic proteins as ROS modified-proteins
tend to form aggregates [98]. In addition, a variety of chemical interventions, including excitatory
amino acids such as glutamate, N-methyl-D-aspartate (NMDA) and kainic acid; neurotoxins such
as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA); and
ageing-promoting agents such as D-galactose, are also shown to induce neurodegenerative symptoms
via oxidative and inflammatory stresses [83,99,100]. As oxidative stress plays a pivotal role in
neurodegeneration, antioxidant strategies, including food-derived antioxidant polysaccharides, are
shown to attenuate neuronal damage and improve cognitive and motor functions in a range of
neurodegenerative models (Table 2) [101–142].
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Table 2. Protective effects and mechanisms of food-derived antioxidant polysaccharides in neurodegeneration models.

Source Polysaccharide Test Model Protective Effect Potential Mechanism Ref.

Ganoderma lucidum GLP APP/PS1 transgenic mice
Learning and memory in MWM↑,
neural progenitor cell
proliferation↑

Aβ deposits↓, protein levels of p-FGFR1, p-ERK and p-Akt↑ [101]

Marine red algae KCP Aβ(25–35)-exposed SH-SY5Y
cells Cell viability↑, apoptosis rate↓ Protein level of cleavage caspase 3↓, JNK signaling activation↓ [102]

Undaria pinnatifida
sporophylls Fucoidan

Aβ(25–35) and
D-Gal-exposed PC12 cells;
D-Gal treated ICR mice

Cell viability↑, apoptosis rate↓ in
PC12 cells; Learning and memory
in MWM↑

Protein levels of cleaved caspase-3, caspase-8 and caspase-9↓,
cytochrome c release↓, SOD activity↑, GSH level↑ in PC12 cells; Aβ

deposits in hippocampus↓, SOD activity and GSH level↑ in serum, Ach
content↑, ChAT activity↑ and AChE activity↓ in brain

[103]

Laminaria japonica Aresch. Fucoidan Aβ40-treated SD rats
Learning and memory in MWM,
single-trial passive avoidance
and eight-arm radial maze task↑

Ach content↑, ChAT activity↑, AChE activity↓, SOD and GPx activities↑,
MDA content↓, Bax/Bcl-2 protein level ratio↓, cleaved caspase-3 protein
level↓ in hippocampus

[104]

Polygonatum sibiricum PS-WNP Aβ(25–35)-exposed PC12 cells Cell viability↑, apoptosis rate↓ Bax/Bcl-2 protein level ratio↓, MMP↑, cytochrome c release↓, cleaved
caspase-3 protein level↓, caspase-3 activity↓, p-Akt protein level↑ [105]

Lonicera japonica Thunb. LJW0F2 Aβ42-exposed SH-SY5Y cells Cell viability↑ Aβ42 aggregates↓ [106]

Echlonia Kurome Okam. AOSC Aβ(25–35)-exposed SH-SY5Y
cells

Cell viability↑, apoptosis rate↓,
activation of astrocytes↓, cell
redox activity↑

ROS level↓, TNF-α and IL-6 level↓, calcium influx in astrocytes↓ [107]

Angelica sinensis AS Aβ(25–35)-exposed Neuro 2A
cells Cell viability↑ ROS level↓, GSH level↑, MMP↑, mitochondria mass↑, TBARS content↓,

autophagosomes or residual bodies↓ [108]

Lycium barbarum L. barbarum
polysaccharide APP/PS1 transgenic mice Learning and memory in MWM↑ Aβ deposits in hippocampus↓ [109]

Lycium barbarum LBP-III Aβ(25–35)-exposed rat
primary cortical neurons

Maintain neurite fasciculation
and neuron integrity Caspase-3 and caspase-2 activities↓, p-PKR protein level↓ [110]

Ganoderma lucidum GLA Aβ(25–35)- or Aβ42-exposed
rat primary cortical neurons

Apoptosis rate↓, synaptophysin
immunoreactivity↑ DEVD-cleavage activity↓, protein levels of p-JNK, p-c-Jun, and p-p38↓ [111]

Rubia cordifolia L. PS5 T-REx293 cells Cell viability↑ Aβ42-EGFP aggregates↓ [112]

Dictyophora indusiata DiPS C. elegans CL2355 Survival rate↑, chemotaxis index↑ ROS level↓ [58]
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Table 2. Cont.

