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Abstract: Aims: To investigate the influence of skeletal muscle mass index (SMI) as determined by
bioimpedance analysis (BIA) (appendicular skeletal muscle mass/(height)2) on survival by comparing
the Child-Pugh score in patients with liver cirrhosis (LC, n = 383, average age = 65.2 years). Patients
and methods: In terms of comparison of the effects of SMI and other markers on survival, we used
time-dependent receiver operating characteristics (ROC) analysis. Results: The average SMI for
male was 7.4 cm2/m2 whereas that for female was 6.0 cm2/m2 (p < 0.0001). As for the Child-Pugh
score, five points were in the majority, both in males (51.7%, (106/205)) and females (44.9%, (80/178)).
For both genders, the survival curve was well stratified according to SMI (p < 0.0001 for males and
p = 0.0056 for females). In the multivariate analysis for survival, SMI and Child-Pugh scores were
found to be significant both in males and females. In time-dependent ROC analyses, all area under
the ROCs (AUROCs) for SMI in each time point were higher than those for Child-Pugh scores in
males, while in females AUROCs for Child-Pugh scores at each time point were higher than those for
SMI. Conclusion: SMI using BIA can be helpful for predicting outcomes, at least in male LC patients.

Keywords: liver cirrhosis; bioimpedance analysis; skeletal muscle mass index; Child-Pugh
score; prognosis

1. Introduction

The liver is the pivotal organ for metabolism and it metabolizes carbohydrates, lipids, and proteins,
which are the so-called “three major nutrients” [1–4]. Liver cirrhosis (LC) is an end-stage form
in liver diseases and LC is characterized by several metabolic or nutritional disorders and portal
hypertension-related complications such as ascites or varices, all of which can lead to dismal clinical
outcome [1–4]. Over the past two or three decades, numerous clinical and biochemical predictors
have been proposed in an effort to more accurately predict the prognosis in LC patients and evaluate
their short and long-term survival correctly [5–9]. The Child-Pugh scoring system and the Model
for End-stage Liver Disease (MELD) scoring system are two major prognostic scoring systems in LC
patients [5–9]. In particular, the MELD score is calculated by three easily available and reproducible
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laboratory tests and is useful for predicting outcomes for patients undergoing liver transplantation
(LT) [5]. In our country, LT is not common due to the shortage of transplanted liver and the Child-Pugh
scoring system has been preferably used for assessing prognosis in LC patients.

Sarcopenia is a clinical entity as determined by skeletal muscle mass loss and decline of
muscle strength and this clinical entity has recently drawn much attention among clinicians owing
to its significant deleterious impact on outcomes [10–16]. LC can be associated with secondary
sarcopenia because of protein metabolic disorder and/or energy metabolic disorder [11,14,15].
Skeletal muscle mass loss can be linked to poorer clinical outcomes in LC patients, hepatocellular
carcinoma (HCC) patients, or patients with other malignancies [17–26]. Skeletal muscle mass can
be assessed by computed tomography (CT), magnetic resonance imaging (MRI), dual energy X-ray
absorptiometry and bioimpedance analysis (BIA), which are consistent and accurate assessment
modalities [14,15,17,19,27,28]. Among these modalities, BIA is particularly attractive since it can
noninvasively determine body composition analysis in LC patients [14,15,17,19,27,28].

However, which of two prognostic markers (i.e., the Child-Pugh scoring system and skeletal
muscle mass) has stronger influence on clinical outcomes in patients with LC remains unclear.
Addressing these questions may be clinically of significance. The aim of this study was to investigate
the influence of skeletal muscle mass as determined by data in BIA on survival compared with the
Child-Pugh score in patients with LC.

