

Supplementary Materials:

Figure S1. Tree diagram of plant components based on data set obtained by NMR measurement. This image is a modified version of a tree diagram. Raw or boiled edible parts of *Pteridium aquilinum* and *Matteuccia struthiopteris* classified at an intermediate point between moss and algae, not in higher plants, are surrounded by a red line. This image was partially revised from original presented in [31].

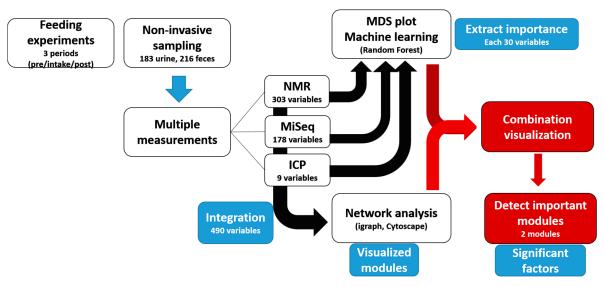


Figure S2. Flow chart of the analytical procedure in this study.

This flow chart indicates analytical steps. Arrows indicated experimental or analytical direction. Black arrows meant already exist methods or analysis steps. Text in the blue boxes show concept of the steps. Red arrows and box meant a novel approach developed in this study. This study shows that detection method of significant factor which respond to food intake at the final step.

Table S1. Information on primers used for performing microbiome analysis.

	To a sum as
v4.SA501	sequence AATGATACGGCGACCACCGAGATCTACACATCGTACGTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
v4.SA501	AATGATACGGCGACCACCGAGATCTACACATATCTGTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
v4.SA502	AATGATACGGCGACCACCGAGATCTACACTAGCGAGTTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
v4.SA504	AATGATACGGCGACCACCGAGATCTACACTAGCGAGTTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
v4.SA505	AATGATACGGCGACCACCGAGATCTACACTCATCGAGTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
v4.SA506	AATGATACGGCGACCACCGAGATCTACACCGTGAGTGTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
v4.SA507	AATGATACGGCGACCACCGAGATCTACACGGATATCTTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
v4.SA508	AATGATACGGCGACCACCGAGATCTACACGACACCGTTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
v4.SB501	AATGATACGGCGACCACCGAGATCTACACCTACTATATATGGTAATTGTGTGCCAGCMGCCGCGGTAA
v4.SB502	AATGATACGGCGACCACCGAGATCTACACCGTTACTATATGGTAATTGTGTGCCAGCMGCCGCGGTAA
v4.SB503	AATGATACGGCGACCACCGAGATCTACACAGAGTCACTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
v4.SB504	AATGATACGGCGACCACCGAGATCTACACTACGAGACTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
v4.SB505	AATGATACGGCGACCACCGAGATCTACACACGTCTCGTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
v4.SB506	AATGATACGGCGACCACCGAGATCTACACTCGACGAGTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
v4.SB507	AATGATACGGCGACCACCGAGATCTACACGATCGTGTTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
v4.SB508	AATGATACGGCGACCACCGAGATCTACACGTCAGATATATGGTAATTGTGTGCCAGCMGCCGCGGTAA
v4.SA701	CAAGCAGAAGACGCATACGAGATAACTCTCGAGTCAGTCA
v4.SA702	CAAGCAGAAGACGCCATACGAGATACTATGTCAGTCAGTC
v4.SA703	CAAGCAGAAGACGCCATACGAGATAGTAGCCTAGTCAGTC
v4.SA704	CAAGCAGAAGACGCCATACGAGATCAGTGAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT
v4.SA705	CAAGCAGAAGACGCCATACGAGATCGTACTCAAGTCAGCCGGACTACHVGGGTWTCTAAT
v4.SA706	CAAGCAGAAGACGCATACGAGATCTACGCAGAGTCAGTCA
v4.SA707	CAAGCAGAAGACGGCATACGAGATGGAGACTAAGTCAGTC
v4.SA708	CAAGCAGAAGACGCATACGAGATGTCGCTCGAGTCAGTCA
v4.SA709	CAAGCAGAAGACGCATACGAGATGTCGTAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT
v4.SA710	CAAGCAGAAGACGCATACGAGATTAGCAGACAGTCAGTCA
v4.SA711 v4.SA712	CAAGCAGAAGACGGCATACGAGATTCATAGACAGTCAGCCGGACTACHVGGGTWTCTAAT CAAGCAGAAGACGGCATACGAGATTCGCTATAAGTCAGTC
v4.SB701	CAAGCAGAAGACGGCATACGAGATAAGTCGAGAGTCAGCCGGACTACHVGGGTWTCTAAT
v4.SB702	CAAGCAGAAGACGGCATACGAGATATACTTCGAGTCAGTC
v4.SB703	CAAGCAGAAGACGGCATACGAGATAGCTGCTAAGTCAGTC
v4.SB704	CAAGCAGAAGACGCATACGAGATCATAGAGAAGTCAGTCA
v4.SB705	CAAGCAGAAGACGCATACGAGATCGTAGATCAGTCAGTCA
v4.SB706	CAAGCAGAAGACGCATACGAGATCTCGTTACAGTCAGTCA
v4.SB707	CAAGCAGAAGACGCCATACGAGATGCGCACGTAGTCAGTC
v4.SB708	CAAGCAGAAGACGCCATACGAGATGGTACTATAGTCAGTC
v4.SB709	CAAGCAGAAGACGCATACGAGATGTATACGCAGTCAGTCA
v4.SB710	CAAGCAGAAGACGCCATACGAGATTACGAGCAAGTCAGTC
v4.SB711	CAAGCAGAAGACGCCATACGAGATTCAGCGTTAGTCAGTC
v4.SB712	CAAGCAGAAGACGCATACGAGATTCGCTACGAGTCAGTCA
v4.SB501	AATGATACGGCGACCACCGAGATCTACACCTACTATATATGGTAATTGTGTGCCAGCMGCCGCGGTAA
v4.SB502	AATGATACGGCGACCACCGAGATCTACACCGTTACTATATGGTAATTGTGTGCCAGCMGCCGCGGTAA
v4.SB503	AATGATACGGCGACCACCGAGATCTACACAGAGTCACTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
v4.SB504	AATGATACGGCGACCACCGAGATCTACACTACGAGACTATGGTAATTGTGTGCCAGCMGCCGCGGTAA AATGATACGGCGACCACCGAGATCTACACACGTCTCGTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
v4.SB505 v4.SB506	AATGATACGGCGACCACCGAGATCTACACCGCGAGTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
v4.SB507	AATGATACGGCGACCACCGAGATCTACACGATCGTGTTATGGTAATTGTGTGCCAGCMGCCGCGGTAA
v4.SB508	AATGATACGGCGACCACCGAGATCTACACGTCAGATATATGGTAATTGTGTGCCAGCMGCCGCGGTAA
v4.SB701	CAAGCAGAAGACGGCATACGAGATAAGTCGAGAGTCAGTC
v4.SB702	CAAGCAGAAGACGCCATACGAGATATACTTCGAGTCAGCCGGACTACHVGGGTWTCTAAT
v4.SB703	CAAGCAGAAGACGGCATACGAGATAGCTGCTAAGTCAGTC
v4.SB704	CAAGCAGAAGACGCATACGAGATCATAGAGAAGTCAGTCA
v4.SB705	CAAGCAGAAGACGCATACGAGATCGTAGATCAGTCAGTCA
v4.SB706	CAAGCAGAAGACGCATACGAGATCTCGTTACAGTCAGTCA
v4.SB707	CAAGCAGAAGACGGCATACGAGATGCGCACGTAGTCAGCCGGACTACHVGGGTWTCTAAT
v4.SB708	CAAGCAGAAGACGGCATACGAGATGGTACTATAGTCAGTC
v4.SB709	CAAGCAGAAGACGGCATACGAGATGTATACGCAGTCAGCCGGACTACHVGGGTWTCTAAT
v4.SB710	CAAGCAGAAGACGGCATACGAGATTACGAGCAAGTCAGTC
v4.SB711	CAAGCAGAAGACGCATACGAGATTCAGCGTTAGTCAGTCA
v4.SB712	CAAGCAGAAGACGCATACGAGATTCGCTACGAGTCAGTCA

