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Abstract: Obesity is a global health concern with rising prevalence that increases the risk of
developing other chronic diseases. A causal link connecting overnutrition, the development of obesity
and obesity-associated co-morbidities is visceral adipose tissue (AT) dysfunction, characterized by
changes in the cellularity of various immune cell populations, altered production of inflammatory
adipokines that sustain a chronic state of low-grade inflammation and, ultimately, dysregulated AT
metabolic function. Therefore, dietary intervention strategies aimed to halt the progression of obese
AT dysfunction through any of the aforementioned processes represent an important active area
of research. In this connection, fish oil-derived dietary long-chain n-3 polyunsaturated fatty acids
(PUFA) in the form of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been
demonstrated to attenuate obese AT dysfunction through multiple mechanisms, ultimately affecting
AT immune cellularity and function, adipokine production, and metabolic signaling pathways, all of
which will be discussed herein.
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1. Introduction

The prevalence of overweight and obese individuals within the global population (consisting of
both developing and developed countries) has steadily increased over the past 30 years [1,2].
As defined by body mass index (BMI), this increased prevalence of overweight (25-29.9 kg/ m?)
and obese (>30 kg/m?) individuals represents a global health epidemic [1] that is associated with the
development of a myriad of other chronic conditions and diseases, including but not limited to insulin
resistance (IR), hypertension, and dyslipidemia (collectively referred to as Metabolic Syndrome [3]),
cardiovascular disease (CVD), type 2 diabetes (T2D), stroke, certain cancer types, liver and gall bladder
disease, osteoarthritis, sleep apnea, and gynecological conditions [1,4]. Furthermore, the consequences
of obesity extend beyond these physical comorbidities to include an increased risk of various
psychological and psychosocial conditions [5-8].

In obesity, visceral adipose tissue (AT) exhibits a dysfunctional phenotype in comparison to that
derived from lean individuals [9-13]. Functionally, AT is the primary storage site for excess energy
in the form of triacylglycerol (TAG), but also functions as an endocrine organ that secretes signaling
proteins, collectively termed adipokines (or cytokines, when not of AT origin), which influence systemic
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metabolism and immune function [11,14-16]. AT is composed of adipocytes and a non-adipocyte
stromal vascular fraction (SVF), comprised of innate and adaptive immune cells, which are collectively
engaged in the maintenance of AT insulin sensitivity (reviewed in [15,17-20]). However, overnutrition
induces changes in the number and activity of AT immune cell populations [12,13,21-25] and
the consequent paracrine interactions, or cross-talk, between those AT-infiltrated immune cells
and resident adipocytes leads to increased production of inflammatory adipokines (e.g., leptin,
monocyte chemoattractant protein (MCP)-1/chemokine (C-C motif) ligand 2 (CCL2), interleukin (IL)-6,
tumor necrosis factor (TNF)-o« and IL-1p) and decreased production of anti-inflammatory and
insulin-sensitizing adipokines (e.g., adiponectin, IL-10) (reviewed here and in [19]) (shown in Figure 1).
Accordingly, obese AT is characterized by chronic low-grade inflammation, which disrupts its normal
functions and thus contributes to the development of Metabolic Syndrome [14]. As such, it is suggested
that AT inflammation mechanistically links obesity to the development of CVD [26] and T2D [27].
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Figure 1. Lean adipose tissue (AT) maintains an anti-inflammatory and insulin-sensitive tissue
microenvironment through the secretion of anti-inflammatory adipokines (adiponectin, interleukin
(IL)-10 and transforming growth factor (TGF)-B) and is populated by immune cells including
M2-polarized macrophages and cluster of differentiation (CD)4" regulatory T (Treg) cells. However,
during the development of obesity, the population of AT immune cells shifts, demonstrated
by an increase in M1 macrophage accumulation, CD4* T helper 1 cells, and CD8* T cells,
which secrete (along with adipocytes) inflammatory adipokines, monocyte chemoattractant protein
(MCP)-1, interleukin (IL)-6, tumor necrosis factor (TNF)-«, IL-1p, interferon (IFN)-y and leptin,
thus promoting an inflammatory AT microenvironment. Increased circulating lipopolysaccharide
(LPS; i.e., metabolic endotoxemia) further promotes the secretion of inflammatory adipokines from
adipocytes and immune cells in obese AT, promoting the paracrine interactions (“cross-talk”) between
obese AT-infiltrated immune cells and resident adipocytes, leading to the development of metabolic
dysfunction and insulin resistance (IR). Supplementation with long-chain (LC) n-3 polyunsaturated
fatty acids (PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), shifts the obese AT
immune cell population towards a less inflammatory phenotype as suggested by the reduced M1:M2
macrophage ratio and increased anti-inflammatory adipokine production (adiponectin, IL-10, TGF-§3),
which improves metabolic function and insulin sensitivity.

Nutritional strategies for the prevention and treatment of AT dysfunction are of increasing
importance given the prevalence of obesity [1,2]. As discussed throughout this review, dietary fatty
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acids, namely the fish oil (FO)-derived long-chain (LC) omega-3 (n-3) polyunsaturated fatty
acids (PUFA), eicosapentaenoic acid (20:51#-3, EPA) and docosahexaenoic acid (22:6n-3, DHA),
have been extensively studied by our research group and others as anti-inflammatory nutrients
(the broader clinical implications of which have been reviewed in [28,29]) (shown in Figure 2).
Investigation into the mechanisms underlying the n-3 PUFA-mediated attenuation of aspects of
the obese inflammatory phenotype and/or associated metabolic dysfunction rely on rodent high-fat
diet (HFD)-induced and genetic obesity models, whereas such evidence still requires confirmation
in humans. Furthermore, despite efforts by our research group [30,31] and others [28,32,33],
determinations of the minimum effective dosage of n-3 PUFA to modulate critical aspects of the
obese human phenotype, namely systemic inflammation, are limited by the diversity amongst study
designs (e.g., participant characteristics) and n-3 PUFA interventions (e.g., source and duration).
Nevertheless, evidence from in vitro and rodent in vivo studies suggests that EPA and DHA can
decrease inflammatory adipokine production in adipocytes [34—43]. Further, in an in vitro co-culture
model of obese AT, we have shown that LC n-3 PUFA reduce the inflammatory cross-talk between
adipocytes and (i) macrophages [44,45]; (ii) cluster of differentiation (CD)8" T cells [46-48] and
(iii) (CD)4* T cells [49] via, at least in part, downregulation of inflammatory adipokine synthesis and
secretion. As discussed herein, multiple factors contribute to the development of AT dysfunction in
obesity, but the focus of this review will include the changes in AT immune cellularity, dysregulation of
adipokine secretion, and inflammatory signaling mechanisms in obese AT, while identifying potential
targets for n-3 PUFA intervention to mitigate the ensuing metabolic consequences of obesity.
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Figure 2. Integration of selected cell signaling mechanisms regulated by long-chain (LC) n-3
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polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA),
and inflammatory adipokines in obese adipose tissue (AT). EPA and DHA stimulate G-protein
coupled receptor (GPR)120, which promotes the association between (-arrestin 2 (Barr2) and GPR120.
This complex internalizes, allowing Barr2 to bind transforming growth factor-$ activated kinase
(TAK)1 binding protein (TAB)1, which inhibits TAK1/TAB1 binding and subsequent nuclear factor
k-light-chain-enhancer of activated B cells (NF-«B) activation. TAK1/TAB1 binding also leads to the
inhibition of insulin signaling. Lipopolysaccharide (LPS) and saturated fatty acids (SFA) stimulate
Toll-like receptor (TLR)2 and TLR4, and interleukin (IL)-13 and tumor necrosis factor (TNF)-o
stimulate IL-1 Receptor (IL-1R) and TNF Receptor 1 (TNFR1), respectively, all of which promote
TAK1/TAB1 binding and subsequent NF-«B activation. NF-kB (as well as IL-6 and leptin-induced
signal transducer and activator of transcription (STAT)3) regulate inflammatory adipokine gene
transcription. Among them, the immature protein form of IL-13 undergoes further processing to the
mature form by the caspase-1 subunit of the nucleotide-binding oligomerization domain-like receptor,
pyrin domain containing (NLRP)3 inflammasome, activated by TLR2/4-induced reactive oxygen
species (ROS) accumulation. EPA and DHA signaling also promotes peroxisome proliferator-activated
receptor (PPAR)y activation and subsequent adiponectin gene expression.
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2. Adipose Tissue Function and Obesity-Associated Dysfunction

2.1. Healthy Adipose Tissue Function

AT plays a fundamental role in the regulation of whole-body metabolic homeostasis, serving as
both an energy storage depot and an active endocrine organ [15,16]. Adipocytes comprise
approximately 90% of AT volume, but only 20-40% of the overall cellular content [21-23,50].
Hence, AT is a heterogeneous tissue composed of mature adipocytes and a non-adipocyte cells
that comprise the SVE, which includes adipocyte progenitor cells and immune cell populations
(e.g., macrophages, dendritic cells, natural killer cells, B cells and T cells (CD8" and CD4* T
cell subsets) [15,20]. Functionally, within AT, adipocytes share several common features with
immune cell populations, including expression of the innate pattern recognition receptors (PRR),
nucleotide-binding oligomerization domain (NOD)-like receptors (NLR) and Toll-like receptors (TLR)2
and TLR4 [51-53]. In response to, for example, certain ligands (e.g., lipopolysaccharide (LPS) or
adipokines), nutrient and /or oxygen status within the AT microenvironment, PRR signaling regulates
the synthesis and secretion of a wide range of adipokines (shown in Figure 2), which in turn influence
local and systemic immune function, and fatty acid and glucose homeostasis (reviewed in [54]).