2. Patients and Methods

2.1. Patients

The current study was a single center retrospective study. Between October 2005 and October 2015,
a total of 529 LC individuals with BIA data available were admitted at the Division of Hepatobiliary and
Pancreatic disease, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan. In our
department, BIA (Inbody 720, Tokyo, Japan) was routinely performed in the resting and standing
position principally on an outpatient basis for patients who consented to nutritional evaluation.
In this analysis, skeletal muscle mass was evaluated using BIA data. Of these patients, patients
with severe ascites (n = 24) were excluded from this study as body weight, body mass index (BMI),
and skeletal muscle mass index (SMI) using BIA may be overestimated in these patients [29,30].
Twenty-three subjects had been lost to follow-up within one year after performing BIA and they
were excluded from this analysis for avoiding bias. In the remaining 482 subjects, 99 had HCC
on radiological findings at baseline and they were also excluded because presence of HCC can
affect the interpretation of BIA data. A total of 383 subjects were therefore analyzed in the current
study. Follow-up observation after BIA included periodical blood tests, radiological assessments by
ultrasonography (US), CT, or MRI in order to detect HCC incidence every 3–6 months. There was
no patient who underwent LT during observation period. LC was diagnosed using pathological
findings, radiological findings such as US, CT, or MRI and/or laboratory data including liver fibrosis
markers [31–33]. In patients with lower serum albumin level (less than 3.5 g/dL), liver supporting
therapies including branched-chain amino acid (BCAA) treatment or late evening snack with BCAA
enriched snacks were in consideration [4,34,35]. In patients with hepatitis virus-related LC, antiviral
treatments including direct acting antivirals, interferon-based regimens or nucleoside analogues
therapy were also in consideration [4,34]. SMI was calculated as reported elsewhere [28]. Briefly,
SMI was defined as “appendicular skeletal muscle mass/(height (m))2” [28]. We retrospectively
investigated the influence of SMI on survival in males and females, as compared with Child-Pugh
scores, which was well established prognostic marker [7–9]. In terms of the comparison of the effects
of SMI and other markers on survival, we used time-dependent receiver operating characteristics
(ROC) analysis [36]. We also investigated parameters associated with overall survival (OS) in the
univariate and multivariate analyses. HCC diagnosis and treatment choices for HCC were as reported
elsewhere [37,38].
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The ethical committee meeting in Hyogo College of Medicine acknowledged the current study
protocol and this study strictly followed all regulations of the Declaration of Helsinki.

2.2. Statistical Analyses

Categorical parameters were compared by Fisher’s exact test. Continuous parameters were
compared by unpaired t-test, Mann-Whitney U test, or Kruskal-Wallis test, as applicable. In continuous
parameters, ROC curve analysis for survival was conducted for the purpose of setting the optimal
cutoff point that is linked to maximal sum of specificity and sensitivity and we classified continuous
parameters into two groups using these cutoff points, which was then treated as dichotomous
covariates in the univariate analysis. Survival curve was created by using the Kaplan-Meier method
and compared in the log-rank test. Parameters with p value < 0.05 in the univariate analysis were
finally subjected to the multivariate analysis in the Cox proportional hazards model. OS was defined
as the time interval from the date of performing BIA until death from any cause or the last follow-up
visit. Additionally, we analyzed time-dependent ROC curves of SMI, Child-Pugh scores, and variables
which revealed to be significant in the multivariate analysis for survival, and compared between area
under the ROCs (AUROCs) for above parameters in each time point (two-, three-, four-, five-, six-,
and seven-years) [36].

Data are shown as the average ± standard deviation (SD) unless otherwise mentioned. Statistical
significance was set at p < 0.05. Statistical analysis was performed with the JMP 11 (SAS Institute Inc.,
Cary, NC, USA).

3. Results

3.1. Baseline Characteristics

The baseline characteristics of the analyzed subjects (n = 383) are presented in Table 1. They
included 205 males and 178 females with an average ± SD age of 65.2 ± 10.3 years. The median
follow-up periods were 3.2 years (range: 0.2–10.7 years). The average ± SD value in SMI for male
was 7.4 ± 0.9 cm2/m2 whereas that for female was 6.0 ± 0.7 cm2/m2 (p < 0.0001). According to the
Asian Working Group for Sarcopenia criteria (AWGS), the cut-off values for SMI are 7.0 kg/m2 for
male and 5.7 kg/m2 for female. [28] The proportion of decreased SMI (D-SMI: less than each cutoff
value as defined by AWGS criteria) in male was 36.1% (74/205) and that in female was 34.8% (62/178).
A total of 136 patients (35.5%) had D-SMI. As for Child-Pugh scores, five points was in the majority,
both in males (51.7%, (106/205)) and females (44.9%, (80/178)). In males, SMI significantly correlated
with age (overall significance, p < 0.0001), while in females it did not (overall significance, p = 0.1921)
(Figure 1A,B). In both males and females, SMI significantly correlated with BMI (p values, both <0.0001)
(Figure 1C,D). In both males (p = 0.3716) and females (p = 0.1330), SMI did not significantly correlate
with the Child-Pugh classification (Figure 1E,F).