Source Polysaccharide Test Model Protective Effect Potential Mechanism Ref.

Gynostemma pentaphyllum
Makino GPP1 Aβ(25–35)-exposed PC12 cells Cell viability↑, LDH release↓,

DNA fragmentation↓

ROS level↓, MDA content↓, SOD activity↑, GSH level↑, Calcium
overload↓, MMP↑, Bcl-2 protein level↑, protein levels of Bax,
cytochrome c and cleaved caspase-3↓

[113]

Lycium barbarum L. LBP 6-OHDA-exposed PC12 cells
Cell viability↑, nuclear
morphology changes↓, apoptosis
rate↓

ROS and NO levels↓, calcium overload↓, protein-bound 3-nitrotyrosine
level↓, protein levels of nNOS, iNOS and cleaved caspase-3↓ [114]

Gynostemma pentaphyllum
Makino GP MPP+-exposed PC12 cells Cell viability↑, LDH release↓,

apoptosis rate↓

Cytochrome c release↓, caspase-3 and caspase-9 activities↓, Bax/Bcl-2
protein level ratio↓, protein levels of cleaved caspase-3 and poly
(ADP-ribose) polymerase↓

[115]

Spirulina platensis PSP MPTP-treated C57BL/6J mice

Number of TH-immunoreactive
neurons and DAT binding ratio
in the substantia nigra pars
compacta↑

TH and DAT mRNA levels in substantia nigra↑, SOD and GPx activity↑
in serum and midbrain [116]

Chlorella pyrenoidosa CPS MPTP-treated C57BL/6J mice Body weight↑, movement in pole
test and gait test↑

Contents of DA, DOPAC and HVA↑, ratio of DOPAC and HVA to DA↓,
TH mRNA level↑, striatal Emr1 mRNA level↓, TNF-α, IL-1β and IL-6
levels in serum↓, D-amino acid oxidase and secretory immunoglobulin A
levels↑

[117]

Gracilaria cornea J. Agardh SA-Gc 6-OHDA-treated Wistar rats

Locomotor performance in OFT,
rotarod and
apomorphine-induced rotation
test↑, weight gain↑

DA and DOPAC content↑, NO2/NO3 and GSH level↑ in brain, p65,
iNOS and IL1β mRNA levels↓, BDNF mRNA level↑ [118]

Stichopus japonicus SJP 6-OHDA-exposed SH-SY5Y
cells

Cell viability↑, apoptosis rate↓,
LDH release↓

SOD activity↑, ROS level↓, NO release↓, MDA content↓, MMP↑,
cytochrome c release↓, percentage of cells in S phase↑, Bax/Bcl-2 protein
level ratio↓, protein levels of Cyclin D3, p-p53, p-p38, p-JNK1/2, p-p65,
iNOS and p-IκB↓, cleaved caspase-9/caspase-9 and cleaved
caspase-3/caspase-3 protein level ratio↓, p-Akt and IκB protein levels↑

[119]

Hericium erinaceus EA MPTP-treated C57BL/6 mice
Apoptosis rate↓, number of
normal neurons↑, motor function
in RT↑

Nitro-tyrosine and 4-HNE level↓, dopamine, NGF, and GSH level↑,
protein levels of Fas, p-JNK1/2, p-p38, DNA damage inducible
transcript 3, NF-κB and p65↓

[120]

Epimedium brevicornum
Maxim. EbPS-A1 C. elegans HA759 Avoidance index↑ ROS level↓, MDA content↓, SOD and CAT activities↑ [38]

Turbinaria decurrens TD fucoidan MPTP-treated C57BL/6 mice
Motor performance in OFT,
Narrow beam walking and RT↑,
nigral TH immunoreactivity↑

DA, DOPAC, and HVA content↑, TBARS level↓, GSH level↑, SOD and
CAT activities↓, GPx activity↑, TH and DAT protein levels↑ [121]
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Table 2. Cont.

Source Polysaccharide Test Model Protective Effect Potential Mechanism Ref.

