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Abstract: Epidemiological evidence strongly suggests that fruit consumption promotes many health
benefits. Despite the general consensus that fruit and juice are nutritionally similar, epidemiological
results for juice consumption are conflicting. Our objective was to use DNA methylation marks to
characterize fruit and juice epigenetic signatures within PBMCs and identify shared and independent
signatures associated with these groups. Genome-wide DNA methylation marks (Illumina Human
Methylation 450k chip) for 2,148 individuals that participated in the Framingham Offspring exam 8
were analyzed for correlations between fruit or juice consumption using standard linear regression.
CpG sites with low P-values (P < 0.01) were characterized using Gene Set Enrichment Analysis
(GSEA), Ingenuity Pathway Analysis (IPA), and epigenetic Functional element Overlap analysis of
the Results of Genome Wide Association Study Experiments (eFORGE). Fruit and juice-specific low
P-value epigenetic signatures were largely independent. Genes near the fruit-specific epigenetic
signature were enriched among pathways associated with antigen presentation and chromosome or
telomere maintenance, while the juice-specific epigenetic signature was enriched for proinflammatory
pathways. IPA and eFORGE analyses implicate fruit and juice-specific epigenetic signatures
in the modulation of macrophage (fruit) and B or T cell (juice) activities. These data suggest a role
for epigenetic regulation in fruit and juice-specific health benefits and demonstrate independent
associations with distinct immune functions and cell types, suggesting that these groups may not
confer the same health benefits. Identification of such differences between foods is the first step
toward personalized nutrition and ultimately the improvement of human health and longevity.

Keywords: personalized nutrition; DNA methylation; epigenetics; fruit consumption;
juice consumption

1. Introduction

Fruit and vegetable consumption is a common dietary recommendation to support good health.
Multiple components of fruits and vegetables (predominantly phytochemicals and fiber) have been
shown to promote health and support immune function [1–3]. Moreover, epidemiological evidence has
shown that increased fruit and vegetable consumption as part of a healthy diet reduces the incidence
of a myriad of chronic inflammatory illnesses, such as cardiovascular diseases [4–7], cancer [8,9],
asthma [10], and more generally mortality [11–13]. However, the results are conflicting for juice
consumption [14–18] (reviewed in [19]). Currently, the USDA recommends a daily intake of 1.5–2 cups
of fruit per day for healthy adults and reports that one-third of this daily intake of fruit is consumed
in the form of juice [20]. Although juice is generally thought to be nutritionally similar to fruit,
because they both contain polyphenols, vitamins, and minerals. In many instances, juice lacks the fiber
component found in fruit which may alter the intestinal location and mechanism by which fruit
derived nutrients are absorbed and ultimately processed [21] (reviewed in [22]). This difference
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could result in different health benefits conferred by each group. Given the broad role that fruit and
juice consumption plays on immune function, such as inflammatory response and oxidative stress
(reviewed in [2]), surprisingly little is known about the underlying molecular mechanisms by which
these immunological health benefits are conferred. Knowledge of the mechanisms by which fruit
or juice consumption modulate intrinsic cell signaling pathways and how these pathways relate to
normal physiological function may contribute to improvement in human health and longevity, through
personalization of nutritional intake.

Epigenetics is a growing field that is capable of identifying underlying pathways associated
with complex phenotypes. DNA methylation in particular is widely studied and has been shown to
be a marker of environmental changes associated with disease (reviewed in [23]) and nutrition [3,24,25].
Identification of epigenetically-regulated pathways and molecules associated with these states
have been instrumental in understanding the underlying molecular mechanisms associated with
disease [26–28] or nutritional states [29,30] (reviewed in [31]). We hypothesized that the epigenetic
signatures associated with fruit or juice intake will provide insight into the molecular mechanisms that
underlie previously established physiological effects on immune function as well as allow assessment
of the degree of shared and independent pathways between these two groups. To this end, we analyzed
genome-wide DNA methylation profiles from 2,148 individuals of the Framingham Offspring cohort
and discovered that fruit and juice consumption are largely comprised of independent epigenetic
signatures (approximately 2% overlapping CpG sites) that target approximately 18% of the same
genes. Pathway analyses demonstrate that genes near the fruit-associated epigenetic signature
are enriched for immunosurveillance as well as DNA repair and maintenance pathways. While
genes near the juice-associated epigenetic signature are enriched for proinflammatory signaling and
immunotolerance pathways. Collectively, these data suggest that fruit and juice consumption associate
with distinct areas of immune function, hinting that these foods may not confer the same health benefits.