This primer information is referenced from a previous report [41].

Table S2. List of sequential numbers for bacterial detection by MiSeq analysis. Numbers in all Figures are equivalent to bacterial names in this list.

No.1	k_Bacteria;Other;Other;Other;Other
No.2	k_Bacteria;p_Actinobacteria;Other;Other;Other;Other
No.3	k_Bacteria;p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Brevibacteriaceae;g_Brevibacterium
No.4	k_Bacteria;p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Corynebacteriaceae;g_Corynebacteriu
110.4	m
No.5	k_Bacteria;p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Geodermatophilaceae;Other
No.6	k_Bacteria;p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Micrococcaceae;g_Kocuria
No.7	k_Bacteria;p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Micrococcaceae;g_Renibacterium
No.8	k Bacteria;p Actinobacteria;c Actinobacteria;o Actinomycetales;f Mycobacteriaceae;g Mycobacterium
No.9	k Bacteria;p Actinobacteria;c Actinobacteria;o Actinomycetales;f Pseudonocardiaceae;Other
No.10	k Bacteria;p Actinobacteria;c Coriobacteriia;o Coriobacteriales;f Coriobacteriaceae;Other
No.11	k_Bacteria;p_Actinobacteria;c_Coriobacteriia;o_Coriobacteriales;f_Coriobacteriaceae;g_
No.12	k_Bacteria;p_Actinobacteria;c_Coriobacteriia;o_Coriobacteriales;f_Coriobacteriaceae;g_Adlercreutzia
No.13	
No.14	k Bacteria;p Bacteroidetes;Other;Other;Other;Other
No.15	k Bacteria;p Bacteroidetes;c Bacteroidia;o Bacteroidales;Other;Other
No.16	k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Porphyromonadaceae;g_Parabacteroides
	k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Prevotellaceae;Other
	k Bacteria;p Bacteroidetes;c Bacteroidia;o Bacteroidales;f Prevotellaceae;g Prevotella
	k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Rikenellaceae;Other
	k Bacteria;p Bacteroidetes;c Bacteroidia;o Bacteroidales;f Rikenellaceae;g
	k Bacteria;p Bacteroidetes;c Bacteroidia;o Bacteroidales;f S24-7;g
	k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_[Barnesiellaceae];g_
	k_Bacteria;p_Bacteroidetes;c_Flavobacteriia;o_Flavobacteriales;Other;Other
	k_Bacteria;p_Bacteroidetes;c_Flavobacteriia;o_Flavobacteriales;f_;g_
	k_Bacteria;p_Bacteroidetes;c_Flavobacteriia;o_Flavobacteriales;f_Cryomorphaceae;g_Cryomorpha
No.26	k_Bacteria;p_Bacteroidetes;c_Flavobacteriia;o_Flavobacteriales;f_Flavobacteriaceae;Other
	k_Bacteria;p_Bacteroidetes;c_Flavobacteriia;o_Flavobacteriales;f_Flavobacteriaceae;g_Ascidianibacter
	k_Bacteria;p_Bacteroidetes;c_Flavobacteriia;o_Flavobacteriales;f_Flavobacteriaceae;g_Polaribacter
	k Bacteria;p Bacteroidetes;c Flavobacteriia;o Flavobacteriales;f Flavobacteriaceae;g Sediminicola
No.30	k Bacteria;p Bacteroidetes;c Flavobacteriia;o Flavobacteriales;f [Weeksellaceae];g Chryseobacterium
	k Bacteria;p Bacteroidetes;c Flavobacteriia;o Flavobacteriales;f [Weeksellaceae];g Cloacibacterium
	k_Bacteria;p_Bacteroidetes;c_[Rhodothermi];o_[Rhodothermales];f_Rhodothermaceae;g_
	k_Bacteria;p_Bacteroidetes;c_[Saprospirae];o_[Saprospirales];f_Chitinophagaceae;g_Lacibacter
	k_Bacteria;p_Bacteroidetes;c_[Saprospirae];o_[Saprospirales];f_Chitinophagaceae;g_Sediminibacterium
	k Bacteria;p Bacteroidetes;c [Saprospirae];o [Saprospirales];f Saprospiraceae;g
	k_Bacteria;p_Chlamydiae;c_Chlamydiia;o_Chlamydiales;Other;Other
	k_Bacteria;p_Chlamydiae;c_Chlamydia;o_Chlamydiales;f_;g_
	k_Bacteria;p_Cyanobacteria;Other;Other;Other;Other
	k_Bacteria;p_Cyanobacteria;cuner;otner;otner k_Bacteria;p_Cyanobacteria;c_4C0d-2;o_YS2;f_;g_
No.40	k_Bacteria;p_Cyanobacteria;c_Chloroplast;o_Stramenopiles;f_;g_ k_Bacteria;p_Cyanobacteria;c_Chloroplast;o_Streptophyta;f_;g_
	k_Bacteria;p_Cyanobacteria;c_Oscillatoriophycideae;Other;Other;Other
	k_Bacteria;p_Cyanobacteria;c_Oscillatoriophycideae;o_Chroococcales;f_Xenococcaceae;g_
	k_Bacteria;p_Deferribacteres;c_Deferribacteres;o_Deferribacterales;f_Deferribacteraceae;g_Mucispirillum
	k_Bacteria;p_Firmicutes;Other;Other;Other
	k_Bacteria;p_Firmicutes;c_Bacilli;Other;Other;Other
	k_Bacteria;p_Firmicutes;c_Bacilli;o_Bacillales;f_Bacillaceae;g_Bacillus
	k_Bacteria;p_Firmicutes;c_Bacilli;o_Bacillales;f_Bacillaceae;g_Oceanobacillus
	k_Bacteria;p_Firmicutes;c_Bacilli;o_Bacillales;f_Staphylococcaceae;g_Jeotgalicoccus
No.50	k Bacteria;p Firmicutes;c Bacilli;o Bacillales;f Staphylococcaceae;g Staphylococcus