Lycium barbarum LBP HEK293-160Q cells;
HD-related transgenic mice

Cell viability↑ in HEK293 cells;
Survival rate↑, weight gain↑,
motor performance in RT↑ in
mice

Soluble and aggregated huntingtin levels↓, caspase-3 activity↓,
p-Akt/Akt and p-GSK3β/ GSK3β protein levels↑ in HEK293 cells;
Mutant huntingtin level↓, p-Akt/Akt and p-GSK3β/ GSK3β protein
levels↑ in mouse brain

[122]

Ganoderma lucidum GLP Kainic acid-treated Wistar rats Frequency of epilepsy↓ CaMK II level↑, ERK1/2 level↓, calcium turnover↓, Caveolin-1 positive
cells↑, NF-κB positive cells↓ [123]

Hericium erinaceus HE
L-Glu-exposed PC12 cells;
AlCl and D-Gal-treated
Balb/c mice

Differentiation rate↑, cell
viability↑, apoptosis rate↓ in
PC12 cells; learning, memory and
locomotor in MWM, Autonomic
activities and RT↑

β-tubulin III protein level↑, MMP↑, calcium overload↓, ROS level↓ in
PC12 cells; Ach and ChAT contents in mouse serum and hypothalamus↑ [124]

Pleurotus ostreatus POP D-Gal and AlCl3-treated
Wistar rats

Learning and memory in MWM
and SDT↑, hippocampal
impairment↓

AchE activity↓, in hippocampus, MDA content↓, SOD, GPx and CAT
activities↑ in hippocampus, liver and serum, protein levels of APP, Aβ,
BACE1 and p-tau↓, Protein phosphatase 2 protein level↑

[125]

Sargassum fusiforme SFPS65A SCO-, ethanol- and sodium
nitrite-treated ICR mice Learning and memory in SDT↑ [126]

Sargassum fusiforme SFPS D-Gal-treated ICR mice

CAT and SOD activities↑, MDA content in hearts and MAO in brains↓,
protein levels of Nrf2, Bcl-2, p21 and JNK1/2↑, mRNA levels of Nrf2,
Cu/Zn-SOD, Mn-SOD, glutamate cysteine ligase and GPX1↑, voltage
dependent anion channel 1 protein level↓

[127]

Lycium barbarum LBA Homocysteine-exposed
cortical neurons Cell viability↑, apoptosis rate↓ LDH release and caspase-3 activity↓, p-tau-1 protein level↑, cleaved-tau

protein level↓, p-ERK1/2 and p-JNK protein levels↓ [128]

Lycium barbarum LBA L-Glu- or NMDA-exposed
cortical neurons

Cell viability↑, maintained their
integrity and fasciculation of
neurites

LDH release and caspase-3 activity↓, p-JNK-1/JNK protein level ratio↓ [129]

Saccharomyces cerevisiae β-glucan SCO-treated SD rats Learning, memory, and
locomotor in MWM and PTT↑ AChE activity↓ [130]

Flammulina velutipes FVP SCO-treated Wistar rats Learning and memory in MWM
and PTT↑

SOD and GPx activities↑, TBARS level↓, Ach, 5-HT, DA and NE
content↑, ChAT activity↑, AChE activity↓, connexin 36 and p-CaMK II
protein level↑ in hippocampus and cerebral cortex

[131]

Lycium barbarum LBPs SCO-treated SD rats

Learning and memory in MWM,
NOR and OLR↑, cell proliferation
and neuroblast differentiation in
dentate gyrus↑

SOD and GPX activities↑, MDA content↓, Bax/Bcl-2 protein level ratio↓
in hippocampus [132]
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Table 2. Cont.

Source Polysaccharide Test Model Protective Effect Potential Mechanism Ref.