Mature adipocytes are the primary energy storage cell type within AT, and as a dynamic tissue,
AT undergoes remodeling to adjust its storage capacity to meet the energy storage demand (reviewed
in [16,55,56]). During periods of excess energy intake (i.e., positive energy balance), insulin stimulates
adipocytes to store free fatty acids (FFA) in the form of neutral TAG through their esterification to
glycerol [16]. Likewise, adipocytes manage insulin-stimulated glucose uptake and utilization as a
substrate for de novo lipogenesis; and finally mobilize these TAG stores via lipolysis for transport back
into the circulation during energy deficit [16]. Intracellular TAG accumulation promotes adipocyte
hypertrophy, which reduces the blood flow and delivery of oxygen per unit of adipocyte surface [55,56].
Hypoxic adipocytes become necrotic and secrete inflammatory adipokines that recruit immune
cells, via chemotaxis, to phagocytose necrotic cell debris and stimulate local angiogenesis [55-58].
Dead adipocytes are eventually replaced with new, smaller adipocytes, ultimately increasing the
capacity of AT to store excess energy [55,56].

2.2. Adipose Tissue Dysfunction in Obesity

AT is distributed throughout the body in subcutaneous and visceral depots; the former is
generally considered to be a safer long-term energy storage depot in comparison to visceral AT
depots, which increase in size in obesity and are associated with the development of metabolic
complications [59-62]. To compensate for the continuous supply of FFA during overnutrition
(positive energy balance), TAG accumulate within visceral AT adipocytes, thus inducing adipocyte
hypertrophy [16]. Large adipocytes are characterized by decreased sensitivity to insulin and its
anti-lipolytic effects, as well as dysregulated adipokine synthesis and secretion [60,63]. Eventually,
adipocyte dysfunction leads to and is exacerbated by a ‘spillover” of FFA, primarily of the saturated
fatty acid (SFA) class (e.g., palmitic acid (16:0, PA)) [16], which may act in an autocrine or paracrine
manner as ligands for inflammatory TLR2/4 signaling (shown in Figure 2). Specifically, SFA-induced
TLR2/4 signaling induces a network of intracellular responses that further contribute to adipokine
dysregulation and sustained chronic low-grade inflammation, including activation of the nuclear factor
k-light-chain-enhancer of activated B cells (NF-«B) transcription factor and the NLR, pyrin domain
containing (NLRP)3 inflammasome [54,64-75] (discussed in Section 6). Ultimately, the autocrine
and paracrine feedforward consequences of adipocyte dysfunction (i.e., adipokine dysregulation,
FFA release) lead to whole AT dysfunction (reviewed here and in [16]). Specifically, dysfunctional AT
cannot meet the ongoing demand for increased energy storage capacity during overnutrition and,
coupled with its increased lipolytic activity, dysfunctional AT gives rise to chronically elevated
circulating FFA levels [9,10] as reported in obese and T2D patients [76-78]. The spillover of FFA is
delivered to ectopic tissues, including the liver and skeletal muscle, wherein the accumulation of lipid
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intermediates (e.g., diacylglycerol and ceramides) together with the abundance of inflammatory stimuli
(e.g., inflammatory adipokines) ultimately impairs insulin signaling (reviewed in [15]), thereby causally
linking AT dysfunction to systemic IR.

2.3. Adipokine Dysregulation in Obese Adipose Tissue

Adipokine synthesis and secretion from adipocytes and SVF cells is essential for normal AT
function as a central regulator of systemic immunity and metabolism (reviewed in [15,16,79]). However,
the constant demand to increase energy storage capacity during overnutrition leads to AT dysfunction,
increased FFA release [63], and dysregulation of adipokine synthesis and secretion [11,60,80]; a process
that we and others have shown is exacerbated by cross-talk between adipocytes and various immune
cell populations [44-48,65,81]. The adipokine profiles of obese subcutaneous and visceral AT depots
differ wherein visceral AT is associated with the metabolic complications of obesity [60,80]. Ultimately,
obese visceral AT is characterized by a state of chronic low-grade inflammation owing, in part,
to increased secretion of inflammatory adipokines and decreased secretion of anti-inflammatory and
insulin-sensitizing adipokines (reviewed in [15,16,79]) (shown in Figure 1; discussed in Section 5).
While an increasing number of adipokines are implicated in the development of the obese phenotype,
the focus of this review will include MCP-1, IL-6, TNF-«, IL-1§3, leptin and adiponectin as the key
mediators of AT inflammation and dysfunction in obesity.

2.4. Metabolic Endotoxemia Drives Adipose Tissue Dysfunction in Obesity

Evidence from rodent models suggests that, in obesity, AT dysfunction is driven, in part,
by increased circulating bacterial components (e.g., LPS, peptidoglycan, flagellin) and metabolites (e.g.,
secondary bile acids) (as reviewed in [82]). Among them, LPS, a component of Gram-negative bacteria
cell walls [83-88], is the most commonly studied bacteria-derived inflammatory stimulus considered
in investigations into the mechanistic link between the gut microbiota and obesity-associated
inflammation. Studies assessing the effect of n-3 PUFA supplementation on either the lean
or obese microbiome are limited [89,90], and therefore are beyond the scope of this review.
Obesity is a gut-associated disease wherein the intestinal microenvironment of lean versus
obese individuals differs dramatically including a dysbiotic microbial community structure and
activity [91-99] and impaired intestinal epithelial barrier function [100,101]. The impaired obese
intestinal microenvironment contributes to critical aspects of the obese pathology, in part by
increasing energy harvested from non-digestible food components and initiating intestinal barrier
dysfunction leading to enhanced barrier permeability, microbial invasion, and AT and systemic
inflammation and metabolic dysfunction [83,101-103]. Moreover, these obesity-associated changes
within the human intestinal microenvironment can be recapitulated in animal HFD-induced obesity
models [83,104-106]. Studies performed in germ-free (microbiota-free) mice colonized with the cecal
content obtained from obese mice have demonstrated that the disease phenotype (inflammation and /or
metabolic dysfunction) can be transferred to the germ-free recipients through microbial colonization,
thereby suggesting that gut microbes can drive metabolic alterations within the host tissues that
ultimately produce the disease phenotype [107,108]. An important feature of the impaired obese
intestinal microenvironment that contributes to the obese phenotype is reduced intestinal epithelial
barrier integrity (i.e., “leaky gut”), which promotes bacterial translocation across the epithelial
barrier leading to the development of increased systemic inflammation (metabolic endotoxemia),
driven by bacterial-derived LPS signaling [91,103]. LPS is a potent systemic inflammatory stimulus
that is significantly elevated in the blood of obese individuals [101,109] and rodents [83,110],
and increased circulating LPS levels are attributable to a decrease in epithelial barrier function and
integrity [83,91,111]. Intestinal bacterial overgrowth during obesity increases LPS levels within the
enteric cavity, leading to greater epithelial mucosal barrier damage, increased bacterial translocation
into the host tissues and, ultimately, metabolic endotoxemia [112]. LPS is a ligand for TLR2/TLR4
(shown in Figure 2; discussed in Section 6.1) expressed on the surface of adipocytes and immune
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cells [52], which signals to initiate NF-kB activation and adipokine secretion, thereby perpetuating the
obese low-grade inflammatory state and subsequent metabolic dysfunction, including AT and systemic
IR [66,83,85,113-116] (shown in Figure 1). For instance, in healthy humans, acute LPS administration
increased AT production and circulating levels of MCP-1, IL-6 and TNF-« prior to the development of
systemic IR [85]. Similarly, metabolic endotoxemia induced in mice via continuous infusion of LPS
increased visceral AT mass, immune cell (i.e., macrophage) infiltration, and inflammation, as well as
fasting glycaemia and insulinemia to a similar extent as observed in HFD-fed mice [83]. Importantly,
the metabolic consequences of both LPS-infusion (i.e., metabolic endotoxemia) and HFD feeding
were blunted in TLR4-deficient mice [83,117]. Thus, LPS is an important factor in obesity-induced AT
dysfunction and warrants inclusion in studies investigating strategies to modulate adipokine synthesis
and secretion.

3. Dietary n-3 Polyunsaturated Fatty Acids as a Strategy to Modulate Adipose Tissue Dysfunction
in Obesity

Strategies to modulate adipokine synthesis and secretion from AT are warranted to attenuate
the chronic low-grade inflammation that causally links obesity to pathologies such as systemic IR,
CVD and T2D [14,26,27,60,85,118]. Since AT is adept at responding to nutritional stimuli, dietary n-3
PUFA may provide such a strategy by regulating the activity of adipokine and immune cell receptors
that are intrinsic to adipokine modulation in the obese state.

n-3 PUFA can act as stimuli for specific cell membrane-bound (e.g., G protein-coupled receptor
(GPR)120, discussed in Section 6.2) or intracellular (e.g., peroxisome proliferator-activated receptor
(PPAR)-y) receptors to directly influence inflammatory adipokine production by adipocytes and
immune cells within AT (reviewed herein and in [119,120]). Further, LC n-3 PUFA membrane
enrichment influences membrane fluidity, formation of lipid rafts and subsequent signal transduction
efficiency (discussed here and in [121-123]), or can serve as substrates for the synthesis of bioactive
lipid mediators (i.e., eicosanoids), which can influence inflammatory signaling (reviewed in [29]).

4. Obese Adipose Tissue Immune Cells and Modulation by 7n-3 Polyunsaturated Fatty Acids

4.1. Altered Immune Cell Composition in Obese Adipose Tissue

In lean AT, various immune cells, such as M2-polarized macrophages (F4/80*, CD11b",
CD11c™) and CD4" regulatory T (Treg) cells (CD4*, forkhead box P3 (FOXP3)*), are engaged
in the maintenance of insulin sensitivity, partly through their secretion of anti-inflammatory
adipokines (reviewed in [15,17-20]). However, overnutrition induces changes in the number and
activity of visceral AT immune cell populations, which collectively direct development of the obese
phenotype [12,13,21-25] (shown in Figure 1). For instance, obese AT is characterized by increased
macrophage accumulation, a greater proportion of which are polarized to the M1 inflammatory
phenotype (F4/80* CD11b* CD11c*; discussed in Section 4.2) [12,21,22,124-127]. Further, Treg cell
abundance is significantly reduced in obese AT [22,23,128-130], as are CD4" T helper (Th)2 cells [13,23].
Conversely, the proportion of infiltrating dendritic cells [131,132], B cells [133,134], NK cells [135-137],
CD4* Thl cells [13,22,23,138,139], and CD8* T cells [13,22,23] are reported to increase in obese AT.