Table S2. (Continued)

27. 54	1 5	T' ' . T . T . 1 . 11 . 0.1 . 0.1
No.51		_Firmicutes;cBacilli;oLactobacillales;Other;Other
No.52	kBacteria;p_	_Firmicutes;cBacilli;oLactobacillales;fAerococcaceae;g
No.53		Firmicutes;c_Bacilli;o_Lactobacillales;f_Enterococcaceae;Other
No.54		_Firmicutes;cBacilli;oLactobacillales;fLactobacillaceae;Other
No.55		_Firmicutes;cBacilli;oLactobacillales;fLactobacillaceae;gLactobacillus
No.56		_Firmicutes;cBacilli;oLactobacillales;fLeuconostocaceae;Other
No.57		_Firmicutes;cBacilli;oLactobacillales;fStreptococcaceae;gLactococcus
No.58		_Firmicutes;cBacilli;oLactobacillales;fStreptococcaceae;gStreptococcus
No.59		_Firmicutes;cBacilli;oTuricibacterales;fTuricibacteraceae;gTuricibacter
No.60		_Firmicutes;cClostridia;Other;Other;Other
No.61		_Firmicutes;cClostridia;oClostridiales;Other;Other
No.62		_Firmicutes;cClostridia;oClostridiales;f;g
No.63		_Firmicutes;cClostridia;oClostridiales;fClostridiaceae;Other
No.64		_Firmicutes;cClostridia;oClostridiales;fClostridiaceae;gClostridium
No.65		_Firmicutes;cClostridia;oClostridiales;fDehalobacteriaceae;gDehalobacterium
No.66		_Firmicutes;cClostridia;oClostridiales;fEubacteriaceae;gAnaerofustis
No.67		_Firmicutes;cClostridia;oClostridiales;fLachnospiraceae;Other
No.68		_Firmicutes;cClostridia;oClostridiales;fLachnospiraceae;g
No.69		_Firmicutes;cClostridia;oClostridiales;fLachnospiraceae;gAnaerostipes
No.70		_Firmicutes;cClostridia;oClostridiales;fLachnospiraceae;gBlautia
No.71		_Firmicutes;cClostridia;oClostridiales;fLachnospiraceae;gClostridium
No.72		_Firmicutes;cClostridia;oClostridiales;fLachnospiraceae;gCoprococcus
No.73		_Firmicutes;cClostridia;oClostridiales;fLachnospiraceae;gDorea
No.74		_Firmicutes;cClostridia;oClostridiales;fLachnospiraceae;gEpulopiscium
No.75		_Firmicutes;cClostridia;oClostridiales;fLachnospiraceae;gRoseburia
No.76		_Firmicutes;cClostridia;oClostridiales;fLachnospiraceae;g[Ruminococcus]
No.77		_Firmicutes;cClostridia;oClostridiales;fPeptococcaceae;g
No.78		_Firmicutes;cClostridia;oClostridiales;fPeptostreptococcaceae;Other
No.79		_Firmicutes;cClostridia;oClostridiales;fRuminococcaceae;Other
No.80		_Firmicutes;cClostridia;oClostridiales;fRuminococcaceae;g
No.81		_Firmicutes;cClostridia;oClostridiales;fRuminococcaceae;gAnaerotruncus
No.82		_Firmicutes;cClostridia;oClostridiales;fRuminococcaceae;gButyricicoccus
No.83		_Firmicutes;cClostridia;oClostridiales;fRuminococcaceae;gClostridium
No.84		_Firmicutes;cClostridia;oClostridiales;fRuminococcaceae;gFaecalibacterium
No.85		_Firmicutes;cClostridia;oClostridiales;fRuminococcaceae;gOscillospira
No.86		_Firmicutes;cClostridia;oClostridiales;fRuminococcaceae;gRuminococcus
No.87	kBacteria;p_	_Firmicutes;cClostridia;oClostridiales;fVeillonellaceae;gVeillonella
No.88		Firmicutes;cClostridia;oClostridiales;f[Mogibacteriaceae];Other
No.89		_Firmicutes;cClostridia;oClostridiales;f[Mogibacteriaceae];g
No.90		_Firmicutes;cClostridia;oClostridiales;f[Tissierellaceae];gAnaerococcus
No.91		_Firmicutes;cErysipelotrichi;oErysipelotrichales;fErysipelotrichaceae;Other
No.92		_Firmicutes;cErysipelotrichi;oErysipelotrichales;fErysipelotrichaceae;g
No.93		_Firmicutes;cErysipelotrichi;oErysipelotrichales;fErysipelotrichaceae;gAllobaculum
No.94		_Firmicutes;cErysipelotrichi;oErysipelotrichales;fErysipelotrichaceae;gClostridium
No.95		_Firmicutes;cErysipelotrichi;oErysipelotrichales;fErysipelotrichaceae;gCoprobacillus
No.96		_Firmicutes;cErysipelotrichi;oErysipelotrichales;fErysipelotrichaceae;gErysipelothrix
No.97		_Fusobacteria;cFusobacteriia;oFusobacteriales;fFusobacteriaceae;gCetobacterium
No.98		_Fusobacteria;cFusobacteriia;oFusobacteriales;fLeptotrichiaceae;gLeptotrichia
No.99		_Lentisphaerae;c[Lentisphaeria];oLentisphaerales;fLentisphaeraceae;g
No.100	k_Bacteria;p_	Planctomycetes;c_OM190;o_agg27;f_;g_