Lycium barbarum LBP D-Gal-treated Kunming mice
Weight gain↑, learning and
memory in Jumping test↑,
thymus and spleen indices↑

Lipid peroxidation, lipofuscin and MAO-B contents↓ in brain [133]

Polygonatum sibiricum PSP SCO-treated Kunming mice Learning and memory in SDT
and Memory test↑ SOD and GPx activities↑, MDA content↓ [134]

Panax ginseng WGOS SCO-treated ICR mice Learning and memory in MWM
and NOR↑

mRNA levels of GFAP, IL-1β and IL-6↓ in hippocampus, number of
GFAP-positive cells↓ in hippocampal subregions [135]

Lentinus edodes LT2 D-Gal-treated Kunming mice Erythrocyte membrane fluidity↑ SOD and GPx activities↑ in liver, heart and brain [136]

Angelica sinensis ASP D-Gal-treated C57BL/6J mice Percentage of ageing cells↓

Advanced glycation end-product level in serum↓, ROS level↓, TAOC
content↑, 8-OHDG content↓, 4-HNE level↓, protein levels of H2A
histone family member X, p16, p21, p53, β-catenin, p-GSK-3β and
transcription factor 4↓, mRNA levels of p16, p21 and β-catenin↓,
GSK-3β protein level↑

[137]

Tricholoma lobayense TLH-3 t-BHP-exposed HELF cells;
D-Gal-treated Kunming mice

Cell viability↑, percentage of
ageing cells↓, ratio of
G0/G1phase↓, nucleic
morphological changes↓ in HELF
cells

ROS level↓, in HELF cells; SOD and CAT activities↑, MDA content↓, in
mouse liver and serum [138]

Cuscuta chinensis Lam PCCL D-Gal-treated SD rats Apoptosis rate of
cardiomyoctyes↓

Calcium overload↓, Bax/Bcl-2 protein level ratio↓, caspase-3 activity↓,
cytochrome c release↓ [139]

Ganoderma atrum PSG-1 D-Gal-treated Kunming mice Weight gain↑, lymphocyte
proliferation↑

MDA content↓, SOD, CAT and GPx activities↑, GSH level↑, GSSG level↓
in liver, brain and spleen [140]

Auricularia auricula-judae APP 1-a D-Gal-treated Kunming mice Spleen and thymus indexes↑ MDA content↓, SOD and GPx activities↑ in liver, serum and heart [141]

Saccharina japonica DJ0.5 6-OHDA-exposed MES 23.5
cells and SH-SY5Y cells Cell viability↑ [142]

Aβ, amyloid-β peptide; Ach, acetylcholine; AChE, acetylcholinesterase; APP, amyloid precursor protein; BACE1, β-secretase 1; BDNF, brain-derived neurotrophic factor; CaMK II,
calmodulin-dependent protein kinase II; CAT, catalase; ChAT, choline acetyltransferase; CL2355, a nematode that pan-neuronally expresses Aβ42; Cu/Zn-SOD, copper-zinc superoxide
dismutase; D-Gal, D-galactose; DA, dopamine; DAT, dopamine transporter; DOPAC, 3,4-Dihydroxyphenylacetic acid; FGFR1, fibroblast growth factor receptor 1; GFAP, glial fibrillary
acid protein; GPx, glutathione peroxidase; GSH, glutathione; GSK-3β, glycogen synthase kinase-3β; GSSG, glutathione disulfide; HA759, a nematode that expresses HtnQ150 in ASH
neurons; HEK293 cells, human embryonic kidney cell line; HELF cells, human embryonic lung fibroblast line; HVA, homovanillic acid; IκB, NF-κB inhibitor; iNOS, inducible nitric
oxide synthase; LDH, lactate dehydrogenases; L-Glu, L-glutamate; MAO, monoamine oxidase; MES 23.5 cells, rodent mesencephalic neuronal cell line; MDA, malondialdehyde; MMP,
mitochondrial membrane potential; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; MPP+, 1-methyl-4-phenylpyridinium; MWM, Morris water maze; NE, norepinephrine; Neuro
2A cells, murine neuroblastoma cell line; NMDA, N-methyl-D-aspartate; nNOS, neuronal nitric oxide synthase; NO, nitric oxide; NOR, novel object recognition; Nrf2, nuclear factor
erythroid 2-related factor 2; OLR, object location recognition; OFT, open field test; PC12 cells, rat pheochromocytoma cell line; PS1, presenilin-1; PTT, probe trial test; ROS, reactive oxygen
species; RT, Rotarod test; SCO, scopolamine; SDT, step-down test; SH-SY5Y, human neuroblastoma cell line; SOD, superoxide dismutase; TAOC, total antioxidant capacity; TBARS,
thiobarbituric acid reactive substances; TH, tyrosine hydroxylase; TNF-α, tumor necrosis factor α; T-REx293, human embryonic kidney cell line transiently transfected with Aβ42-EGFP;
t-BHP, tert-butylhydroperoxide; 4-HNE, 4-hydroxynonenal; 5-HT, 5-hydroxytryptamine; 6-OHDA, 6-hydroxydopamine; 8-OHDG, 8-hydroxydeoxyguanosine.
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3.1. Effects on Alzheimer’s Disease