3.2. Cumulative OS Rates for the Entire Cohort, Male and Female According to SMI

For the entire cohort (n = 383), the one-, three-, and five-year cumulative OS rates were 92.7%,
82.4%, and 59.2%, respectively, in patients with D-SMI, and 97.2%, 92.2%, and 84.4%, respectively,
in patients without D-SMI (p < 0.0001) (Figure 2). For males (n = 205), the one-, three-, and five-year
cumulative OS rates were 91.9%, 78.0%, and 53.6%, respectively, in patients with D-SMI, and 96.2%,
92.0%, and 84.7%, respectively, in patients without D-SMI (p < 0.0001) (Figure 3A). For females (n = 178),
the one-, three-, and five-year cumulative OS rates were 93.6%, 87.7%, and 66.1%, respectively,
in patients with D-SMI, and 98.3%, 92.4%, and 83.8%, respectively, in patients without D-SMI
(p = 0.0056) (Figure 3B).
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Table 1. Baseline characteristics (n = 383).

Variables Number or
Average ± SD Male (n = 205) Female (n = 178) p Value (Male

vs. Female)

Age (years) 65.2 ± 10.3 64.1 ± 10.8 66.4 ± 9.5 0.0403
Body mass index (kg/m2) 23.3 ± 3.9 23.4 ± 3.8 23.2 ± 4.0 0.6028

Skeletal muscle mass index (cm2/m2) 6.7 ± 1.1 7.4 ± 0.9 6.0 ± 0.7 <0.0001
Causes of liver disease

32/235/116 22/122/61 10/113/55 0.2043Hepatitis B/Hepatitis C/others
Child-Pugh scores, 5/6/7/8/9/10/11 186/93/58/28/13/3/2 106/42/31/15/6/3/2 80/51/27/13/7/0/0 0.2587

Total bilirubin (mg/dL) 1.3 ± 1.1 1.3 ± 1.3 1.2 ± 0.7 0.2319
Serum albumin (g/dL) 3.7 ± 0.53 3.7 ± 0.54 3.6 ± 0.51 0.3897
Prothrombin time (%) 77.0 ± 13.8 77.5 ± 13.4 76.4 ± 14.2 0.4532
Platelets (×104/mm3) 10.6 ± 5.5 10.5 ± 5.3 10.7 ± 5.7 0.8093

Serum sodium (mmol/L) 139.7 ± 2.5 139.3 ± 2.5 140.2 ± 2.6 0.0004
Serum creatinine (mg/dL) 0.74 ± 0.51 0.84 ± 0.65 0.62 ± 0.22 <0.0001
Total cholesterol (mg/dL) 154.0 ± 36.8 152.8 ± 35.4 155.2 ± 38.4 0.5250

Triglyceride (mg/dL) 90.5 ± 45.1 95.5 ± 53.0 84.8 ± 33.0 0.2144
AST (IU/L) 49.3 ± 34.8 49.4 ± 32.3 49.2 ± 37.5 0.9417
ALT (IU/L) 42.6 ± 38.9 43.9 ± 34.2 41.0 ± 43.7 0.0951

Fasting blood glucose (mg/dL) 110.9 ± 34.7 114.8 ± 39.9 106.4 ± 27.0 0.0101
Ascites, yes/no 44/339 25/180 19/159 0.7484

Data are expressed as number or average ± standard deviation (SD). AST: aspartate aminotransferase; ALT:
alanine aminotransferase.
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Figure 2. Cumulative overall survival for the entire cohort (n = 383). The one-, three-, and five-year
cumulative OS rates were 92.7%, 82.4% and 59.2%, respectively, in patients with decreased SMI (D-SMI),
and 97.2%, 92.2% and 84.4%, respectively, in patients without D-SMI (p < 0.0001). D-SMI was defined
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Using ROC analysis for survival, the optimal cut-off point for SMI was 7.0 cm2/m2 in males
(AUROC = 0.672, sensitivity = 64.6%, specificity = 69.4%) and 5.4 cm2/m2 in females (AUROC = 0.658,
sensitivity = 45.7%, specificity = 83.9%). When the cut-off value of 5.4 cm2/m2 was adapted to our
female patients (cut-off value for female in WAGS; 5.7 cm2/m2), similar results were obtained. That is,
patients with D-SMI had significantly poorer survival rates than those without D-SMI (p = 0.0076).

3.3. Causes for Death for Males and Females

In male, during the observation period, 48 patients (23.4%) died. The causes for death were
liver failure in 28 patients, HCC progression in 10 patients and miscellaneous causes in 10 patients.
In female, during the observation period, 35 patients (19.7%) died. The causes for death were liver
failure in 28 patients, HCC progression in four patients and miscellaneous causes in three patients.