2. Materials and Methods

2.1. Study Participants

The present study included 2,148 Caucasian individuals that participated in the Framingham
Heart Study Offspring cohort exam 8 from 2005–2008 and had all relevant phenotype information and
genome-wide DNA methylation data available. Participants consisted of 979 men and 1,169 women
ranging in age from 40–92 (median 65). As previously described [32], the FHS offspring cohort
was recruited in 1971 and included 5124 offspring from the original FHS cohort and their spouses.
Anthropomorphic measurements used were obtained at the Offspring exam 8.

2.2. Dietary Measures

Dietary intake was assessed with the semi quantitative Framingham food frequency questionnaire
(FFQ) [33,34]. FFQs were mailed to non-institutionalized participants before the examination and
the participants were asked to bring the completed questionnaire to their appointment. Participants
reported how often, on average, they consumed a standard portion of each food item during the past
year. Reported frequencies were used to estimate the number of usual daily/weekly servings of
each item. Derived weekly servings of each food item were used in our analyses and used to create
2 categories: fruit and juice (Table S1). We used the residuals method to adjust the assessed foods for
total energy intake.

2.3. DNA Methylation Data Processing

DNA isolated from peripheral blood mononuclear cells (PBMCs) were assayed previously
with the Infinium Human Methylation450K Bead Chip [35] (Illumina) and deposited in dbGaP
[Study Accession: phs000724.v6.p10]. Genome-wide DNA methylation levels from 2,619 FHS
participants were available for download. Probes located on the sex chromosomes or those that



Nutrients 2017, 9, 752 3 of 11

had detection P-values greater than 0.001 in 75% of samples were removed. Those mapping to
more than one location in a bisulfite-converted genome or overlapping with the location of known
single nucleotide polymorphisms (SNPs) were also removed [36]. Among the 485,000 probes on
the array, 325,963 probes were carried forward and processed using the minfi package [37]. Infinium
type I and type II probe bias was corrected for using the subset-quantile within array normalization
(SWAN) algorithm [38]. Raw probe values were corrected for color imbalance and background by
controls normalization. Methylation levels are reported as β values, which are the fraction of signal
obtained from the methylated beads over the sum of methylated and unmethylated bead signals.
Among the 2619 individuals available for analysis, 12 individuals failed QC and were removed from
further analysis.

Principal component analysis was used to determine the effects of known confounding
variables on global methylation profiles. Chip, chip location, gender, age, and family relatedness
were significantly associated with principal components (Figure S1, Table S2). Family relatedness
was determined based on shared pedigrees, which included unrelated spouses as a conservative
approach to account for shared environmental factors [39]. Chip and chip location effects were removed
using COMBAT, while protecting fruit and juice consumption [40]. Surrogate variable analysis
(SVA) was used to identify additional unknown technical or biological confounding variables in the
COMBAT-adjusted residuals [41], such as white blood cell count composition [42]. Surrogate variables
were also strongly associated with known covariates such as age, gender, relatedness, and disease status
(Table S3). Residual COMBAT-adjusted methylation β values were used for all subsequent analyses.

2.4. Statistical Analyses

Data were analyzed using R software (v3.3.1, R Foundation for Staistical Computing,
Vienna, Austria). To assess the association of fruit consumption on DNA methylation levels at each
CpG site, we performed a linear regression analysis using the R package limma [43] with the surrogate
variables included as covariates. Gender, phenotype, relatedness, and disease status were captured by
SVA (Table S3), and thus were not specifically accounted for in the regression model. Linear regression
was performed on the 2,148 Caucasian individuals passing QC for which we had necessary phenotype,
FFQ, and DNA methylation information.