Table S2. (Continued)

```
No.101 k Bacteria;p Planctomycetes;c Planctomycetia;o Gemmatales;f Gemmataceae;g
No.102 k Bacteria;p Planctomycetes;c Planctomycetia;o Pirellulales;f Pirellulaceae;g
No.103 k Bacteria;p Proteobacteria;Other;Other;Other
No.104 k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;Other;Other
No.105 k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Caulobacterales;f_Caulobacteraceae;Other No.106 k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Rhizobiales;Other;Other
No.107 k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Rhizobiales;f_Bradyrhizobiaceae;Other
No.108 k Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; Bradyrhizobiaceae; Balneimonas
No.109 k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Rhizobiales;f_Bradyrhizobiaceae;g_Bradyrhizobium
No.110 k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Rhizobiales;f_Hyphomicrobiaceae;Other No.111 k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Rhizobiales;f_Methylobacteriaceae;g_
No.112 k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Rhizobiales;f_Methylobacteriaceae;g_Methylobacterium
No.113 k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Rhizobiales;f_Phyllobacteriaceae;Other
No.114 k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Rhizobiales;f_Phyllobacteriaceae;g_Phyllobacterium
No.115 k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Rhizobiales;f_Rhizobiaceae;Other
No.116 k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Rhizobiales;f_Xanthobacteraceae;g
No.117 k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Rhodobacterales;f_Rhodobacteraceae;Other
No.118 k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Rhodobacterales;f_Rhodobacteraceae;g_Loktanella
No.119 k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Rhodobacterales;f_Rhodobacteraceae;g_Paracoccus
No.120 k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Rhodobacterales;f_Rhodobacteraceae;g_Phaeobacter No.121 k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Rhodobacterales;f_Rhodobacteraceae;g_Rhodobacter
No.122 k Bacteria;p Proteobacteria;c Alphaproteobacteria;o Rhodospirillales;f Acetobacteraceae;Other
No.123 k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Rhodospirillales;f_Acetobacteraceae;g_Roseomonas
No.124 \quad k\_Bacteria; p\_Proteobacteria; c\_Alphaproteobacteria; o\_Rhodospirillales; f\_Rhodospirillaceae; Other and the support of the support
No.125 k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Rickettsiales;f_mitochondria;Other
No.126 k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Sphingomonadales;f_Erythrobacteraceae;Other
No.127 k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Sphingomonadales;f__Sphingomonadaceae;Other
No.128 k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Sphingomonadales;f_Sphingomonadaceae;g_Sphingomon
No.129 k_Bacteria;p_Proteobacteria;c_Betaproteobacteria;o_Burkholderiales;f_Alcaligenaceae;g_Achromobacter No.130 k_Bacteria;p_Proteobacteria;c_Betaproteobacteria;o_Burkholderiales;f_Comamonadaceae;Other
No.131 k_Bacteria;p_Proteobacteria;c_Betaproteobacteria;o_Burkholderiales;f_Comamonadaceae;g Comamonas
No.132 k_Bacteria;p_Proteobacteria;c_Betaproteobacteria;o_Burkholderiales;f_Comamonadaceae;g_Tepidimonas
No.133 k_Bacteria;p_Proteobacteria;c_Betaproteobacteria;o_Burkholderiales;f_Oxalobacteraceae;Other
No.134 k_Bacteria;p_Proteobacteria;c_Betaproteobacteria;o_Rhodocyclales;f_Rhodocyclaceae;Other
No.135 k_Bacteria;p_Proteobacteria;c_Deltaproteobacteria;o_Desulfovibrionales;f_Desulfovibrionaceae;g_
No.136 k_Bacteria;p_Proteobacteria;c_Deltaproteobacteria;o_Desulfovibrionales;f_Desulfovibrionaceae;g_Desulfovibrio
No.137 k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;Other;Other;Other
No.138 k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Alteromonadales;Other;Other
No.139 k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Alteromonadales;f_Alteromonadaceae;g_Alteromonas No.140 k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Alteromonadales;f_Alteromonadaceae;g_BD2-13
No.141 k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Alteromonadales;f_Alteromonadaceae;g_Marinobacter
No.142 k Bacteria;p Proteobacteria;c Gammaproteobacteria;o Alteromonadales;f Colwelliaceae;Other
No.143 k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Alteromonadales;f_Colwelliaceae;g_
No.144 k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Alteromonadales;f_Idiomarinaceae;g_Idiomarina
No.145 k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Alteromonadales;f_OM60;g_
No.146 k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Alteromonadales;f_Shewanellaceae;g_Shewanella
No.147 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae;Other
No.148 k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Enterobacteriales;f_Enterobacteriaceae;g_Serratia
No.149 k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_HTCC2188;f_HTCC2089;g_
No.150 k Bacteria; Proteobacteria; Gammaproteobacteria; Legionellales; Legionellaceae; Other
```

Table S2. (Continued)