Nutrients 2017, 9, 595 6 of 13

3.4. Univariate and Multivariate Analyses of Parameters Contributing to OS for Males

Univariate analysis identified the following factors as significantly associated with OS for
males: age (p = 0.0041); SMI (p < 0.0001); Child-Pugh score (p = 0.0252); aspartate aminotransferase
(p = 0.0150); alanine aminotransferase (ALT) (p = 0.0407); serum albumin (p = 0.0011); serum sodium
(p = 0.0133); serum creatinine (p = 0.0088); and BMI (p = 0.0041) (Table 2a). Since the Child-Pugh score
includes serum albumin, it was not entered into the multivariate analysis, and since age and BMI
significantly correlated with SMI, they were also excluded in the multivariate analysis to avoid the
effect of collinearity. The hazard ratios (HRs) and 95% confidence intervals (CIs) calculated by using
multivariate analysis for the six significant variables (p < 0.05) in the univariate analysis are presented
in Table 2b. SMI (p = 0.0005) and Child-Pugh score (p = 0.0424) were found to be significant predictors
related to OS in the multivariate analysis (Table 2b).

Table 2. (a) Univariate analyses of factors linked to overall survival for males (n = 205). (b) Multivariate
analyses of factors linked to overall survival for male.

(a)

Variables Number of Each Category
Univariate

p Value

Age (years) ≥ 70, yes/no 91/114 0.0041
Cause of liver diseases, B/C/others 22/122/61 0.2746

SMI ≥ 7.0 cm2/m2, yes/no 127/78 <0.0001
Child-Pugh score ≥ 6, yes/no 99/106 0.0252

AST ≥ 29 IU/L, yes/no 146/59 0.0150
ALT ≥ 47 IU/L, yes/no 63/142 0.0407

Serum albumin ≥ 3.7 g/dL, yes/no 113/92 0.0011
Total bilirubin ≥ 2.0 mg/dL, yes/no 29/176 0.1539
Prothrombin time ≥ 77.1%, yes/no 111/94 0.4521

Platelet count ≥ 9.4 × 104/mm3, yes/no 101/104 0.2360
Total cholesterol ≥ 124 mg/dL, yes/no 165/40 0.2398

Triglyceride ≥ 56 mg/dL, yes/no 170/35 0.0649
Serum sodium ≥ 138 mmol/L, yes/no 166/39 0.0133

Fasting blood glucose ≥ 97 mg/dL, yes/no 145/60 0.4942
Serum creatinine ≥ 0.78 mg/dL, yes/no 84/121 0.0088
Body mass index ≥ 23.4 kg/m2, yes/no 91/114 0.0041

Ascites, yes/no 25/180 0.0712

(b)

Variables
Multivariate Analysis

Hazard Ratio 95% CI p Value

SMI (per one cm2/m2) 0.571 0.416–0.777 0.0005
AST (per one IU/L) 1.005 0.987–1.022 0.5683
ALT (per one IU/L) 0.990 0.972–1.008 0.3002

Child-Pugh score (per one point) 1.270 1.020–1.520 0.0424
Serum sodium (per one mmol/L) 0.912 0.807–1.033 0.1481
Serum creatinine (per one mg/dL) 1.104 0.769–1.397 0.4914

CI: confidence interval; SMI: skeletal muscle mass index; AST: aspartate aminotransferase; ALT:
alanine aminotransferase.

3.5. Univariate and Multivariate Analyses of Parameters Contributing to OS for Females

Univariate analysis identified the following parameters as significantly associated with OS for
females: age (p = 0.0214); SMI (p = 0.0076); Child-Pugh score (p = 0.0009); ALT (p = 0.0104); serum
albumin (p = 0.0003); prothrombin time (PT) (p = 0.0355); platelet count (p = 0.0333); triglyceride
(p = 0.0011); serum creatinine (p = 0.0137); BMI (p = 0.0270) and presence of ascites (p < 0.0001)
(Table 3a). As the Child-Pugh score includes serum albumin, PT, and ascites, they were not entered
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into the multivariate analysis, and because BMI significantly correlated with SMI, it was also excluded
in the multivariate analysis to avoid the effect of collinearity. The HRs and 95% CIs calculated by
using multivariate analysis for the seven significant variables (p < 0.05) in the univariate analysis are
presented in Table 3b. SMI (p = 0.0016) and Child-Pugh scores (p < 0.0001) were found to be significant
predictors related to OS in the multivariate analysis (Table 3b).