Empirical P-values were derived from 10,000 permutations. To assess low P-value enrichment,
we permuted fruit or juice consumption then used linear regression to assess the correlation between
CpG sites with a P < 0.01 (low P-value CpG sites; N = 5,221 and 5,434 for fruit and juice, respectively).
Surrogate variables were again included as covariates in this model. We compared the P-value
distributions between permuted and observed data using a t-test and recorded the number of times
the permuted distribution was significantly elevated relative to the observed distribution. Empirical
P-values for enrichment of overlapping low P-value CpG sites or nearby genes were determined
by randomly selecting 5,221 and 5,434 CpG sites or 4,323 and 4,539 unique genes for fruit or juice
consumption and recording the number of times the permuted overlap was greater than the observed
overlap of 108 CpG sites or 1,246 genes. Violin plots and Venn diagrams were created using the R
package vioplot and VennDiagram. DNase hypersensitivity site (DHS) enrichment for fruit and
juice-specific epigenetic signatures were performed using epigenetic Functional element Overlap
analysis of the Results of Genome Wide Association Study Experiments (eFORGE) [44]. eFORGE only
accepts 1000 CpG sites, therefore a threshold of P < 0.001 was used for this analysis, resulting in 739
and 749 CpG sites submitted for fruit and juice analyses respectively.

2.5. Pathway Enrichment Analyses

Pathway enrichment analyses were performed using gene set enrichment analysis (GSEA) [45].
Genes within 5 kb of a low P-value CpG site were used. The top 100 pathways or those with
a false discovery rate (FDR) <5% were reported. Gene lists of interest were also interrogated using
Ingenuity Pathway Analysis (IPA) and network associations were constructed using the Ingenuity
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Knowledge Base. Network interactions were limited to those known in primary immune cells, while
all other factors were kept at their default settings. The network score is based on the hypergeometric
distribution of the network and is calculated with a right-tailed Fisher exact test to identify enrichment
of those genes that were associated with fruit or juice consumption relative to the IPA database.
A diagram illustrating the data analysis overview is presented in Figure S2.

3. Results

3.1. Fruit and Juice Epigenetic Signatures

The global effect of methylation changes on epigenetically regulated pathways of complex
phenotypes can be ascertained from the combination of multiple CpG sites with relatively small
effects and not the effects of individual CpG sites [26,27], thus we tested the P-value distribution of
each study for an enrichment of low P-values (P < 0.01). There were 5,221 and 5,434 low P-value CpG
sites for fruit and juice respectively (blue line; Figure 1A,B; Tables S4 and S5). Both fruit and juice
consumption were enriched for low P-values (empirical P < 1 × 10−5 for both studies; Figure 1C,D;
Figure S3). The epigenetic signatures (P < 0.01) associated with fruit or juice consumption were largely
independent, with only two percent shared (108 CpG sites) between analyses. This is slightly more
than expected by chance (empirical P = 0.01; expected overlap = 84).
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To assess whether low P-value CpG sites were near the same genes in each study, sites were 
mapped to the human genome (hg19 coordinates) and the gene with the nearest transcription start 
site was recorded. Among low P-value CpG sites that were within 5 kb of a gene transcription start 
site in each study, 27% (juice) and 29% (fruit) of associated genes overlapped or were shared between 
analyses (N = 1,246). This is enriched by 1.5-fold over the expected number of 804 shared genes 

Figure 1. Fruit and juice epigenetic signatures. Manhattan plot of the 325,963 CpG sites in our analysis
of fruit (A) or juice (B) -associated DNA methylation. The y-axis is the −log10 P-value of our regression
analysis. −Log 10 P-values (y-axis) correspond to degree of correlation between DNA methylation and
fruit consumption. The red line corresponds to a false discovery rate (FDR) threshold of 10%. The blue
line corresponds to low P-value CpG sites (P < 0.01). Violin plot showing the distribution of median
permutation P-values (N = 10,000) for the 5,221 and 5,434 shared CpG sites from fruit (C) and juice (D)
analyses. Venn diagram depicting the number of shared and independent CpG sites (E) or genes (F)
between fruit (red line) and juice (blue line) analyses.