No.151 k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Legionellales;f_Legionellaceae;g_
No.152 k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Oceanospirillales;f_Alcanivoracaceae;g_Alcanivorax
No.153 k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Oceanospirillales;f_Halomonadaceae;g_Halomonas
No.154 k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Oceanospirillales;f_Oceanospirillaceae;g_Oleibacter
No.155 k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Oceanospirillales;f_Oceanospirillaceae;g_Oleispira
No.156 k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Oceanospirillales;f_Oceanospirillaceae;g_Spongiispira
No.157 kBacteria;pProteobacteria;cGammaproteobacteria;oPseudomonadales;fMoraxellaceae;gAcinetobacter
No.158 k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Pseudomonadales;f_Moraxellaceae;g_Enhydrobacter
No.159 kBacteria;pProteobacteria;cGammaproteobacteria;oPseudomonadales;fPseudomonadaceae;Other
No.160 k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Pseudomonadales;f_Pseudomonadaceae;g_Pseudomonas
No.161 k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Thiotrichales;f_Piscirickettsiaceae;g_
No.162 k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Vibrionales;f_Pseudoalteromonadaceae;g_Pseudoalteromonas
No.163 k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Vibrionales;f_Vibrionaceae;Other
No.164 k Bacteria;p Proteobacteria;c Gammaproteobacteria;o Vibrionales;f Vibrionaceae;g Photobacterium
No.165 k Bacteria;p Proteobacteria;c Gammaproteobacteria;o Vibrionales;f Vibrionaceae;g Vibrio
No.166 k Bacteria;p Proteobacteria;c Gammaproteobacteria;o Xanthomonadales;f Xanthomonadaceae;Other
No.167 k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Xanthomonadales;f_Xanthomonadaceae;g_Stenotrophomonas
No.168 k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Xanthomonadales;f_Xanthomonadaceae;g_Xanthomona
No.169 k Bacteria;p Proteobacteria;c Gammaproteobacteria;o [Marinicellales];f [Marinicellaceae];g
No.170 k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_[Marinicellales];f_[Marinicellaceae];g_Marinicella
No.171 k Bacteria;p SBR1093;c EC214;o ;f ;g
No.172 k_Bacteria;p_Tenericutes;c_Mollicutes;o_Mycoplasmatales;f_Mycoplasmataceae;g_
No.173 k_Bacteria;p_Tenericutes;c_Mollicutes;o_Mycoplasmatales;f_Mycoplasmataceae;g_Mycoplasma
No.174 k Bacteria:p Tenericutes;c Mollicutes;o RF39:f ;g
No.175 k_Bacteria;p_Verrucomicrobia;c_Verrucomicrobiae;o_Verrucomicrobiales;f_Verrucomicrobiaceae;g_
No.176 k Bacteria;p Verrucomicrobia;c Verrucomicrobiae;o Verrucomicrobiales;f Verrucomicrobiaceae;g Akkermansia
No.177 k Bacteria;p Verrucomicrobia;c Verrucomicrobiae;o Verrucomicrobiales;f Verrucomicrobiaceae;g Persicirhabdus
No.178 k Bacteria;p [Thermi];c Deinococci;o Deinococcales;f Deinococcaceae;g Deinococcus

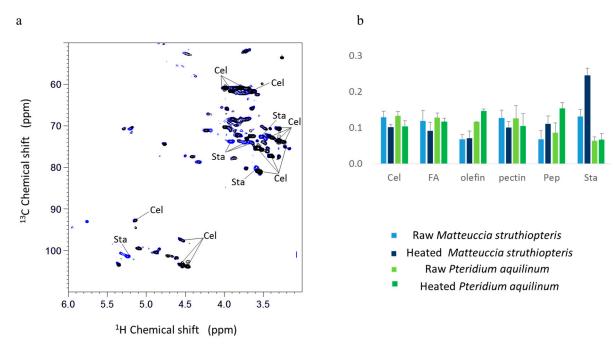
 $\textbf{Table S3.} \ List \ of \ annotated \ metabolites \ and \ unknown \ signals \ from \ NMR \ measurements.$

Annotated metabolites detected by 1D and 2D NMR measurements (Figures S5, S6) (a). List of alternative names given to unknown ¹H chemical shifts from urinary analysis data (b) and from fecal analysis data (c).