Table 3. (a) Univariate analyses of factors linked to overall survival for female (n = 178). (b) Multivariate
analyses of factors linked to overall survival for female.

(a)

Variables Number of Each Category
Univariate

p value

Age (years) ≥ 77, yes/no 22/156 0.0214
Cause of liver diseases, B/C/others 10/113/55 0.5037

SMI ≥ 5.4 cm2/m2, yes/no 139/39 0.0076
Child-Pugh score ≥ 6, yes/no 98/80 0.0009

AST ≥ 80 IU/L, yes/no 20/158 0.0544
ALT ≥ 58 IU/L, yes/no 32/146 0.0104

Serum albumin ≥ 3.4 g/dL, yes/no 117/61 0.0003
Total bilirubin ≥ 2.3 mg/dL, yes/no 10/168 0.7607
Prothrombin time ≥ 73.7%, yes/no 103/75 0.0355

Platelet count ≥ 9.7 ×104/mm3, yes/no 92/86 0.0333
Total cholesterol ≥ 176 mg/dL, yes/no 49/129 0.0558

Triglyceride ≥ 72 mg/dL, yes/no 108/70 0.0011
Serum sodium ≥ 139 mmol/L, yes/no 143/35 0.4064

Fasting blood glucose ≥ 89 mg/dL, yes/no 142/36 0.2428
Serum creatinine ≥ 0.63 mg/dL, yes/no 66/112 0.0137
Body mass index ≥ 23.4 kg/m2, yes/no 78/100 0.0270

Ascites, yes/no 19/159 <0.0001

(b)

Variables
Multivariate Analysis

Hazard ratio 95% CI p Value

Age (per one year) 1.018 0.977–1.063 0.3998
SMI (per one cm2/m2) 0.450 0.270–0.731 0.0016

ALT (per one IU/L) 0.987 0.967–1.107 0.0506
Platelet count (per one × 104/mm3) 0.919 0.828–1.008 0.0943

Child-Pugh score (per one point) 1.938 1.400–2.690 <0.0001
Triglyceride (per one mg/dL) 0.998 0.983–1.011 0.7760

Serum creatinine (per one mg/dL) 2.546 0.413–10.860 0.2545

CI: confidence interval; SMI: skeletal muscle mass index; AST: aspartate aminotransferase; ALT:
alanine aminotransferase.

3.6. Time-Dependent ROC Analyses for OS in Males

Results for time-dependent ROC analyses at two-, three-, four-, five-, six-, and seven-years of SMI
and the Child-Pugh scores for males are shown in Figure 4A. All AUROCs for SMI at each time point
were higher than those for Child-Pugh scores, denoting that SMI had consistently superior predictive
ability for OS over Child-Pugh scores.
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3.7. Time-Dependent ROC Analyses for OS in Females

Results for time-dependent ROC analyses at two-, three-, four-, five-, six-, and seven-years of SMI
and Child-Pugh score for female were shown in Figure 4B. All AUROCs for Child-Pugh scores at each
time point were higher than those for SMI, denoting that Child-Pugh scores had consistently superior
predictive ability for OS over SMI.

3.8. Time-Dependent ROC Analyses for OS in Male Patients with Child-Pugh A

Results for time-dependent ROC analyses at two-, three-, four-, and five-years of SMI and
Child-Pugh scores for male Child-Pugh A patients (n = 148) are shown in Figure 5A. All AUROCs
for SMI in each time point were higher than those for Child-Pugh scores, denoting that SMI had
consistently superior predictive ability for OS over Child-Pugh scores.
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3.9. Time-Dependent ROC Analyses for OS in Female Patients with Child-Pugh A

Results for time-dependent ROC analyses at two-, three-, four-, and five-years of SMI and
Child-Pugh scores for female Child-Pugh A patients (n = 131) are shown in Figure 5B. All AUROCs for
Child-Pugh score in each time point were higher than those for SMI, denoting that Child-Pugh scores
had consistently superior predictive ability for OS over SMI.

3.10. Time-Dependent ROC Analyses for OS in Male Patients with Child-Pugh B or C

Results for time-dependent ROC analyses at two-, three-, four-, and five-years of SMI and
Child-Pugh scores for male Child-Pugh B or C patients (n = 57) are shown in Figure 6A. All AUROCs
for SMI at each time point were higher than those for Child-Pugh scores, denoting that SMI had
consistently superior predictive ability for OS over Child-Pugh scores.
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3.11. Time-Dependent ROC Analyses for OS in Female Patients with Child-Pugh B or C

Results for time-dependent ROC analyses at two-, three-, four-, and five-years of SMI and
Child-Pugh scores for female Child-Pugh B or C patients (n = 47) are shown in Figure 6B. At four- and
five-years, Child-Pugh scores had higher AUROC than SMI.