As obesity progresses, AT-derived FFA and inflammatory adipokines act in a controlled
autocrine, paracrine and endocrine manner to ultimately recruit and activate immune cells
in an attempt to repair the AT dysfunction (reviewed in [15,17-20]). However, as the
metabolic consequences of overnutrition persist, immune cell infiltration into obese AT becomes
dysregulated [22-24,124,133,137,140]. Specifically, FFA and LPS serve as ligands for adipocyte
and immune cell TLR2/4 signaling [52,66,68,83,141,142] (discussed in Section 6.1), which promote
the synthesis and secretion of inflammatory and chemotactic adipokines via, in part, NF-xB and
NLRP3 inflammasome activation [73,74,143,144] (discussed in Sections 6.1 and 6.3, respectively).
Further, our research group and others have shown that the gene expression and/or secretion of
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inflammatory adipokines increases with LPS stimulation in adipocytes [43,116,145-147] and immune
cells alone [38,147-149], as well as in co-culture [45-49,81], suggesting that the cross-talk between
obese AT-infiltrated immune cells and resident adipocytes yields a vicious cycle that leads to a local
and systemic state of chronic low-grade inflammation and metabolic dysfunction [20]. In summary,
though many other immune cell populations including dendritic cells [131,132], B cells [133,134],
NK cells [135-137], neutrophils [150], eosinophils [151], and mast cells [152] play key roles in the
maintenance of AT homeostasis and development of the obese AT phenotype, perhaps through direct
or indirect modulation of resident AT macrophage responses (reviewed in [15,17-20]), this review
will focus on adipokine-mediated cross-talk between adipocytes, macrophages and T cells (CD4" and
CD8* subsets).

4.2. Obesity-Associated Changes in Adipose Tissue Macrophages

Among AT-infiltrating immune cell populations, macrophages have taken center stage as a
hallmark of the obese AT phenotype since their degree of infiltration is associated with the progression
of IR (reviewed in [75]). Specifically, the percentage of AT macrophages within the SVF increases
by 20-30% in obese versus lean AT, in both humans and rodent obesity models [12,21,22,124-127].
AT macrophages cluster around necrotic adipocytes, forming crown-like structures (CLS) [153],
which are observed more frequently in obese versus lean visceral AT [60].

There are two well-defined macrophage phenotypes that can be differentiated from circulating
monocytes that infiltrate AT; however, macrophage phenotype is highly plastic in response to signals
within the surrounding microenvironment [154,155], and thus these polarization states are not absolute
and can vary along the M1-M2 spectrum [154]. These polarized macrophage subsets are referred
to as M1, or “classically activated’, and M2, or ‘alternatively activated’, macrophages [154,156].
In obese AT, the macrophage population undergoes a phenotypic switch from the M2 phenotype
(the dominant macrophage phenotype in lean AT) to the M1 phenotype, which functionally exacerbates
AT inflammatory mediator production [12,21,22,124-127] (shown in Figure 1). The M1 macrophage
phenotypic shift has been shown to occur when lipids are repartitioned from hypertrophic adipocytes
to macrophages during obesity progression, wherein M1 macrophages form in response to lipotoxicity
and resemble TAG droplet laden foam-cells [157].

Specially, M1 macrophages can be activated by the Thl cytokine, interferon (IFN)-y, or by
TLR2/4 ligands such as gut-derived LPS or FFAs released from dysfunctional adipocytes [158-161].
The downstream effect of TLR2/4 signaling results in inflammatory adipokine secretion from
M1 macrophages, yielding a paracrine communication loop with adipocytes and other immune
cell populations that contribute to local AT, and ultimately systemic metabolic dysfunction [65,68].
Post-activation, M1 macrophages undergo a respiratory burst followed by production of
reactive oxygen (ROS) and reactive nitrogen species (RNS) that promote microbicidal responses,
antigen presentation via the major histocompatibility complex (MHC)II, and the secretion of adipokines
that promote Th1 and/or Th17 cell-mediated responses [155,156].

Overactivation of M1 macrophages promote chronic inflammation [154], as these cells are
characterized by increased lipid content, increased expression of anti-microbicidal inducible
nitric oxide synthase (iNOS, observed in murine obese AT only), and secretion of inflammatory
adipokines, namely IL-6, TNF-« and IL-1§3, which impair adipocyte insulin signaling and promote
lipolysis [12,69,75,124,126,154,157,162,163]. In this connection, M1 macrophages localize to CLS and
macrophage-derived adipokines have been shown to perturb adipocyte insulin sensitivity [164,165]
leading first to local AT IR and ultimately systemic IR [12,14,126,153,162,166,167]. M1 macrophages
can be identified by increased cellular surface expression of integrin/complement receptors 3 (CD11b)
and 4 (CD11c) [164] and this AT macrophage subset (F4/80*, CD11b*, CD11c") has been shown to
exhibit an enhanced inflammatory response when exposed to FFAs (i.e., TLR2/4 ligands), which is
abrogated by TLR-4 antagonism [66]. Further, CD11c* expressing macrophages appear to be a crucial
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contributor to obese AT dysfunction, as ablation of these cells results in reduced systemic inflammation
and normalization of insulin sensitivity [168,169].

Conversely, M2 macrophages are characterized by the expression of scavenging receptors,
mannose receptor (CD206) and macrophage galactose-type C-type lectin 1 (MGL1), and MHCII
and co-stimulatory molecules [155]. Maturation of M2 macrophages, which exhibit anti-inflammatory
and regulatory (i.e., tolerogenic) immune functions, is promoted by anti-inflammatory mediators such
as IL-10, transforming growth factor (TGF)-f and glucocorticoids [156], and the ingestion of apoptotic
cells [170]. Interestingly, macrophage polarization is not absolute and may shift throughout the
development of obesity, or with weight loss interventions [171]. Therefore, macrophage populations
exhibiting a mixed M1/M2 phenotype have been observed in obese AT in mice [171,172] and
humans [12,167,173-175], wherein these cells express moderate levels of M1 (CD11c) and M2
(MGL1 or CD206) cell surface markers.

4.3. Influence of n-3 Polyunsaturated Fatty Acids on Obese Adipose Tissue Macrophages

Cross-talk between adipocytes and macrophages in obese AT represents a significant contributor
to the obese AT inflammatory adipokine profile [65,69]. Multiple studies have demonstrated the
effect of LC n-3 PUFA supplementation in HFD-induced rodent models of obesity, including reduced
visceral AT M1 macrophage accumulation in favour of M2 macrophage polarization [42,176-182],
which is associated with decreased inflammatory mediator production and increased systemic insulin
sensitivity [176,177,179] (shown in Figure 1). Interestingly, these effects are similar to those reported in
the HFD-fed Fat-1 mouse, which is capable of synthesizing LC n-3 PUFA de novo [183]. In randomized
controlled human interventions, n-3 PUFA supplementation has been shown to reduce the formation
of CLS observed in abdominal AT biopsies, which was associated with reduced circulating MCP-1
levels [184]; whereas macrophage number and CLS abundance in subcutaneous abdominal AT biopsies
were unaffected by n-3 PUFA supplementation [185], thereby highlighting the differential effects
between subcutaneous and visceral AT depots.

Mechanistically, cell culture studies from our group and others’ have demonstrated the
ability of LC n-3 PUFA to reduce macrophage M1 polarization while promoting M2 polarization
status, and to inhibit inflammatory adipokine expression and/or secretion [35,38,44,165,184,186-188].
Furthermore, these effects have been shown to be dependent, at least in part, on various mediators
and signaling pathways, including adiponectin [187] and PPARYy activation [186], although further
study is required. Interestingly, n-3 PUFA-derived lipid mediators, namely resolvins and protectins,
which exert anti-inflammatory and pro-resolving physiological functions [189,190], have also been
shown to influence macrophage function and inflammatory mediator production by stimulating
phagocytic activity, decreasing infiltration into CLS, and promoting their polarization towards the
M2 phenotype [179,191-194]. Ultimately, decreased secretion of inflammatory adipokines from obese
AT could serve to decrease the ongoing recruitment of macrophages and ensuing inflammatory
adipocyte-macrophage cross-talk [35,38,44,165,184,186,187] that exacerbates chronic inflammation
in obesity.

4.4. Obesity-Associated Changes in Adipose Tissue T Cells

Despite the macrophage-centric focus of AT immune cells, several studies have demonstrated
the significant contribution of T cells in the development of the obese phenotype, in both
humans [13,25,140,195,196] and rodent models [22-25,50,138,195-199] (shown in Figure 1). In fact,
T cells have been shown to localize to CLS [138,195-197], suggesting a role in the cross-talk between
adipocytes and macrophages. Further, although controversy exists [168] and human data is less
clear, changes in T cell AT infiltration (increased by 0.5-5% of the SVF), activation and/or effector
status has been shown to precede significant AT macrophage accumulation in diet-induced obese
rodent models [22-24,196]. In humans, a positive correlation between AT T cell accumulation and the
degree of adiposity has been reported, with greater accumulation in visceral AT depots compared
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to subcutaneous [13,140], and the proportion of activated (CD25*, CD69*) AT T cells is consistently
higher in obese individuals compared to lean [25]. Importantly, depletion of visceral AT T cells in
diet-induced obese mice improved AT inflammation and systemic insulin sensitivity in young but not
adult mice [50], suggesting an early window of time during which T cell-mediated immune function
may be controlled in obesity.

Controversy exists over which T cell subset is the first to exhibit changes in cellular abundance or
activation in obese AT; CD4* T cells [23,196], CD8* T cells [197,200,201], or both [13,24,138,177,202,203].
Such discrepancies have yet to be explained, but one reason could be the different methods used to
express and normalize T cell number within AT, such as percentage of total SVF cells, number of
cells/g of AT and number of cells/ AT depot [17].