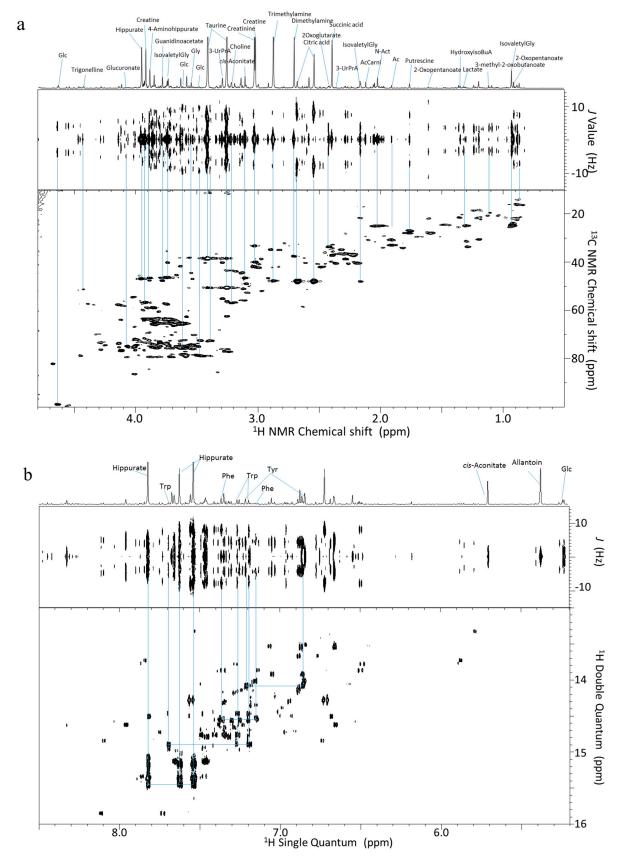
Metabolite	28	¹ H Chemical Shift (ppm) and multiplicity
	Ac	1.91 (s)
	AcGly	2.02 (s), 3.74 (d)
Adenosine monophosphate	,	3.89 (m), 4.43 (m), 6.11 (d), 8.25 (s), 8.37 (s)
	HydroxyisoBuA	1.34 (s)
	Allantoin	5.37 (s)
	Betaine	3.25 (s), 3.89 (s)
	BuA	0.88 (t), 1.55 (q), 2.15 (t)
	Cholate	0.71 (s), 2.22 (m)
	Choline	3.20 (s), 3.50 (dd), 4.05 (m)
	Aconi	3.11 (d), 6.58 (s)
	CiA	2.54 (d), 2.68 (d)
Creatine	Creatine	3.02 (s), 3.92 (s)
Creatinine	Creatinine	3.03 (s), 4.05 (s)
Cytidine Monophosphate	3'-CMP	3.98 (dd), 4.04 (dd), 4.23 (d), 4.36 (m), 5.93 (d), 6.13 (d), 8.08 (d)
Deoxyadenosine	Deoxyadenosine	2.56 (d), 2.82 (dd), 3.79 (dd), 3.84 (dd), 4.18 (q), 4.65 (m), 8.18 (s), 8.29 (s)
	Glc	3.24 (dd), 3.39 (m), 3.46 (m), 3.53 (dd), 3.70 (m), 3.83 (m), 3.89 (dd), 4.64 (d), 5.23 (d)
	DMA	2.71 (s)
,	DMG	2.88 (s)
	EtOH	1.17 (t), 3.65 (q)
	EtNH	3.13 (d) 3.81 (d)
	FoA	8.45 (s)
	FuA	6.51 (s)
	Galactarate	3.93 (s), 4.26 (s)
Gamma-Aminobutyric acid		1.89 (m), 2.29 (t), 3.00 (t)
Gluconic acid	Gluconate	3.66 (m).3.76 (m), 3.82 (m), 4.12 (d)
Glucuronate	Glucuronate	3.28 (t), 3.57 (dd), 3.72 (m), 4.07 (d), 4.63 (d), 5.23 (d)
Glycine	Gly	3.55 (s)
Guanidinoacetic acid	GuaniAc	3.78 (s)
Guanosine	Guanosine	3.82 (d), 3.87 (d), 4.22 (q), 4.41 (dd), 5.09 (d)
Hippuric acid	Hippurate	3.95 (d), 7.54 (m), 7.62 (t), 7.82 (dd)
• •	Homovanillate	3.44 (s), 3.86 (s), 6.77 (dd), 6.87 (d), 6.96 (d)
	Hypotaurine	2.64 (t), 3.34 (t)
• •	Inosine	3.83 (dd), 3.90 (dd), 4.26 (dd), 6.06 (d), 8.19 (s)
		4.03 (m), 4.36 (dd), 4.50 (dd), 6.14 (d), 8.21 (s)
	IMP	
	IsovalerylGly	0.93 (d), 2.16 (d), 3.75 (d)
	Itaconate	3.40 (s), 5.85 (s)
,	AcCarni	2.12 (s), 2.48 (dd), 2.61 (dd), 3.18 (s), 3.61 (d), 3.82 (dd)
	Lactate	1.32 (d), 4.10 (q)
L-Alanine	Ala	1.47 (d), 3.76 (q)
L-Asparagine	Asn	2.85 (m), 2.94 (m), 4.00 (dd)
L-Aspartic acid	Asp	2.67 (dd), 2.80 (dd), 3.89 (dd)
L-Glutamic acid	Glu	2.05 (m), 2.11 (m), 2.34 (m), 3.74 (dd)
L-Glutamine	Gln	2.12 (m), 2.44 (m), 3.76 (t)
	lle	0.93 (t), 1.00 (d), 1.25 (m), 1.45 (m), 1.96 (m), 3.66 (d)
	Leu	0.95 (t), 1.70 (m), 3.73 (m)
	Lys	1.46 (m), 1.72 (m), 1.89 (m), 3.01 (t), 3.74 (t)
, .	Met	2.15 (m), 2.63 (t), 3.85 (dd)
	Phe	
,		3.19 (m), 3.98 (dd), 7.32 (d), 7.36 (m), 7.42 (m)
	Ser	3.83 (dd), 3.96 (s)
	Thr	1.31 (d), 3.58 (d), 4.25 (m)
	Tyr	3.02 (dd), 3.17 (dd), 3.92 (dd), 6.89 (d), 7.17 (m)
	Val	0.98 (d), 1.03 (d), 2.27 (m), 3.60 (d)
	MtOH	3.34 (s)
Methylamine	Methylamine	2.59 (s)
N-Acethyl	N-Act	2.05 (s)
	PrA	1.05 (t), 2.17 (q)
	Putrescine	1.76 (t), 3.04 (t)
	Sarcosine	2.74 (s), 3.60 (s)
	SuA	2.40 (s)
	Taurine	3.26 (t), 3.42 (t)
		5.20 (t), 5.42 (t) 4.43 (s), 8.07 (m), 8.82 (m), 9.11 (s)
	Trigonelline	
,	TMA	2.88 (s)
	Uridine	3.80 (dd), 3.90 (dd), 4.12 (m), 4.22 (dd), 4.34 (dd), 5.89 (d), 5.90 (d), 7.86 (d)
	Urocanate	6.39 (d), 7.28 (d), 7.37 (s), 7.85 (s)
		2.91 (m), 3.22 (dd), 3.25 (m), 3.30 (m), 3.37 (dd), 3.42 (t), 3.54 (t), 3.62 (m), 3.68 (dd), 3.77 (m), 3.92 (dd), 3.97 (dd), 4.05 (dd), 4.45 (d), 4.5
Urocanic acid	Xyl	2.51 (III), 5.22 (dd), 5.25 (III), 5.56 (dd), 5.42 (t), 5.54 (t), 5.62 (III), 5.66 (dd), 5.77 (III), 5.52 (dd), 5.57 (dd), 4.65 (dd), 4.45 (d), 4.65
Urocanic acid Kylobiose	Xyl 20xoglutarate	2.42 (t), 3.00 (t)
Urocanic acid Kylobiose 2-oxoglutarate	20xoglutarate	2.42 (t), 3.00 (t)
Urocanic acid Xylobiose 2-oxoglutarate 2-oxoisovaleric acid	20xoglutarate 20xoisovalerate	2.42 (t), 3.00 (t) 0.82 (s), 0.95 (d), 2.01 (m), 3.84 (d)
Urocanic acid Xylobiose 2-oxoglutarate 2-oxoisovaleric acid 2-oxopentanoic acid	20xoglutarate 20xoisovalerate	2.42 (t), 3.00 (t)