4. Discussion

To the best of our knowledge, this is the first comparative study in SMI and Child-Pugh scores
on clinical outcomes in LC patients. The Child-Pugh scoring system is a well-established prognostic
system in LC patients [5–9]. While, SMI in LC has been currently attracting much attention owing to its
well predictive performance [14–17,19,27,28]. Investigation into the influence of SMI on outcomes in
LC patients is pivotal and, particularly, clarifying which of these two markers has stronger predictive
impact for LC is clinically essential in light of creating a novel prognostic system in LC patients. We,
therefore, conducted this comparative analysis to address this question. Since skeletal muscle mass
significantly can differ between male and female, we analyzed and discussed separately in males
and females.
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In our results, for males, SMI and Child-Pugh scores were revealed to be significant for OS
in the multivariate analysis, and all AUROCs for SMI at each time point were higher than those
for Child-Pugh scores. Additionally, in subgroup analyses for male patients with Child-Pugh A or
Child-Pugh B or C, SMI had consistently higher AUROCs than the Child-Pugh score. For females,
similar results were obtained in the multivariate analysis, however, all AUROCs for Child-Pugh scores
at each time point were higher than those for SMI. These results denote that SMI as a predictor can
perform well as compared with Child-Pugh score at least in male LC patients. Our current results
may provide new information and shed some lights for the better comprehension of prognosis in
LC patients. The significant difference in baseline characteristics in such as SMI, age, serum sodium,
and serum creatinine between males and females can explain the different results according to gender.
In particular, aging can be a significant predictor in LC patients [14,39,40]. Our country is an aging
country [39,40]. The reasons for results in time-dependent ROC analysis in females may be attributed
to our results that SMI did not significantly correlate with age in females.

In view of our current results, some interventional therapies, including BCAA therapy,
testosterone therapy, or exercise, can be considered especially in male LC patients with lower skeletal
muscle mass for ameliorating prognosis [13,35,41–43]. However, firm recommendations for LC patients
are not currently available. As for cut-off value for BIA, AWGS recommends 2SDs below the average
muscle mass of young adults (7.0 cm2/m2 for male and 5.7 cm2/m2 for female) [28]. In our outcome
based ROC analysis, the optimal cut-off points for survival were 7.0 cm2/m2 for males and 5.4 cm2/m2

for females, which were quite similar to recommendations in AWGS and their recommendations were
well validated in our analysis. From the viewpoint of outcome-based analysis, our results may be
worthy of reporting.

As described above, it is of note that SMI significantly correlated with age in males, but not in
females. In general, changes in muscle mass occur with aging and muscle mass loss is a common
condition which is recognized as a part of aging [44]. However, our results showed that the rates of
muscle mass decline can vary according to gender, suggesting that factors other than aging, such as diet
intake and lifestyle, may influence the maintenance of healthy muscle mass [45]. On the other hand,
although the liver transplantation allocation system utilizes MELD score to prioritize organs to the
most ill subjects, MELD scores do not perform better than Child-Pugh scores in non-transplant settings.
In other words, MELD scores can perform well in decompensated LC rather than compensated LC [8].
Due to the high proportion of patients with Child-Pugh A in our cohort, we did not include MELD
scores in the analysis.

Several limitations must be acknowledged in our current analysis. First, this study is a
single-center retrospective observational study utilizing data for BIA and parameters reflecting muscle
function such as hang grip strength or walking speed were not assessed in this analysis. In future
studies, both skeletal muscle mass and muscle function should be evaluated in outcome based analyses.
Second, patients with severe ascites were excluded from our analysis because SMI can be overestimated
in these patients. Thus, the number of Child-Pugh C patients was rather small and our results cannot
be adapted to such patients. Body composition analyses using BIA can be challenging in LC patients
with severe ascites. Finally, various treatments for underlying liver diseases were performed during
follow-up period in each patient, potentially creating bias. However, our study results denoted that
SMI had higher predictive ability, at least in male LC patients. Results in time-dependent ROC analysis
support our assertion for the predictive superiority of SMI over Child-Pugh scores in males.

In conclusion, SMI can be accessible for predicting outcomes, at least in male LC patients. Some
interventions for male patients with lower SMI may be recommended.
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