To assess whether low P-value CpG sites were near the same genes in each study, sites were
mapped to the human genome (hg19 coordinates) and the gene with the nearest transcription start
site was recorded. Among low P-value CpG sites that were within 5 kb of a gene transcription start
site in each study, 27% (juice) and 29% (fruit) of associated genes overlapped or were shared between
analyses (N = 1,246). This is enriched by 1.5-fold over the expected number of 804 shared genes
(empirical P < 1 × 10−5). This suggests that although fruit and juice epigenetic signatures are largely
independent, they may be influencing a large portion of the same genes.
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3.2. GSEA of Fruit and Juice Epigenetic Signatures

To determine the pathways enriched among shared genes, we performed two separate gene set
enrichment analyses: (1) genes near CpG sites in which the correlation between CpG site methylation
levels and food consumption were in the same direction for both groups (N = 635 genes), i.e., increased
fruit and juice consumption are both associated with increased CpG site methylation levels or increased
consumption is associated with decreased CpG site methylation levels and (2) genes near CpG
sites in which the correlation between CpG site methylation levels and food consumption were in
opposite directions (N = 611 genes), i.e., decreased fruit consumption is associated with increased
CpG site methylation levels and increased juice consumption is associated with decreased CpG site
methylation levels and vice versa. Gene sets from the first analysis were enriched for many pathways
associated with extracellular matrix assembly and function which may promote tissue development
and homeostasis, such as core matrisome, extracellular matrix organization, and collagens, among
others (Table S6A). Gene sets from the second analysis, i.e., genes associated with opposing epigenetic
signatures, were enriched for many pathways associated with cell cycle, telomerase regulation, and
development, but also genes involved in the immune system, specifically the adaptive immune system
and pathways such as antigen processing and cross presentation (Table S6B). This suggests that fruit
and juice epigenetic signatures that are associated with the same genes may have opposing influences
on cell cycle and immune system-related pathways.

Pathways enriched for genes near fruit and juice epigenetic signatures were identified using
GSEA (N = 1,843 and 1,872 genes, respectively). While both fruit and juice epigenetic signatures were
near genes enriched for many of the same pathways; immune system, cytokine signaling, and cell cycle
for example, the genes and associative cell signaling pathways underlying these enrichments are quite
different and unique to each group. The juice-specific epigenetic signature was enriched for innate and
adaptive immune system genes, more specifically transforming growth factor (TGF)-β, vascular endothelial
growth factor (VEGF), toll-like receptor (TLR)4 and nuclear factor kappa-light chain enhancer of activated B
cells (NFk-β) signaling pathways, among others (Table S7). Juice-specific cytokine signaling pathway
genes include myeloid differentiation primary response (MYD)88, interferon regulatory factor (IRF)8 and
IRF4, which are immune specific transcription factors required for immune cell processes such as T cell
differentiation to T helper (Th)2 and Th17 or activation of B cells (reviewed in [46]). Juice consumption
has been broadly associated with enhanced immune function; these data suggest specific epigenetically
regulated proinflammatory pathways that may contribute.

In contrast, immune system genes that are associated with the fruit-specific epigenetic signature
were enriched for only adaptive immune system pathways, specifically antigen processing presentation.
Cytokine signaling genes near the fruit-specific epigenetic signature include human leukocyte antigen
(HLA)-F and HLA-DPB1, both molecules involved in antigen presentation and immune cell activation.
This is consistent with a previous interventional study in elderly individuals, where fruit consumption
was associated with increased antigen presentation [47]. Moreover, both groups were enriched
for general cell cycle, meiosis and mitosis pathways, but the fruit-specific epigenetic signature
was associated with 17% more genes in these pathways than the juice-specific epigenetic signature
(75 versus 62 genes, respectively). Additional fruit-specific pathways include those involved in cell
cycle regulation and chromosome or telomere maintenance, which are important to promote healthy
growth and aging of the immune system (Tables S7 and S8) [48,49]. Collectively, these data indicate
fruit and juice consumption-associated epigenetic modifications may influence different areas of
immune system function.

3.3. IPA of Fruit and Juice Epigenetic Signatures Near Shared Genes

DNA methylation profiles of WBCs are derived from a pool of lymphocytes. To elucidate
epigenetically associated pathways that may implicate specific lymphocyte populations, we performed
IPA network analyses to identify specific protein–protein interaction networks that are enriched for
genes near fruit and juice-specific epigenetic signatures. The fruit-specific analysis resulted in two
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significant protein–protein interaction networks (Figure 2A; Figure S4A; network scores 38 for both).
One network is centered around colony stimulating factor (CSF)2, chemokine ligand (CCL)4, and
cluster of differentiation (CD)4 (Figure 2A), all molecules associated with macrophage attraction,
proliferation, and activation [50,51]. This is consistent with the above GSEA enrichment of antigen
presenting processes and suggests that macrophage mediated antigen presentation may be influenced
by fruit-specific epigenetic signatures.