AD is characterized by amyloid plaques and neurofibrillary tangles in the brain, which lead to
progressive memory loss and cognitive decline [143]. As global population ages, AD has become a
major public health concern. Among therapeutic and nutritional interventions, growing evidence has
shown that adequate intake of antioxidants may be helpful to reduce neuronal damages and alleviate
AD symptoms [144,145]. For example, dietary intake of α-tocopherol or combined tocopherols shows
beneficial effects to alleviate age-related cognitive decline and lower AD risk [146,147].

Antioxidant polysaccharides from various food sources are also found to inhibit Aβ-mediated
neurotoxicity in experimental models (Table 2). The polysaccharide PS-WNP from the medicinal food
Polygonatum sibiricum, for instance, is shown to significantly attenuate Aβ-induced apoptosis of PC12
cells by alleviating mitochondrial dysfunction, regulating apoptosis-related protein Bax and Bcl-2
levels, inhibiting apoptotic executor caspase-3 activation and enhancing Akt phosphorylation [105].
In rats injected with Aβ40 aggregates, fucoidan is shown to attenuate learning and memory deficits
by elevating SOD and GPx activities and decreasing MDA content, Bax/Bcl-2 ratio and caspase-3
activity in hippocampal tissue [104]. Using transgenic C. elegans models that overexpress Aβ proteins,
the D. indusiata polysaccharide DiPS is shown to alleviate chemosensory behavior dysfunction, which
is associated with reduction of ROS level and MDA content, increase of SOD activity and alleviation of
mitochondrial dysfunction [58]. Antioxidant polysaccharides are also shown to modulate pathogenic
protein aggregation, e.g., L. barbarum polysaccharides can reduce Aβ42 protein level in hippocampal
tissue and improve the performance of learning and memory in APP/PS1 mice [109]. Intriguingly, L.
barbarum polysaccharide is also shown to inhibit the apoptosis and reduce cleaved-tau protein level,
the main component of neurofibrillary tangles in AD patients, in rat primary cortical cells exposed to
homocysteine, a sulfur-containing amino acid associated with several NDD [128]. Moreover, several
studies have uncovered that the regulatory effect of polysaccharides on protein aggregation is through
the interaction with aggregation-prone proteins, and this effect is influenced by the chemical structure
of polysaccharides. For example, four glycosaminoglycans from different animal tissues are shown
to inhibit the neurotoxicity of serum amyloid P component and its interaction with Aβ, and the
inhibitory efficacy is correlated with the uronic acid content in glycosaminoglycans [148]. In addition,
the well-known glycosaminoglycan heparin is reported to bind with Aβ and promote amyloid
fibrillogenesis, while low molecular weight heparin can prevent Aβ aggregation by blocking β-sheet
formation and inhibiting fibril formation, suggesting that the molecular weight of polysaccharides
may also affect their interaction with proteins [149,150]. Together, these studies demonstrate that
the neuroprotective effects of food-derived polysaccharides in AD-like models correlate with their
modulation of oxidative and related stresses.

3.2. Effects on Parkinson’s Disease

PD is a chronic and progressive NDD characterized by selective loss of dopaminergic neurons in
the substantia nigra pars compacta and abnormal accumulation of Lewy bodies in these neurons [151].
The major clinical symptoms of PD include motor symptoms such as tremor and bradykinesia, and
neuropsychiatric symptoms such as cognitive decline and anxiety [152]. Current clinic therapy for PD
only concentrates on symptomatic management as the available therapeutics do not prevent disease
progression [153].