4.5. Obesity-Associated Changes in Adipose Tissue CD4* T Helper Cell Subsets

CD4* T cells are divided into Thl, Th2, Thl7 and Treg subtypes as defined by the
expression and/or production of signature transcription factors and cytokines (reviewed in [204]).
Accordingly, obese AT is characterized by an increased cellular abundance of the inflammatory
Thl cell subtype [23,139,199,205] and a decreased abundance of the non-inflammatory Treg
subtype [23,201,206-208]. However, controversy exits with respect to the AT abundance and function
of Th17 and Th2 cell subsets in lean and obese AT [13,23].

Thl cells can be identified by T-box transcription factor (T-bet) expression and the secretion
of inflammatory cytokines such as IFN-y, whereas Th2 cells are identified by GATA-binding
protein (GATA)3 transcription factor expression and secrete anti-inflammatory IL-4 and IL-13
(reviewed in [18,204]). Although Th1l and Th2 cells are present in equal proportions in the AT of
lean rodent models, diet-induced obesity has been shown to induce a dramatic increase in the Thl
cellular number, with no change in Th2 cells [23,139]. Likewise, human AT T cells have been reported
to exhibit a Th1 (IFN-y-secreting) profile [13,140], whereas the number of AT Th2 cells inversely
correlates with IR and circulating liver-derived C-reactive protein (CRP) [13], a clinical inflammatory
biomarker [209,210]. Accordingly, adipocyte-derived leptin and FFA, both of which are increased in
obesity, have been shown to enhance Th1 proliferation and/or IFN-y production [211,212].

In general, Thl cells participate in obese AT inflammation and promote IR, primarily owing
to their secretion of IFN-y (reviewed in [18]). IFN-y has been shown to stimulate adipocytes to
express T cell and macrophage chemoattractants, whereas systemic depletion of IFN-y reduces
AT macrophage accumulation, local inflammation, and improved systemic insulin sensitivity [138].
In contrast, however, the depletion of all mature lymphocytes in the recombination activating gene
(Rag)1-deficient mouse did not protect against HFD-induced obese AT inflammation and systemic
IR [23]. Interestingly, adoptive CD4* T cell transfer reversed these aspects of the obese phenotype,
but predominantly through the actions of Th2 cells as adoptive transfer of T cells from signal transducer
and activator of transcription (STAT)6-deficient rodents, which have normal Th1 but impaired Th2
development, did not [23]. Altogether, these data suggest the significant and opposing roles of Thl
and Th2 cells in the development of the obese phenotype.

Th17 cells are identified by retinoic acid receptor-related orphan receptor (ROR)yT expression
and IL-17 secretion (reviewed in [18,204]), and have been shown to promote inflammatory responses
in autoimmune diseases; however, their role in obese AT requires further investigation. Th17 cells are
detectable in AT, but their cellular abundance is minimal and remained unchanged in obese mice versus
lean [23]; although, controversy exists since a higher proportion of Th17 cells has been observed in the
peripheral blood and/or subcutaneous AT of obese humans [212-215]. Interestingly, the major cellular
source of AT IL-17 has been reported to be y0T cells rather than o3T cells, and IL-17-deficient mice are
more susceptible to HFD-induced obesity, but remain insulin sensitive [216]. Accordingly, IL-17 has
been shown to impair adipogenesis and adipocyte expression of genes involved in glucose and lipid
metabolism [216], in addition to increasing the pre-adipocyte, adipocyte and whole AT expression of
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inflammatory adipokines [217]. Likewise, IL-17 production has been reported to correlate with the
severity of T2D in humans [218].

Tregs, identified by FOXP3 expression [204], play an important role in self-tolerance and
reduce inflammation by suppressing autoreactive T cells and M1 macrophages (reviewed in [219]).
Accordingly, in AT, Tregs are found dispersed between adipocytes, but also in CLS in close contact
with macrophages and CD8* T cells [128]. Lean AT is highly enriched with Tregs, comprising 30-40%
of all AT CD4" T cells; a proportion that is significantly higher compared to both lymphoid and
other non-lymphoid tissues [23,128,220,221]. However, the Treg cellular proportion of all AT CD4*
expressing T cells decreases during the development of obesity [22,23,128,206], yet controversy
exists [222]. Nonetheless, Treg depletion experiments have demonstrated their significance in limiting
the development of the obese phenotype, wherein rodent models of genetic and HFD-induced obesity
exhibited increased AT inflammation and decreased systemic insulin sensitivity [128,223]. Likewise,
in similar rodent models of obesity, AT Treg accumulation produced opposing effects, consistent with
a reduced AT M1 macrophage content and increased IL-10-producing M2 macrophages [23,128,224].

4.6. Influence of n-3 Polyunsaturated Fatty Acids on Obese Adipose Tissue CD4" T Helper Cell Subsets

To our knowledge, there is only one report on the effect of n-3 PUFA on CD4* T cells in
obese AT wherein n-3 PUFA supplementation did not affect mesenteric AT expression of CD4 or
FOXP3 in HFD-induced obese mice [177]. However, dietary plant-derived n-3 PUFA («-linolenic acid
(18:3n-3, ALA)-enriched flaxseed) has been shown to reduce perirenal AT total CD3* T cell abundance
in obese leptin receptor-defective fa/fa Zucker rats [225]. The ability of n-3 PUFA to influence effector
subset polarization and function of CD4* T cells has been described in other experimental conditions
or disease models, thereby providing the proof of concept that T cell effector subset polarization and
function may be influenced within obese AT by n-3 PUFA, although further study is required.

Antigen-driven CD4" T cell activation involves the formation of an immunological synapse and
assembly of the signalsome protein complex, which is stabilized by the actin cytoskeleton [226-228].
Formation of the immunological synapse involves reorganization of nanoscale lipid rafts and
signaling proteins [227,229,230] and T cell activation is suppressed with lipid raft disruption [231,232].
Importantly, n-3 PUFA have been shown to alter the stability and/or size of lipid rafts in CD4*
T cells [122,233-236] and suppress downstream cellular activation via mechanisms including (i)
displacement of T cell activation-associated signaling proteins from detergent-resistant membrane
fractions [122,235,237-239], (ii) IL-2 secretion [122,240-242], (iii) lymphoproliferation [235,243,244],
and (iv) mitochondrial translocation [245]. With respect to specific CD4* T cell subsets and Th1/Th2
balance, -3 PUFA have been shown to influence both polarization and signature cytokine secretion
in favor of the Th2 subset while concomitantly decreasing the activation of the Th1 subset [246-248].
Additionally, n-3 PUFA have been shown to reduce CD4" T cell polarization of Th17 cells, in part
through lipid raft-mediated disruption of IL-6 signaling [249,250], whereas there was no effect of n-3
PUFA on Treg polarization [249]. Interestingly, in a model of concurrent HFD-induced obesity and
colitis, dietary supplementation of n-3 PUFA reduced visceral AT gene expression of the Th1 subset
signature cytokine, IFN-y, and the Th17 transcription factor, RORyT, and signature cytokine, IL-17,
with no effect on FOXP3 expression [178].

4.7. Obesity-Associated Changes in Adipose Tissue CD8* T Cells

The primary function of CD8" T cells, also known as cytotoxic T cells, is to kill infected cells
by producing perforin, granzymes and inflammatory cytokines, namely IFN-y (reviewed in [251]).
The degree of splenic CD8" T cell activation in vitro was demonstrated to be markedly increased
when co-cultured with obese versus lean AT [22], which complements in vivo reports in humans and
rodents wherein the proportion of activated CD8* T cells is increased in the SVF of obese AT versus
lean [22-25,50,196,198,252].
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Functionally, the obese AT microenvironment does not influence the development or maintenance
of memory CD8" T cell responses that are primed either before or after obesity is established [253].
Specifically, obesity did not impact the maintenance or function of pre-existing memory CD8* T
cells (i.e., cell surface phenotypic markers, cytokine production and secondary expansion), nor the
differentiation and maintenance of newly activated memory CD8" T cell responses [253]. Conversely,
CD8" T cells have been shown to accumulate in AT and localize to CLS in advance of macrophage
accumulation in obese humans and rodents [22,25,50,197]. Specifically, in HFD-fed mice, CD8* T cells
infiltrated visceral AT within two weeks and reached their peak cellular abundance of 10% of the SVF
by 11 weeks. Conversely, however, macrophage AT infiltration was not observed until six weeks of
HFD feeding, but continued to increase thereafter [22].

The significance of CD8" T cells in macrophage-mediated metabolic dysfunction in obesity
has been elegantly demonstrated by Nishimura and colleagues, both in vitro and in vivo [22].
Specifically, conditioned media collected from activated CD8* T cells contained several chemotactic and
inflammatory cytokines (e.g., MCP-1) that induced macrophage migration and activation. Interestingly,
macrophage differentiation and proliferation were dependent upon the cross-talk between CD8* T
cells and obese AT, as neither CD8* T cells nor AT alone exerted the same effect as co-culture. Further,
CD8" T cell depletion protected mice against HFD-induced obese visceral AT gene expression of
inflammatory and macrophage chemotactic adipokines, which coincided with reduced M1 macrophage
infiltration and CLS frequency without affecting the M2 macrophage fraction, as well as with improved
systemic insulin sensitivity. However, adoptive transfer of CD8* T cells into HFD-fed CD8" T
cell-deficient mice reversed this protection [22].