The juice-specific analysis also produced two significant networks (Figure 2B; Figure S4B; network
score 38 for both). The first network (Figure 2B) is centered on tumor necrosis factor (TNF)α,
a major proinflammatory cytokine that mediates innate immune system acute inflammatory responses,
and CSF3, a molecule that stimulates granulocyte production in bone marrow and release into
the bloodstream [52]. The second is centered on MYD88, IRF8, IRF4 and inhibitor of DNA binding (ID)3,
immune specific transcription factors required for immune cell processes such as T cell differentiation
to Th2 and Th17 or activation of B cells [53] (reviewed in [46]), as well as C-C motif chemokine receptor
(CCR)7 a molecule associated with Th1 cell differentiation and tolerance [54]. These data concur
with GSEA analyses that implicated innate and adaptive immune pathway association with the juice
epigenetic signature. Collectively, IPA analyses add further information on fruit or juice-specific
epigenetically associated cell signaling pathways by which immunotolerance (fruit) or inflammatory
processes (juice) may be influenced.
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Figure 2. Ingenuity pathway analysis protein–protein interaction networks derived from genes within
5 kb of a low P-value CpG site (P < 0.01). (A) Fruit associated network 1 is centered on colony
stimulating factor (CSF)2, cluster of differentiation (CD)4, and C-C motif chemokine ligand (CCL)4
(network score 38); (B) Juice associated network 1 is centered on tumor necrosis factor (TNF) and colony
stimulating factor (CSF)3 (network score 38). Genes that were associated with fruit or juice-specific
epigenetic signatures are colored in orange or blue, respectively.

3.4. DHS Enrichment Analysis

To increase our knowledge of the immune cell populations that are associated with juice and
fruit-specific epigenetic signatures, we scanned genome-wide DNase hypersensitivity sites from
specific immune cell populations for enrichment of these signatures using the online program
eFORGE [44]. The fruit-specific epigenetic signature (N = 739 CpG sites; P < 0.001) was enriched
within natural killer (NK) cell DHS (P = 0.00011; Figure S5A). The juice-specific epigenetic signature
(N = 749 CpG sites; P < 0.001) was enriched for primary peripheral blood T, NK, and B cell DHS, as well
as primary monocyte DHS (P = 5.14 × 10−6, 9.17 × 10−6, 0.0018, 4.65 × 10-4 respectively; Figure S5B).
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This is consistent with IPA analyses, which highlight the enrichment of cell signaling pathways
associated with B and T cell differentiation and activation. To assess the direction of effect, i.e., whether
increased juice consumption was correlated with reduced CpG site methylation levels (negatively
correlated) or with increased methylation levels (positively correlated), we stratified the CpG sites with
a P < 0.001 by those that were positively or negatively correlated with fruit or juice consumption and
re-ran the eFORGE analyses. There was not an enrichment for either subset of fruit-specific CpG sites or
positively correlated juice CpG sites (Figure S5C–E). Negatively correlated CpG sites were enriched for
primary T (P = 2.22 × 10−4) and NK (P = 5.63 × 10−5) cell DHS (Figure S5F), suggesting that increased
juice consumption may reduce global DNA methylation levels within DHS of specific primary immune
cell populations, specifically T and NK cell regulatory regions.

To better understand what pathways the above sites may influence in B and T cells, we performed
IPA protein–protein interaction network analysis to identify specific pathways enriched for genes
near low P-value CpG sites that had less methylation with increased juice consumption. This analysis
produced two networks. One network was centered on TNF (Figure S6; network score = 43) a major
proinflammatory molecule, while the second was centered on ID3, protein tyrosine phosphatase,
non-receptor type 6 (PTPN6), and CCR7 (network score = 43), molecules involved in hematopoietic
cell differentiation [55] and tolerance [54,56]. Reduced methylation in promoter regions is frequently
associated with increased gene expression, therefore the observed reduction in promoter methylation
with increased juice intake may enhance pathway signaling upon NK or T cell activation. Interestingly,
increased NK cell lytic activity has been associated with increased fruit juice consumption [57].
Collectively, this suggests that juice-specific epigenetic signatures may promote enhanced immune
responses among activated NK and T cells, a subset of which also supports increased cell differentiation
and immunotolerance.