Recent studies have shown that several food-derived antioxidant polysaccharides are capable
of inhibiting the neurotoxicity mediated by MPTP and 6-OHDA, which can selectively induce
dopaminergic neuron death and cause PD-like motor deficits in experimental models (Table 2). For
instance, the polysaccharides from the seaweed Saccharina japonica and from the sea cucumber Stichopus
japonicus can increase 6-OHDA-induced reduction of cell viability in SH-SY5Y cells and murine
embryonic stem MES 23.5 cells, respectively [119,142]. The S. japonicus polysaccharides are shown to
increase SOD activity, regulate the level of apoptosis-related proteins, inhibit NF-κB and p38 MAPK
activation and activate PI3K/Akt pathway, indicating the involvement of antioxidant, anti-apoptotic
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and anti-inflammatory signaling pathways in its neuroprotective effect [119]. Using MPTP-injected
mouse models, low molecular weight fucoidan DF and its two fractions DF1 and DF2 are shown
to ameliorate dopaminergic neuron injury and prevent dopamine depletion in the substantia nigra
through enhancing antioxidant enzyme activities and inhibiting neuronal apoptosis [154]. Interestingly,
DF1 exerts better neuroprotective activity than DF and DF2 in general, and their monosaccharide
compositions are different: DF1 is a hetero-polysaccharide with low content of fucose and high
content of uronic acid and other monosaccharides, while DF2 mainly consists of fucose and galactose,
suggesting that chemical composition may play an important role in the neuroprotective activity
of fucoidan [154]. In addition, a polysaccharide from the edible microalga Chlorella pyrenoidosa is
recently shown to reduce bradykinesia, inhibit the loss of striatal dopamine and its metabolites, and
increase tyrosine hydroxylase in MPTP-injected mice [117]. The polysaccharide can also elevate
the levels of small intestinal secretory immunoglobulin A, a protein that is crucial for the immune
function of mucous membranes, in mice serum [117], and has been previously shown to enhance
immune function [155]. As immune system dysfunction is known to contribute to PD development
and progression [156], immune-related therapies may be a useful strategy to reduce disease risks and
retard disease progression [157].

3.3. Effects on Huntington’s Disease

HD is an autosomal-dominant neurodegenerative disorder that is clinically manifested by a
variety of motor, cognitive and psychiatric deficits [158]. This disease is caused by an abnormal
expanded CAG trinucleotide repeat in the huntingtin gene on the short arm of chromosome 4. In
normal individuals, the average number of CAG repeats in the huntingtin gene is 17–20; when the
number of repeats exceeds 36, the risk of developing HD is significantly increased [159]. The prevalence
of HD varies geographically, with the highest rates in Europe (~10–15 per 100,000 individuals) and
lower rates in Asia and Africa [160]. Similar with AD and PD, currently there is no efficient treatment
for HD.

Among various pharmacological interventions, natural antioxidants such as epigallocatechin
gallate and salidroside have been found to alleviate HD-like symptoms in transgenic cellular and
animal models [161,162]. Interestingly, several recent studies have uncovered that food-derived
antioxidant polysaccharides also have beneficial effects in HD-like animal models (Table 2).
For example, the E. brevicornum polysaccharide EbPS-A1 can alleviate polyQ-mediated chemosensory
dysfunction in transgenic C. elegans model HA759 [38], which expresses a polyQ tract of 150 glutamine
repeats in amphid sensilla (ASH) neurons, leading to progressive ASH death and chemotactic behavior
deficit [163]. EbPS-A1 also reduces ROS level, inhibits lipid peroxidation and enhances antioxidant
enzyme activities in HA759 nematodes, indicating that the antioxidant activity of the polysaccharide
contributes to its protective effect against polyQ neurotoxicity [38]. Other studies suggest that
some antioxidant polysaccharides exert their neuroprotective effects by targeting polyQ aggregate
itself, e.g., L. barbarum polysaccharide not only increases the viability of HEK293 cells that express
mutant-huntingtin containing 160 glutamine repeats but also improves motor behavior and lifespan in
HD-related transgenic mice [122]. The neuroprotective effect of L. barbarum polysaccharide against
mutant-huntingtin toxicity in both cellular and mouse models are shown to be associated with reducing
mutant-huntingtin levels and activating AKT [122]. These studies provide an important insight into
the therapeutic potential of food-derived antioxidant polysaccharides in HD.