4.8. Influence of n-3 Polyunsaturated Fatty Acids on Obese Adipose Tissue CD8* T Cells

Although mesenteric AT gene expression of CD8 was shown to be reduced with n-3 PUFA
supplementation in HFD-induced obese mice [177], the effect of n-3 PUFA on obese AT CD8" T cell
abundance/tissue infiltration and function, namely cellular function and influence on the development
of critical components of the obese AT phenotype, has not been determined in vivo. Interestingly,
our group has shown the potential of LC n-3 PUFA to modulate obese AT function utilizing a co-culture
model comprised of 3T3-L1 murine adipocytes and primary splenic CD8" T cells purified from mice
consuming a FO (i.e., LC n-3 PUFA-enriched) diet. The obese AT microenvironment was recapitulated
using a co-culture cellular ratio of 10% CD8* T cells to adipocytes, as described in obese AT by
Nishimura and colleagues [22], which was stimulated with LPS at a concentration that mimics
in vivo circulating levels in obesity [83,109,254]. LC n-3 PUFA-enriched co-cultures exhibited both
an anti-inflammatory and anti-chemotactic secretory profile that consisted of reduced activation of
inflammatory transcription factors (NF-«B and STAT3) and reduced secretion of both inflammatory
and macrophage chemotactic adipokines, which was functionally confirmed by reduced macrophage
chemotaxis [46] and polarization towards the M1 phenotype [47]. Furthermore, these findings
were confirmed in separate studies utilizing the same co-culture model comprised of adipocytes
and plant-derived n-3 PUFA (i.e., ALA)-enriched CD8* T cells [255], and well as FO (i.e., LC n-3
PUFA)-enriched CD8* T cells purified from obese mice [47]. Interestingly, in the latter model,
we showed that LPS-stimulated adipocyte-CD8" T cell inflammatory cross-talk and ensuing M1
macrophage polarization and adipocyte dysfunction are attenuated by TNF-« neutralization [47,48].

5. Adipose Tissue Inflammation in Obesity and Modulation by n-3 PUFA

5.1. Monocyte Chemoattractant Protein-1

MCP-1, also known as CCL2 in humans, is a potent chemoattractant that recruits circulating
monocytes and macrophages to the site of inflammation (i.e., obese AT) via binding the cell membrane
CCL2 receptor (CC2R) (reviewed in [256]). AT and circulating levels of MCP-1 are increased in
obese humans [11,257], and in rodent models of HFD-induced and genetic obesity [70,258]. Visceral
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AT has been shown to secrete more MCP-1 than subcutaneous AT and, while controversy exists,
adipocytes are reported to be the main cellular source [81,257,259] with increased MCP-1 production
reported in adipocytes isolated from obese versus lean humans [11,53]. Likewise, our group has
observed increased MCP-1 gene expression and secretion from 3T3-L1 murine adipocytes stimulated
with low-dose LPS [43] to mimic in vivo circulating levels in obesity [83,109,254]. Further, the cross-talk
between co-cultured murine adipocytes and splenic immune cells, representative of cells of the SVF
within AT, has been shown to increase MCP-1 secretion [81], which our group has confirmed in
unstimulated co-cultures of murine 3T3-L1 adipocytes and RAW 264.7 macrophages [44], as well as in
LPS-stimulated co-cultures of murine 3T3-L1 adipocytes with either splenic CD11b* macrophages [45],
CD8* T cells [46,47], or CD4™" T cells [49]. Thus, adipocyte-immune cell cross-talk may play a crucial role
in the recruitment of macrophages to obese AT and the development of AT and systemic inflammation
and IR [14,75,258].

AT production of MCP-1 is induced by stimuli that are reported to be elevated in the obese
state, including LPS and FFA [147]. For instance, in healthy humans acutely administered LPS to
mimic metabolic endotoxemia, AT production and circulating levels of MCP-1 increased prior to the
development of systemic IR [85]. Further, MCP-1 synthesis and secretion was upregulated in PA- and
LPS-treated human and 3T3-L1 murine adipocytes in vitro [116,147,260], but blunted by antagonizing
TLR4 signaling or NF-«B activity [52,71] (discussed in Section 6.1). MCP-1 is also an insulin-responsive
gene that remains sensitive in an insulin resistant state, as demonstrated in vitro in 3T3-L1 adipocytes
induced to be insulin resistant, and in vivo in ob/ob mice [261]. In turn, MCP-1 further contributes to
the development of IR as MCP-1 treatment was shown to impair 3T3-L1 adipocyte insulin-stimulated
glucose uptake and the expression of several adipogenic genes, including PPARy [261].

The significance of MCP-1 in the pathology of obesity-induced metabolic dysfunctions has been
further demonstrated in HFD-fed MCP-1-/~ and CCR2~/~ mice. In brief, both knockout models were
partially protected from the HFD-induced increase in adiposity and exhibited reduced AT macrophage
accumulation and inflammatory adipokine production [258,262]. Further, MCP-1/CCR2-deficiency
increased adiponectin expression, and improved systemic glucose homeostasis and insulin sensitivity;
an effect that was mirrored by acute CCR2 antagonism in mice with established HFD-induced
obesity [262]. Taken together, the metabolic endotoxemia and hyperinsulinemia that are characteristic
of the obese phenotype may contribute to AT inflammation through, in part, the macrophage
chemotactic function of adipocyte-derived MCP-1.

5.2. Interleukin-6

Circulating levels of the IL-6 are positively correlated with adiposity, circulating FFA, and IR
in humans [263,264], and accordingly, increased circulating IL-6 is predictive of the development
of T2D [265]. Approximately 15-35% of systemic IL-6 is secreted by AT [266], and an in vitro
comparison suggested that obese visceral AT secretes more IL-6 than subcutaneous [263]. Further,
IL-6 concentrations in the interstitial fluid of AT were reported to be 100-fold higher compared to
circulating levels in the same participants [267], highlighting the significance of AT IL-6 secretion and
its local action within obese AT.

LPS stimulates AT-derived IL-6 production [83,85] as demonstrated by the dose-dependent
increase in IL-6 gene expression and secretion from human [116,145] and 3T3-L1 murine adipocytes
invitro [52,260]. Further, our group confirmed these findings in 3T3-L1 adipocytes using
a low dose of LPS [43] to mimic in vivo circulating levels in obesity [83,109,254]. However,
adipocytes secrete approximately 10% of total AT-derived IL-6 [263]; thus, the cells of the SVF,
including M1-polarized macrophages, are considered to be the primary cellular source [11,126,268].
Nonetheless, adipocytes express the IL-6 receptor (IL-6R) [263,267], suggesting a role for IL-6
in the cross-talk between adipocytes and immune cells within AT, as confirmed in co-cultured
adipocytes and a mixed population of SVF cells [81], and in co-cultured adipocytes with either
CD11b* macrophages [44,45], CD8" T cells [46,47], or CD4* T cells [49].
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Upon binding IL-6, adipocyte IL-6R activates Janus kinase (JAK) family members, leading to
the activation of transcription factors of the STAT family (reviewed in [269]) (shown in Figure 2).
Adipocyte IL-6-signaling, in general, leads to dysregulated adipokine production and impaired insulin
action. For instance, in vitro treatment with IL-6 increased 3T3-L1 murine adipocyte IL-6 synthesis and
secretion in a feedforward manner [270], and decreased expression of the insulin-sensitizing adipokine,
adiponectin [267]. IL-6 also induces its negative regulator, suppressor of cytokine signaling (SOCS)3,
which has been shown to interfere with insulin receptor substrate (IRS)-1 and IRS-2 in 3T3-L1 murine
adipocytes [271]. Accordingly, AT IL-6 was inversely correlated with insulin-stimulated adipocyte
glucose uptake in vitro [264], which coincides with reduced IRS-1, glucose transporter 4, and PPARy
gene expression in cultured adipocytes treated with IL-6 [267,270,272,273]. Thus, IL-6-mediated
adipocyte dysfunction and adipokine secretion may potentiate the cross-talk between adipocytes and
immune cells within AT to contribute to the maintenance of chronic low-grade inflammation in obesity.

5.3. Tumor Necrosis Factor-o

TNF-o is a potent inflammatory adipokine that is overexpressed in human [274,275] and
rodent [22,37,276] obese AT and, likewise, circulating levels of TNF-« are increased in obese
humans [277] and correlate with markers of IR [278]. TNF-« is synthesized as a 26-kDa transmembrane
monomer that undergoes proteolytic cleavage to yield a 17-kDa soluble TNF-& molecule; both of
these are biologically active and are increased in human obese versus lean AT [279]. Characteristics of
the obese phenotype, including metabolic endotoxemia, induce AT synthesis and secretion of TNF-«
as evidenced by acute LPS administration in healthy humans [85]. Similarly, acute TNF-« infusion
in healthy humans has been shown to induce systemic IR [280]. The significance of TNF-c in the
pathology of obesity-induced metabolic dysfunctions has been further demonstrated in genetic and
HFD-induced rodent models of obesity wherein TNF-« knockout or neutralization attenuated the
development of systemic IR [276,281].

TNF-oc expression is higher in obese visceral versus subcutaneous AT, and in cells of the
SVF compared to adipocytes [21,65,275]. While TNF-« gene expression is increased in adipocytes
isolated from obese versus lean humans [53], and in cultured human [116] and 3T3-L1 murine
adipocytes treated with LPS [146], there are conflicting reports [145]. Additionally, M1-polarized
macrophages within AT are suggested to be the primary cellular source compared to adipocytes,
although further study is needed [21,65]. Nonetheless, adipocytes express TNF-a receptor (TNFR)1
and TNFR2 [275], suggesting a role for TNF-« in the cross-talk between adipocytes and immune cells
within AT. The ligand-binding extracellular domains of TNFR1/2 are highly homologous, unlike the
intracellular domains, which activate different signaling pathways (reviewed in [282]). The majority of
evidence suggests that TNFR1 mediates the effects of TNF-a on AT dysfunction [275,283-285]. Indeed,
neutralization of TNFR1 but not TNFR2 down-regulated expression of inflammatory adipokines in
human adipocytes cultured in SVF-conditioned media [275]. Nonetheless, TNFR2 is suggested to
cooperate with TNFR1 to regulate TNF-« signaling in chronic inflammatory conditions [282] such
as obesity, and accordingly, only TNFR2 gene expression is reported to increase in obese versus lean
human adipocytes [275,285].