4. Discussion

The field of nutritional epigenomics allows the molecular level assessment of nutrient-induced
changes in the body through the identification of nutrient-gene or more globally nutrient–pathway
interactions. Nutrient-induced epigenetic modifications can alter a myriad of cellular responses
to environmental stimuli [58], such as immune response to infection. We applied this approach to
compare and contrast the epigenetically associated pathways correlated with fruit or juice consumption
in PBMCs. In general, our findings support the well-defined effect of fruit and juice consumption on
immune health, specifically reduced DNA damage and immune system activation (reviewed in [2,59]).
Moreover, we demonstrate that fruit and juice-associated epigenetic signatures are distinct from one
another and associated with different underlying cell signaling pathways. This was observed not
only in independent fruit and juice-specific epigenetic signatures but also among shared genes which
appeared to be associated with opposing epigenetic signatures (and presumably gene expression)
among immune related pathways. This is in contrast to the common conception that fruit and juice
are nutritionally similar and thus confer similar beneficial effects. In fact, the data presented suggest
that fruit and juice consumption modulate different aspects of immune function, with genes near
the juice epigenetic signature enriched for pathways associated with proinflammatory response and
immunotolerance, while genes near the fruit epigenetic signature are enriched for immunosurveillance
and chromosome or telomere maintenance pathways. Collectively, our results suggest that fruit and
juice consumption may not confer the same immune health benefits and provides novel pathways and
immune functions for further study.

The epigenetic differences observed in our study may be attributable to variation in fruit
fiber content between fruit and juice. Fiber, a largely indigestible molecule, alters the digestion
rate of co-consumed nutrients and thus influences the intestinal location and mechanism by
which fruit derived nutrients are absorbed and ultimately processed (reviewed in [22]). Much
of this variation in intestinal absorption is likely due to variation in breakdown of nutrients by
intestinal microbiota [21,60,61], which vary in composition throughout the intestine. In support of
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this, an observational study demonstrated that the anti-inflammatory effects of fruit and vegetable
consumption were higher in individuals with elevated fiber intake from fruit and vegetables [62].
This suggests that individuals who consume more juice may benefit from ingestion of additional forms
of fruit fiber. Regardless of the cause, our observational findings warrant further study into the specific
immunological benefits of fruit and juice consumption.

We note limitations to our study. Due to the nature of observational studies, our findings
are correlative and cannot infer causality. Additionally, we cannot discount that a portion of our
findings may be due to additional foods that may be routinely co-consumed with fruit or juice.
However, based on the literature support for our conclusions, we believe this is unlikely.

We demonstrate for the first time that juice and fruit consumption are correlated with global
epigenetic variation and that these largely independent signatures suggest that fruit and juice
consumption influence different immune cell populations and different aspects of immune function,
specifically immunosurveillance and proinflammatory pathway activation respectively. Additionally,
our analyses implicate novel epigenetically regulated target molecules and pathways associated with
these groups that afford new insight into the underlying molecular mechanisms of these associations.
An understanding of how nutritional intake contributes to physiological phenotypes, such as immune
function, is the first step toward utilization of nutrition to improve human health and ultimately
personalized nutrition.

Supplementary Materials: The following are available online at www.mdpi.com/2072-6643/9/7/752/s1,
Figure S1: Principal component analyisis of 2386 individuals with genome-wide DNA methylation data. Figure S2:
Data analysis overview diagram. Figure S3: P-value distributions of fruit and juice linear regression analysis.
Figure S4: Ingenuity pathway analysis protein–protein interaction networks derived from genes within 5 kb of
a low P-value CpG site. Figure S5: eFORGE analysis of fruit- and juice-specific CpG sites (P < 0.001). Figure S6:
Ingenuity pathway analysis protein–protein interaction networks derived from genes within 5 kb of a negatively
correlated juice-specific low P-value CpG site (P < 0.01). Table S1: Definitions for fruit and vegetable groupings,
Table S2: Principal Component Analysis Outputs, Table S3: Correlation between surrogate variables (columns)
and available Framingham traits (rows), Table S4: Linear regression results for fruit consumption, Table S5: Linear
regression results for juice consumption, Table S6: Gene set enrichment analysis results (FDR 5%) for shared genes.
Table S7: Gene set enrichment analysis results for genes associated with the fruit-specific epigenetic signature.
Table S8: Gene set enrichment analysis results for genes associated with the juice-specific epigenetic signature.
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