3.4. Effects on Other Neurodegenerative Symptoms

Several recent studies have shown that food-derived antioxidant polysaccharides are capable of
inhibiting excitatory amino acid-mediated neurotoxicity, which is implicated in many NDD [99,164].
For instance, L. barbarum polysaccharide can increase cell viability and suppress JNK activation
in glutamate-exposed rat primary cortical neurons [129], suggesting an involvement of MAPK
pathway in the neuroprotective effect of the polysaccharide. Another example is G. lucidum
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polysaccharide, which is shown to alleviate epileptic symptoms and up-regulate the expression
of calcium/calmodulin-dependent protein kinase II, a kinase that plays an important role in calcium
transfer in neurons, in kainic acid-injected rats [123]. As calcium overload mediates excitatory
amino acid-induced neurotoxicity [164], prevention of calcium transporting may contribute to this
neuroprotective effect of G. lucidum polysaccharide. In addition, other chemicals can also induce
cognitive impairment and behavior deficit through increase of oxidative and inflammatory stresses,
and the polysaccharides isolated form mushrooms, medicinal herbs and algae are reported to attenuate
neurodegenerative symptoms induced by these toxic chemicals. For instance, a polysaccharide from
Pleurotus ostreatus can decrease escape latency in Morris water maze test and increase passive avoidance
latency in step-down test in rats under D-galactose and aluminum chloride challenge [125]. P. ostreatus
polysaccharide also reduces MDA level and elevates SOD, GPx and CAT activities [125], indicating that
the behavior-improving capability of the polysaccharide correlates with reduction of oxidative stress.

A large body of evidence has confirmed that oxidative stress can interact with many other stresses
to induce neurodegeneration, indicating its significant role in NDD development. Food-derived
antioxidant polysaccharides are recently shown to alleviate neuronal injury, death and dysfunction
through modulation of multiple oxidative stress-related pathways, including antioxidant defense
system, mitochondrial function, peroxidation products, protein aggregation, inflammation and
stress-related signaling (Figure 1), demonstrating their pharmacological potentials in NDD.
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Figure 1. Pharmacological intervention of neurodegeneration by food-derived antioxidant polysaccharides.
A number of extrinsic and intrinsic stresses such as proteotoxic stress, inflammatory stress and chemical
interruption can stimulate oxidative stress through impairing the function of antioxidant system
and mitochondria. Increase of oxidative stress can promote pathogenic protein aggregation and
inflammation, eventually leading to neuronal injury, death and dysfunction via multiple biochemical
pathways (solid line). However, food-derived antioxidant polysaccharides can exert beneficial effects
to suppress neurodegeneration via attenuating oxidative, inflammatory and proteotoxic stresses and
regulating stress-related signaling (dashed line).
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4. Conclusions

Food-derived polysaccharides have been shown to scavenge free radicals in vitro and reduce
oxidative damages in cellular and animal models, and their in vivo antioxidant capacities are related
with regulation of peroxidation products, antioxidant defense system and stress-related signaling.
As oxidative stress is closely associated with neurodegeneration, some antioxidant polysaccharides are
also tested for their anti-NDD activity and found to attenuate neuronal damages and dysfunction in a
number of neurodegenerative models. The neuroprotective effects of polysaccharide are associated
with alleviation of multiple stresses, including oxidative, inflammatory and proteotoxic stresses
(Figure 1). Therefore, consumption of foods rich in antioxidant polysaccharides may not only reduce
oxidative damage but also provide protection against oxidative stress-related disorders. It is noted that
most recent studies focus on the antioxidant polysaccharides from terrestrial plants and fungi, and
relatively less attention is paid to marine organisms although they represent a rich resource of bioactive
polysaccharides. In addition, many food-derived antioxidant polysaccharides are shown to have
potent immunomodulatory effects, and therefore it would be interesting to explore the involvement of
immunomodulation in the neuroprotective effect of antioxidant polysaccharides.
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