Adipocyte TNF-« signaling is reported to induce inflammatory adipokine production and
lipolysis via, in part, an NF-kB-dependent mechanism [65,69] (shown in Figure 2) and, further, TNF-a
impairs insulin action by inhibiting the normal tyrosine phosphorylation of IRS-1 [284,286]. We and
others have demonstrated that TNF-« secretion increases in co-cultured murine 3T3-L1 adipocytes and
RAW 264.7 macrophages [44], coinciding with increased adipocyte gene expression of MCP-1, IL-6 and
TNF-«, as well as increased FFA release in a similar model [65]. In turn, the adipocyte-derived SFA,
PA, stimulated macrophage TNF-o gene expression [65], creating a vicious cycle that promotes AT
dysfunction. Further, these inflammatory effects of adipocyte-macrophage cross-talk were determined
to be independent of cell-cell contact [44,65]. Importantly, the increase in adipocyte inflammatory
adipokine production and lipolysis were attenuated to a similar degree by both a TNF-o neutralizing
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antibody and a NF-«B inhibitor [65,69], which is consistent with findings in human adipocytes cultured
in SVF-conditioned media [275]. Related to this, our group has shown that TNF-« gene expression and
protein secretion increase in LPS-stimulated murine 3T3-L1 adipocytes co-cultured with either splenic
CD11b* macrophages [45], CD8" T cells [46,47], or CD4* T cells [49]. Interestingly, we have also shown
that LPS-stimulated adipocyte-CD8" T cell inflammatory cross-talk and ensuing M1 macrophage
polarization and adipocyte dysfunction are attenuated by TNF-o neutralization [47,48]. In summary,
TNF-« induces adipocyte lipolysis and regulates NF-«B activity to initiate a vicious cycle between
adipocytes and immune cells that is central to the development of AT inflammation in obesity.

5.4. Interleukin-1p

IL-1B is a potent inflammatory adipokine that is overexpressed in human [11,53,207] and
rodent [53,207,287] obese AT, and increased circulating levels are predictive of the development
of T2D [265]. Compared to subcutaneous AT, obese visceral AT expresses more IL-13, as well as the
IL-1 cell membrane receptor (IL-1R), which reportedly coincides with increased AT accumulation
of Ml-polarized macrophage and CD8* T cells [207,287,288]. Accordingly, cells of the SVE
particularly M1-polarized macrophages, are suggested to be the primary source of IL-1 within AT,
although human and murine adipocyte IL-1 synthesis and secretion is markedly increased in obese
versus lean AT [53,207,288]. Indeed, our group has demonstrated increased IL-1f3 gene expression
in 3T3-L1 murine adipocytes stimulated with low-dose LPS [43] to mimic in vivo circulating levels
in obesity [83,109,254]. Regardless of the cellular source, AT production of IL-1f3 is dependent upon
the activation of NF-«B [289]; hence, IL-1p gene expression is increased in cultured human and
3T3-L1 murine adipocytes and macrophages stimulated with LPS, PA and TNF-« [53,73,116,290].
Subsequently, IL-1§3 is synthesized as an inert pro-protein and is cleaved by caspase-1, a cysteine
protease domain of the NLRP3 inflammasome, to yield the mature, bioactive form of IL-1(3 in response
to various obesity-induced intracellular stressors, such as ROS accumulation (reviewed in [291,292])
(shown in Figure 2; discussed in Section 6.3).

AT-derived IL-1p acts in an autocrine or paracrine fashion to contribute to obese AT inflammation
and dysfunction, and accordingly, ablation of IL-1 signaling in IL-1R knockout mice attenuated
the HFD-induced AT and systemic IR [287]. As a ligand for the IL-1R, which also mediates
NF-«B activity [293], IL-1f has been shown to stimulate inflammatory adipokine synthesis,
impair insulin-stimulated glucose uptake, and induce lipolysis in cultured human and 3T3-L1 murine
adipocytes [294,295]. Thus, it is conceivable that IL-1f contributes to the inflammatory cross-talk
between adipocytes and immune cells that ultimately impairs AT function. Indeed, our group has
shown that LPS-stimulated 3T3-L1 murine adipocyte-specific IL-13 expression increases in co-culture
with splenic CD11b" macrophages [45]. Further, administration of an IL-1f neutralizing antibody
blunted the expression and secretion of inflammatory adipokines, FFA release, and markers of IR in
human adipocytes cultured in macrophage-conditioned media [163]. Also, our group has demonstrated
that increased IL-1f3 gene expression coincides with increased secretion of other inflammatory
adipokines in LPS-stimulated, co-cultured murine 3T3-L1 adipocytes with either splenic CD8* T
cells [46,47] or CD4* T cells [49]. Interestingly, IL-13 and TNF-« have been shown to synergistically
increase AT NF-«B activity and inflammatory adipokine production ex vivo [287]. Accordingly, TNF-«
markedly increased 3T3-L1 murine adipocyte IL-1(3 gene expression and protein secretion [290] yet,
in turn, TNF-« secretion was reduced in 3T3-L1 adipocytes co-cultured with macrophages derived
from IL-1R knockout mice, which coincided with improved adipocyte insulin-stimulated glucose
uptake [287]. Taken together, IL-1(3 contributes to the chronic low-grade inflammatory state that is
characteristic of obese AT by impairing adipocyte function and regulating NF-«B activity to exacerbate
adipokine dysregulation.
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5.5. Inflammatory Adipokine Modulation by n-3 Polyunsaturated Fatty Acids in Obesity

In vitro investigations have demonstrated the anti-inflammatory effects of LC n-3 PUFA
(EPA and DHA) on adipokine secretion (shown in Figure 2), however, some studies have shown that
DHA is more potent than EPA in both the absence and presence of LPS [35,44,165]. The ability of dietary
LC n-3 PUFA to modulate adipokines in the presence of LPS is significant in light of the contribution of
metabolic endotoxemia to AT inflammation in obesity. Both LC n-3 PUFA (EPA and DHA) have been
shown to attenuate both adipocyte (unstimulated and LPS-stimulated) [34,36,37,39,40,43,296,297]
and macrophage [35,37,38,42] inflammatory adipokine secretion. Furthermore, our group has
demonstrated reduced inflammatory adipokine secretion from co-cultured murine 3T3-L1 adipocytes
and RAW264.7 macrophages treated with EPA or DHA or both [44], as well as from LPS-stimulated
co-cultures of murine 3T3-L1 adipocytes with FO (i.e., LC n-3 PUFA)-enriched splenic CD11b*
macrophages [45], CD8" T cells [46,47], or CD4* T cells [49]. Likewise, LC n-3 PUFA supplementation
has consistently been shown to reduce visceral AT production of inflammatory adipokines in rodent
models of both genetic and diet-induced obesity [41,176,177,179,180,183,194,298].

In humans, LC n-3 PUFA have been shown to improve several metabolic risk factors, namely blood
lipid levels [299]; however, the effects on circulating adipokines (i.e., cytokines) are less clear as
circulating levels are not always reflective of the local AT concentrations. Instead, circulating CRP
has emerged as a leading clinical inflammatory biomarker because of its association with habitual
inflammatory status [209,210]. However, the effects of LC n-3 PUFA on any inflammatory markers
in overweight/obese individuals are unclear; thus, determination of the minimum effective dosage
of LC n-3 PUFA to modulate such critical aspects of the obese phenotype are limited, perhaps owing
to differences between study designs, the inflammatory biomarkers analyzed, the duration of LC
n-3 PUFA intervention, as well as the source (i.e., dietary sources versus supplements) and dose of
LC n-3 PUFA interventions. In this connection, a range of LC n-3 PUFA intake levels (for example,
0.6-6.0 g/day EPA + DHA) from dietary sources and supplements has been shown to result in a range
of outcomes in circulating inflammatory mediators in overweight/obese individuals, as reviewed by
our research group [30,31] and others [28,32,33]. For instance, in randomized controlled interventions,
dietary intake of LC n-3 PUFA reduced circulating levels of CRP and IL-6 in obese men [300],
and improved circulating levels of CRP and IL-6 but not TNF-o in overweight women [301]. Further,
purified DHA supplementation reduced circulating CRP, IL-6 and TNF-« levels in obese men and
women, whereas EPA supplementation only reduced IL-6 [302]. Despite these findings, other studies
report no association between LC n-3 PUFA intake and circulating inflammatory cytokines [303-308].
Thus, given the controversy, circulating levels of the aforementioned inflammatory cytokines may not
be the optimal or reproducible primary endpoint in human studies to assess the efficacy of LC n-3
PUFA supplementation in improving aspects of the obese phenotype.

5.6. Adiponectin and Leptin

Adiponectin and leptin are two AT-derived adipokines whose functions tend to oppose
one another in respecitvely attenuating or promoting obese AT inflammatory dysfunction
(reviewed in [309]). In obesity, AT synthesis and circulating levels of adiponectin are
reduced [310-313] such that adiponectin concentrations are inversely correlated with adiposity [312].
Adiponectin circulates in different oligomeric forms of trimeric, hexameric, or high molecular weight
(HMW) [314], wherein the levels of the HMW isoform correlates most closely with systemic insulin
sensitivity [315]. Thus, adiponectin exerts insulin-sensitizing effects and improves lipid metabolism
in adipocytes and in peripheral tissues such as liver and skeletal muscle (reviewed in [316,317]).
Accordingly, adiponectin deficiency was shown to induce IR in a rodent model, whereas its
overexpression improved insulin sensitivity and glucose tolerance [318]. Similarly, in a rodent model
of genetic obesity, overexpression of adiponectin reversed many characteristic components of the obese
phenotype, resulting in improved glucose and lipid metabolic parameters, decreased circulating
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inflammatory adipokine levels, and reduced macrophage AT infiltration compared to obese
littermates [313].