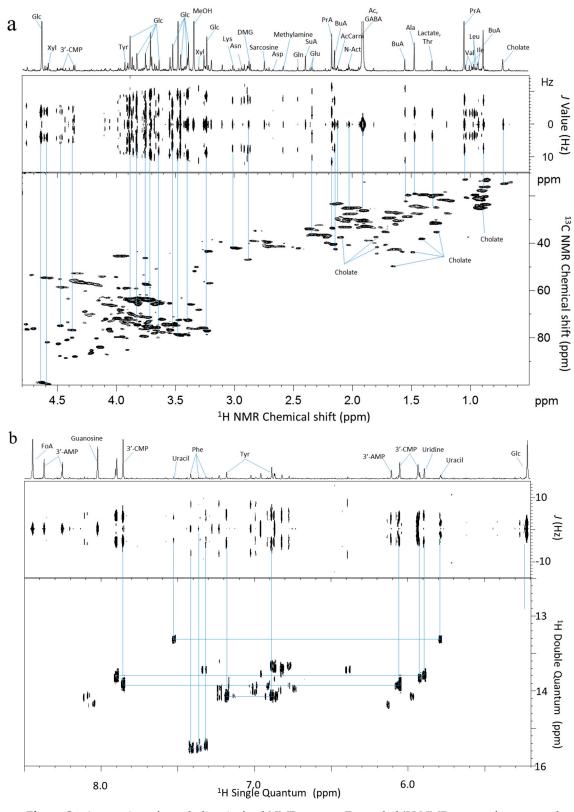
1	1.		
	ľ	1	
		,	

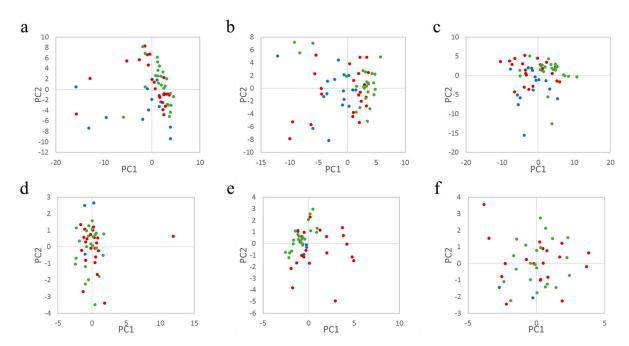
Tini	rnown ¹ H Ch	emical Shift (pp	m)
ROI.1	1.24	ROI.32	3.64
ROI.2	3.14	ROI.33	3.85
ROI.3	0.87	ROI.34	3.94
ROI.4	0.88	ROI.35	4.12
ROI.5	0.90	ROI.36	4.14
ROI.6	1.09	ROI.37	4.29
ROI.7	1.11	ROI.38	4.47
ROI.8	1.20	ROI.39	4.51
ROI.9	1.22	ROI.40	4.55
ROI.10	1.35	ROI.41	4.57
ROI.11	1.36	ROI.42	5.01
ROI.12	1.48	ROI.43	5.37
ROI.13	1.76	ROI.44	5.70
ROI.14	1.97	ROI.45	6.53
ROI.15	1.99	ROI.46	6.72
ROI.16	2.06	ROI.47	6.84
ROI.17	2.08	ROI.48	6.86
ROI.18	2.24	ROI.49	6.87
ROI.19	2.27	ROI.50	6.93
ROI.20	2.29	ROI.51	7.05
ROI.21	2.46	ROI.52	7.19
ROI.22	2.50	ROI.53	7.21
ROI.23	2.58	ROI.54	7.25
ROI.24	2.60	ROI.55	7.27
ROI.25	2.62	ROI.56	7.35
ROI.26	2.92	ROI.57	7.37
ROI.27	3.03	ROI.58	7.56
ROI.28	3.15	ROI.59	7.67
ROI.29	3.22	ROI.60	3.80
ROI.30	3.29	ROI.61	3.67
ROI.31	3.59	ROI.62	3.61

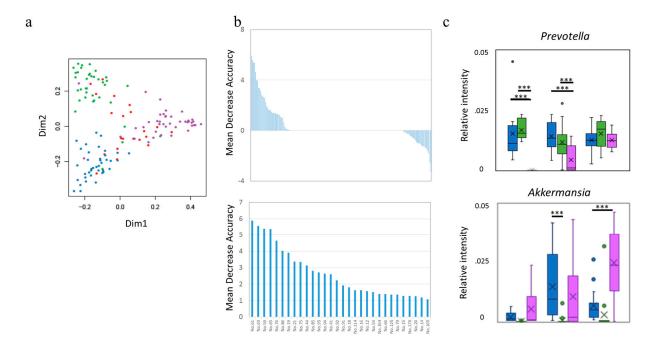

c

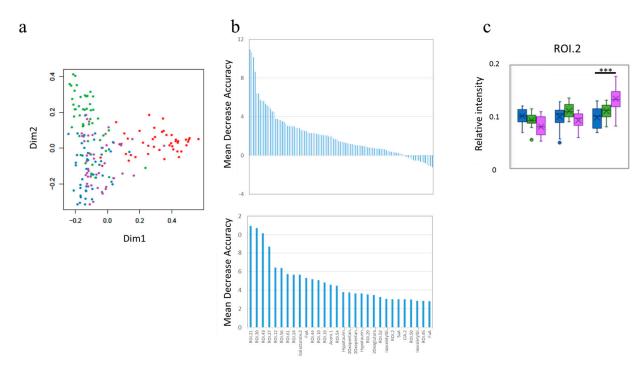
Unl	known ¹ H Che	emical Shift (pp	m)
ROI.1	2.90	ROI.35	2.92
ROI.2	3.48	ROI.36	3.03
ROI.3	2.46	ROI.37	3.40
ROI.4	2.36	ROI.38	3.65
ROI.5	2.33	ROI.39	3.67
ROI.6	4.04	ROI.40	3.68
ROI.7	7.23	ROI.41	3.75
ROI.8	4.27	ROI.42	3.86
ROI.9	2.88	ROI.43	3.87
ROI.10	3.10	ROI.44	3.90
ROI.11	3.13	ROI.45	4.06
ROI.12	3.99	ROI.46	4.10
ROI.13	3.99	ROI.47	4.46
ROI.14	3.94	ROI.48	4.47
ROI.15	3.98	ROI.49	4.59
ROI.16	1.52	ROI.50	4.60
ROI.17	2.48	ROI.51	4.61
ROI.18	2.49	ROI.52	4.61
ROI.19	2.55	ROI.53	5.09
ROI.20	2.86	ROI.54	5.10
ROI.21	2.89	ROI.55	5.13
ROI.22	2.93	ROI.56	5.86
ROI.23	7.89	ROI.57	5.92
ROI.24	7.85	ROI.58	6.05
ROI.25	5.18	ROI.59	6.06
ROI.26	1.13	ROI.60	6.07
ROI.27	1.16	ROI.61	6.13
ROI.28	1.19	ROI.62	6.82
ROI.29	1.20	ROI.63	7.73
ROI.30	1.36	ROI.64	7.67
ROI.31	1.37	ROI.65	7.91
ROI.32	2.61	ROI.66	7.96
ROI.33	2.71	ROI.67	8.59
ROI.34	2.73		