Adipocyte and/or visceral AT adiponectin expression and secretion is downregulated by
inflammatory adipokines whose expression is increased within obese AT [272,294,319,320]. Specifically,
the suppressive effects of TNF- on adiponectin secretion from adipocytes can be partially recovered
by a JNK inhibitor [320]. Conversely, adiponectin stimulation has been shown to suppress LPS-induced
inflammatory adipokine production in adipocytes [321] via inhibition of NF-«kB [322] and upregulation
of PPARy expression [323]; beneficial anti-inflammatory effects that are attenuated in obesity.
Adiponectin antagonizes inflammatory adipokine expression by inhibiting NF-«kB activation [324-327],
and by stimulating anti-inflammatory IL-10 secretion from macrophages [328-331], which express the
adiponectin receptor (AdipoR1/R2) and are responsive to adiponectin signaling [332]. Functionally,
adiponectin has been shown to suppress M1 macrophage activation and production of inflammatory
adipokines, in favour of promoting the polarization of M2 macrophages [323,331-333]. Additionally,
adiponectin has been shown to influence dendritic cell function by decreasing the expression of
co-stimulatory molecules (CD80/CD86) that resulted in reduced CD4" T cell proliferation and
increased FOXP3* Treg expansion [334]; effects that could be beneficial in obese AT given the reduced
tissue abundance of Tregs [22,23,128,206], although further study is required.

Obesity is also characterized by sustained elevated circulating levels of the adipokine leptin,
which is positively associated with body fat mass [335-337]. While many cell types express the
leptin receptor (Ob-Rb), including adipocytes, myocytes and hepatocytes, it is also expressed by
immune cells such as T cells and macrophages, suggesting an immunomodulatory role for leptin
in obese AT [211,338]. In this connection, leptin exerts inflammatory effects by promoting the
secretion of inflammatory adipokines, namely TNF-« and IL-6 [338,339]. In turn, inflammatory
stimuli such as LPS and other inflammatory adipokines stimulate leptin expression in AT,
thereby creating a feedforward loop that perpetuates the low-grade chronic inflammatory phenotype
that characterizes obese AT [340-343]. In this connection, leptin has also been shown to promote
macrophage activation, proliferation, and enhanced phagocytic activity and secretion of inflammatory
adipokines [338,339,344,345]. Leptin also induces T cell proliferative responses by polarizing CD4*
T cells towards the Th1 IFN-y-secreting subset [211,346] and inhibiting Treg proliferation [347,348],
whose cellular abundance in obese AT declines relative to AT mass [22,23,128-130]. Taken together,
leptin contributes to the inflammatory microenvironment of obese AT.

5.7. Adiponectin and Leptin Modulation by n-3 Polyunsaturated Fatty Acids in Obesity

Dietary LC n-3 PUFA have been shown to increase circulating levels of adiponectin in
obesity in both humans [305,349-352] and rodent models [179,180,351,353,354], thereby attenuating
the obesity-associated reduction in adiponectin [310-313]. Our group has shown that EPA and
DHA reduces the gene expression of M1 macrophage markers via an adiponectin-dependent
mechanism [44,45]. Furthermore, LC n-3 PUFA function as activators of PPARy [355] and,
as such, LC n-3 PUFA have been shown to upregulate adiponectin production in adipocytes
via a PPARy-dependent mechanism [356-359]. Furthermore, PPARy antagonizes NF-«B nuclear
activity through a trans-repression mechanism, thereby decreasing the expression of NF-«B
responsive genes [360], including inflammatory adipokines, as elegantly demonstrated in vivo by
macrophage-specific deletion of PPARYy, which highlighted the critical role of PPARY in the regulation
of macrophage polarization (promoting the M2 phenotype and reducing M1), as well as AT and
systemic inflammation and metabolic dysfunction [361].

Dietary LC n-3 PUFA have also been shown to reduce AT gene expression and/or circulating
levels of leptin in overweight and obese humans [362,363] and rodents [178,364,365], wherein EPA
has been shown to be more effective versus DHA [366]. Although the specific mechanisms through
which LC #n-3 PUFA exert these effects are undetermined, the ability to reduce leptin production within
dysfunctional obese AT likely contributes to the LC n-3 PUFA-mediated reduction in inflammatory
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adipokine secretion and changes in AT macrophage and T cell function. Collectively, these data
demonstrate the critical effect of LC 1n-3 PUFA on AT adipokine production that ultimately attenuates
both the metabolic and inflammatory dysfunction that characterizes obese AT.

6. Cell Signaling Mechanisms Regulating Adipokine Production in Obese Adipose Tissue

6.1. TLR2/4 and NF-xB Regulation of Adipokines

Within AT, adipocytes and immune cells both express several signaling receptors including
PRR, TLR2 and TLR4 [51,52,115], which respond to pathogen-associated molecular patterns (PAMPs)
and contribute to the development of AT inflammation and IR in the obese state (reviewed in [54]).
LPS is a well-established ligand for TLR4 within AT [52,83] and SFA (e.g., PA) are reported to be
ligands for both TLR2 and TLR4 [66,68,69,117], although controversy exists [40,71]. A consequence
of TLR2/4 stimulation is the activation of the NF-«B transcription factor complex [52] (shown in
Figure 2). Specifically, the stimulation of TLR2/4 induces myeloid differentiation primary-response
protein (MyD)88/interleukin-1 receptor-associated kinase (IRAK)1 signaling, which leads to the
phosphorylation and activation of transforming growth factor-f3 activated kinase (TAK)1 by promoting
its association with the TAK1 binding protein (TAB)1 [367]. Active TAK1 promotes NF-«B activation
by phosphorylating and activating the inhibitor of kB (IkB) kinase (IKK) complex to downregulate
IkB and allow NF-«B to translocate to the nucleus [367]. In turn, NF-«B regulates the expression of
inflammatory and chemotactic adipokines [52,143,368], and thus, plays a pivotal role in the innate and
adaptive immune responses within obese AT. Accordingly, the expression of TLR2 and TLR4, as well
as the activity of NF-«B, are increased in obese and type 2 diabetic humans [109,369,370], and in rodent
models of HFD-induced obesity [66,142,371,372].

The significance of TLR2/4 signaling in the pathology of obesity-induced metabolic dysfunctions
has been demonstrated in vitro and in knockout mouse models fed a HFD. For instance, a substantial
amount of evidence supports that LPS induces NF-«kB activity and the production of inflammatory
adipokines, as well as impairs insulin signaling in cultured human [109,116,369] and 3T3-L1 murine
adipocytes [43,65,71]; all of which was inhibited by co-treatment with an antibody against TLR4 [52].
TLR2 and TLR4-dependent NF-kB activity and inflammatory adipokine production have also been
demonstrated in adipocytes and macrophages treated with the SFA, PA [64-72]. Interestingly, in vitro
TLR4 signaling was demonstrated to increase TLR2 expression in adipocytes [66], and co-culture
of adipocytes with TLR4-deficient macrophages significantly attenuated inflammatory adipokine
gene expression and adipocyte lipolysis [69], suggesting that TLR2/4 signaling contributes to the
inflammatory cross-talk between adipocytes and immune cells within obese AT. Indeed, our group has
demonstrated that LPS increases inflammatory adipokine expression and secretion in 3T3-L1 murine
adipocytes alone [43] and in co-culture with splenic CD11b* macrophages [45], CD8* T cells [46,47],
or CD4* T cells [49]. In vivo, TLR2 and TLR4 knockout rodent models were protected against the
HFD-induced increase in visceral AT mass, NF-«B activity and gene expression of inflammatory
adipokines, which coincided with reduced circulating levels of MCP-1 and ensuing AT accumulation
of M1-polarized macrophages [66,117,142]. Further, the same rodent models were protected again
HFD-induced IR [66,117,141]; an effect that was also demonstrated in TLR4 knockout mice infused
with lipids [66] and infused with LPS to induce metabolic endotoxemia [83]. Taken together, TLR2 and
TLR4 play a crucial role in modulating adipokines in response to circulating LPS and SFA, and therefore
represent potential targets for dietary intervention during development of the obese phenotype.

6.2. TLR2/4 and NF-xB Modulation by n-3 Polyunsaturated Fatty Acids

During the progression of obesity, LC n-3 PUFA antagonize AT inflammation by antagonizing
LPS- and SFA-induced TLR2/4 signaling in adipocytes and immune cells. Specifically, LC n-3 PUFA
are suggested to block the ligand binding sites of TLR2 and TLR4, as demonstrated in cultured RAW
264.7 murine macrophages wherein the LPS- and SFA-induced activation of NF-«B was inhibited
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by EPA and DHA [64,372]. Likewise, our group has shown that EPA and DHA blunt LPS-induced
inflammatory adipokine gene expression and specifically MCP-1 secretion [43].

The incorporation of LC #n-3 PUFA (EPA and DHA) into cell membranes disrupts the formation
of lipid rafts that are necessary for TLR4 signaling [122,123,373,374]. In cultured macrophages,
DHA inhibited the LPS- and SFA-induced recruitment of TLR4 and MyD88 to lipid raft fractions,
which coincided with reduced ROS accumulation and NF-«B activity [123]. Similarly, our group has
shown that NF-«B activity and/or inflammatory adipokine production is blunted in LPS-stimulated
co-cultures of murine 3T3-L1 adipocytes and FO (i.e., LC n-3 PUFA)-enriched murine splenic CD11b*
macrophages [45] or CD8" T cells [46,47]. It is conceivable that the TLR4 response to LPS was
perturbed in LC n-3 PUFA-enriched immune cell-adipocyte co-cultures in a lipid raft-dependent
manner, but the underlying mechanisms remain unknown. TLR?2 activation may also be dependent
upon lipid raft formation to promote TLR2 dimerization with cell membrane-bound TLR1 or TLR6 [54],
and accordingly, DHA was reported to inhibit TLR2 signaling and subsequent inflammatory adipokine
production in adipocytes and macrophages in vitro [37,72,375].