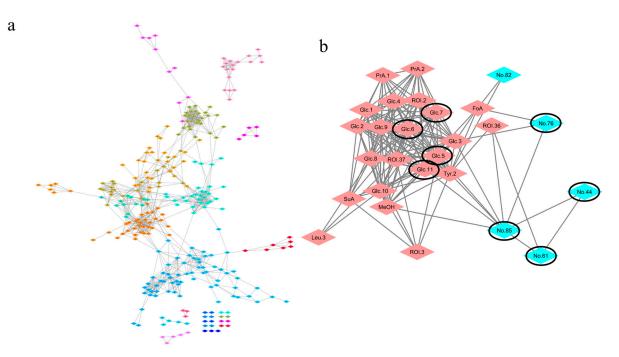

a b


Figure S3. ¹H-¹³C HSQC NMR spectra of *Pteridium aquilinum* and *Matteuccia struthiopteris* extracted by KPi/D₂O solvent. (a) Black and blue line spectra are from *P. aquilinum* and *M. struthiopteris*, respectively. Green, red, and purple spectra are derived from glucose, sucrose, and fructose, respectively. Annotations for the referenced metabolites listed in Table S3. (b) Sugar group and organic acid compositions in raw or boiled *P. aquilinum* and *M. struthiopteris* are shown as a bar graph.


Figure S4. ¹H-¹³C HSQC NMR spectra of *Pteridium aquilinum* and *Matteuccia struthiopteris* components extracted by DMSO-pyridine-d₅ (4:1) solvent. (a) Black and blue line spectra represent *Pteridium aquilinum* and *Matteuccia struthiopteris*, respectively. (b) Carbohydrate compositions in raw or boiled *P. aquilinum* and *M. struthiopteris* are shown as a bar graph.


Figure S5. Annotation of metabolites in urine NMR spectra. Expanded version of ¹H NMR spectra from treated mouse urine (top panel), 2D *J*-resolved NMR spectra (middle panel), and DQ-SQ NMR spectra (bottom panel) from 0.5 to 4.8 ppm (a), and 5.2 to 8.5 ppm (b). Annotations for the referenced metabolites listed in Table S3.


Figure S6. Annotation of metabolites in fecal NMR spectra. Expanded ¹H NMR spectra from treated mouse feces (top panel), 2D *J*-resolved NMR spectra (middle panel), and DQ-SQ NMR spectra (bottom panel) from 0.5 to 4.8 ppm (a), and 5.2 to 8.5 ppm (b). Annotations for referenced metabolites listed in Table S3.


Figure S7. Principal component analysis of urinary metabolites and ions. Red, blue, and green spheres represent single data points from pretreatment, during treatment, and posttreatment, respectively. Upper panels indicate the results of urinary NMR measurement analyzed by PCA. The data based on experimentally treated mouse groups (a–c) administered cellulose, *Pteridium aquilinum*, and *Matteuccia struthiopteris*, respectively. (d–f) show PCA score plots for the ICP-OES data from each group. (d–f) represent ions of mice treated with cellulose, *Pteridium aquilinum*, and *M. struthiopteris* measured by ICP-OES, respectively. The data analysis was performed using the package "muma" in R [45].

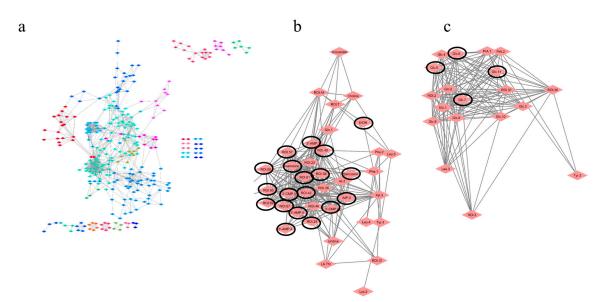

Figure S8. The results of Random Forest for the fecal microbiome. MDS plot (a) and factors important for separating the groups (b): upper panel indicates all important factors, while lower panel indicates the top 30 most important factors with annotation. In (a), red, blue, green, and purple spheres represent single data points from the pretreatment period of all groups, and cellulose-, *Pteridium aquilinum*-, and *Matteuccia struthiopteris*-treated groups, respectively. Boxplot of a representative important factor that can be applied on to network module (c). Upper panel and lower panel depict the genera *Prevotella* and *Akkermansia*, respectively. Blue, green, and purple boxes represent cellulose-, *P. aquilinum*-, and *M. struthiopteris*-treated groups, respectively. *** P < 0.001 calculated by the Holm method.

Figure S9. The results of Random Forest for urinary metabolites. MDS plot (a) and factors important for separating the groups (b): upper panel indicates all important factors, while lower panel indicates the top 30 most important factors with annotation. In (a), red, blue, green, and purple spheres represent single data points from the pretreatment period of all groups, and cellulose-, *Pteridium aquilinum-*, and *Matteuccia struthiopteris*-treated groups, respectively. Boxplot of a representative important factor that can be applied onto network module, which depicts ROI.2 (c). Blue, green, and purple boxes represent cellulose-, *P. aquilinum-*, and *M. struthiopteris*-treated groups, respectively. *** P < 0.001 calculated by the Holm method.

Figure S10. Network community correlation coefficients for *Matteuccia struthiopteris*-treated mice based on the combined data set. The network depiction is based on calculations by the igraph package with Cytoscape. All communities of *Matteuccia struthiopteris*-treated mice are depicted (a). The same color diamonds represent components belonging to the same community. The glucose community in *M. struthiopteris*-treated mice is depicted (b). Black-line-circled diamonds represent factors selected by Random Forest as being important for separating the groups (Table S3).

Figure S11. Network community correlation coefficients for *Pteridium aquilinum*-treated mice based on the combined data set. The network depiction is based on calculations by the igraph package with Cytoscape. All communities of *P. aquilinum*-treated mice are depicted (a). The same color diamonds represent components belonging to the same community. Purine/pyrimidine and glucose communities in *Matteuccia struthiopteris*-treated mice are indicated in (b) and (c), respectively. Black-line-circled diamonds represent factors selected by Random Forest as being important for separating the groups (TableS3).