6.3. GPR120-Dependent Regulation of Adipokines

GPR120 is highly expressed in adipocytes and macrophages and plays a pivotal role in the
maintenance of metabolic homeostasis [37]. Although body weight and AT mass were unaffected,
GPR120 knockout mice exhibit impaired insulin sensitivity compared to wildtype [37]. Likewise,
in a HFD-fed obese rodent model, GPR120 knockout increased body weight and AT mass, as well
as AT M1 macrophage accumulation, consistent with a greater degree of systemic IR compared
to WT rodents [376]. In turn, macrophage-conditioned media has been shown to inhibit GPR120
expression in human adipocytes [377], as has the classically M1 macrophage-derived TNF-« and
IL-1p [378]. Interestingly, GPR120 expression is increased in human obese versus lean visceral AT,
yet its dysfunction is associated with the development of the obese phenotype [376].

GPR120 expression is dependent on functional PPARy and vice versa [378,379], and both of
these respond to n-3 PUFA [37,42,359,380,381]. The n-6 PUFA, arachidonic acid (AA), is reported to
induce GPR120 signaling, though is a less potent ligand compared to EPA and DHA [382], and SFA
exert no effect on GPR120 signaling [37]. Ligand-stimulated GPR120 promotes the association
of GPR120 and (-arrestin2 (arr2), an adaptor protein that mediates GPR120 internalization and
signaling [37] (shown in Figure 2). The GPR120- farr2 complex then interrupts TLR2/4 signaling by
associating with TAB1 to block the association between TAB1 and TAK1 and, therefore, block TAK1
phosphorylation/activation and downstream NF-«B activation [37,42,383]. Thus, GPR120 may
represent a link between dietary LC n-3 PUFA and the modulation of inflammatory adipokines
in obesity.

6.4. GPR120 Modulation by n-3 Polyunsaturated Fatty Acids

The role of GPR120 in mediating the effects of dietary LC n-3 PUFA has primarily been interpreted
from EPA and DHA-treated adipocytes and macrophages in vitro [37,42,378,380,381,383], and in
GPR120 knockout rodent models fed a HFD enriched with n-3 PUFA [37,376]. For instance, EPA and
DHA attenuated the LPS- and TNF-a-induced gene expression and secretion of inflammatory
adipokines in cultured macrophages via a GPR120- and (Barr2-dependent mechanism [37,42].
Specifically, the anti-inflammatory actions of EPA and DHA in vitro mimicked those induced by
a selective GPR120 agonist, GW9508, and were lost in macrophages isolated from GPR120 and Barr2
knockout rodent models [37,42]. Similarly, our group has shown that the anti-inflammatory effects
of DHA are mimicked by GW9508 in 3T3-L1 murine adipocytes [43] wherein other work has shown
that GPR120-agonism mitigates NF-«kB activation [383]. Ultimately, GPR120 is reported to regulate
adipocyte function as DHA increased basal and insulin-stimulated glucose uptake in 3T3-L1 murine
adipocytes, but the effect was abrogated by GPR120 knockdown [37].
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In HFD-fed rodents, the insulin-sensitizing effects of EPA and DHA supplementation were lost
as a result of GPR120 knockout, which coincided with increased M1 macrophage accumulation and
inflammatory adipokine expression in obese visceral AT [37,376]. Importantly, the change in MCP-1
expression was specific to adipocytes, and both MCP-1 and adipocyte-conditioned media promoted
macrophage chemotaxis in vitro [37]; an effect that was blunted by macrophage pre-treatment with
DHA, but not in macrophages isolated from GPR120 knockout mice [37], suggesting the potential
for GPR120 to mediate the anti-inflammatory action of LC n-3 PUFA on adipocyte-immune cell
cross-talk within obese AT. Further, our group has shown that EPA and DHA attenuate the expression
and secretion of inflammatory adipokines in co-cultured murine 3T3-L1 adipocytes and RAW264.7
macrophages [44], and likewise in LPS-stimulated co-cultures of murine 3T3-L1 adipocytes and FO (i.e.,
LC n-3 PUFA)-enriched splenic CD11b* macrophages [45], CD8" T cells [46,47], or CD4* T cells [49].
While the underlying mechanisms remain unknown, it is conceivable that GPR120 signaling negatively
regulated inflammatory signaling in these co-culture models, although further study is required.

6.5. NLRP3 Inflammasome-Dependent Regulation of Adipokines

During the progression of obesity, the NLRP3 inflammasome regulates the innate immune
response within AT (reviewed in [291,292]). Inflammasomes are multi-protein complexes comprised
of a danger-sensing intracellular PRR from the family of NLR, such as NLRP3; the cysteine
protease, caspase-1; and the adaptor protein, apoptosis-associated speck-like protein containing a
caspase-recruitment domain (PYCARD) (reviewed in [291,292]). The NLRP3 inflammasome assembles
in response to many stimuli including endogenous obesity-induced metabolites (reviewed in [291,292]),
such as the accumulation of ROS [384-386] (shown in Figure 2). Next, active caspase-1 cleaves
pro-IL-1p3 and pro-IL-18 to produce their mature isoforms [291,292]. In turn, IL-1f3, specifically,
impairs AT insulin signaling [163,287,295] and, hence, increased circulating levels of IL-1f3 are
predictive of the development of T2D [265].

In humans, adipocyte but not SVF expression of NLPR3 inflammasome components and
activation of the caspase-1 domain correlate with adiposity [53], suggesting that hypertrophic
and dysfunctional adipocytes dominate the NLRP3 inflammasome-mediated response in obesity.
Accordingly, the expression and activation of the NLRP3 inflammasome is increased in obese versus
lean [53,203,207,387], and visceral versus subcutaneous AT [288], which coincides with increased
IL-1p secretion form obese visceral AT [207,288]. Further, NLRP3 inflammasome (i.e., caspase-1)
activity correlates with increased M1 macrophage and CD8" T cell accumulation in visceral AT of
obese humans [207,288]. Related to this, our group has shown that the gene expression of NLRP3
inflammasome components, IL-13 production, and/or caspase-1 activity are increased in co-cultures
of murine 3T3-L1 adipocytes and CD11b* macrophages [45], CD8* T cells [46,47], or CD4" T cells [49],
highlighting the significance of adipocyte-immune cell cross-talk in the activation of the NLRP3
inflammasome. Accordingly, NLRP3 knockout mice were protected against the HFD-induced immune
cell (e.g., macrophages, CD8" T cells) infiltration into visceral obese AT, which coincided with reduced
AT inflammation and improved systemic insulin sensitivity [203,388].

NLRP3 inflammasome activity is regulated by two signals; an initial priming signal to induce the
gene expression of NLRP3 and pro-IL-13, and a second signal to activate the multi-protein complex
to promote caspase-1 activity [291,292]. Priming of the NLRP3 inflammasome is potently induced
by inflammatory signals that activate the NF-«B transcription factor to regulate NLRP3 and IL-13
expression, such as inflammatory adipokines or those transmitted via TLR2/4 (e.g., LPS or SFA) to
induce MyD88/IRAK]1 signaling [72,143,144,389]. In addition to priming, the MyD88/IRAK1 signaling
axis directly links TLR2/4 signaling to activation of the NLRP3 inflammasome [390], perhaps, in part,
via a ROS-dependent mechanism as SFA (e.g., PA) and LPS have been shown to prime and activate
the NLRP3 inflammasome in cultured adipocytes and macrophages, yet the effects were blunted
by antioxidant pre-treatment [39,72-74]. Thus, ROS accumulation may be a crucial intermediate
in TLR2/4-mediated NLRP3 inflammasome activity and IL-13 secretion in obese AT. Importantly,
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secreted IL-1p can act in an autocrine or paracrine fashion as a ligand for IL-1R, which also induces
MyD88/IRAK1 signaling [293] and has been demonstrated to prime the NLRP3 inflammasome in
cultured adipocytes [53]. Therefore, the NLRP3 inflammasome mediates a vicious cycle within obese
AT that contributes to adipokine dysregulation and systemic IR.

6.6. NLRP3 Inflammasome Modulation by n-3 Polyunsaturated Fatty Acids

Recent evidence suggests that dietary fatty acids can modulate NLRP3 inflammasome
activity (reviewed in [391]), which is suppressed by LC n-3 PUFA in particular. For instance,
DHA supplementation reduced AT NLRP3 inflammasome (i.e., caspase-1) activity and IL-1f
production in a HFD-induced obese rodent model, which coincided with improved systemic insulin
sensitivity to a similar degree that was observed in NLRP3 knockout rodents consuming the same
diet [42]. Interestingly, the effects of DHA were lost in NLRP3 knockout rodents, suggesting that
the anti-inflammatory and insulin-sensitizing effects of DHA during a HFD are dependent upon
the inhibition of NLRP3 inflammasome activity [42]. Unfortunately though, to our knowledge,
this is the only in vivo investigation into the ability of dietary LC n-3 PUFA to modulate the NLRP3
inflammasome in obesity. However, related to this, our group established an in vitro co-culture model
of obese AT and showed that LC #n-3 PUFA decrease NLRP3 inflammasome priming, IL-13 production,
and/or caspase-1 activity in LPS-stimulated co-cultures of murine 3T3-L1 adipocytes and CD11b*
macrophages [45], CD8" T cells [46,47], or CD4* T cells [49].

Other in vitro evidence supporting LC n1-3 PUFA-mediated inhibition of the NLRP3 inflammasome
suggests mechanisms that overlap with their inhibition of TLR2/4 signaling [37,42]. For instance,
in murine bone marrow-derived macrophages, pre-treatment with EPA, DHA and, to a lesser extent,
ALA inhibited the LPS-induced priming of the NLRP3 inflammasome and activation of the caspase-1
domain, which coincided with reduced IL-1 secretion [42]. Interestingly, the ability of EPA and DHA
to inhibit NLRP3 inflammasome activation was not dependent upon their enzymatic metabolism to
lipid mediators (e.g., resolvins), but was, in part, dependent upon a GPR120-mediated interaction
between arr2 and NLRP3 [42]. However, since GPR120 signaling was only partially responsible for
the LC n-3 PUFA-mediated inhibition of NLRP3 inflammasome activity [42], another mechanism must
be involved. Accordingly, DHA has been shown to disrupt the PA-induced recruitment of MyD88 to
lipid rafts, which inhibited TLR2/4 activation, downstream ROS accumulation, and IL-1f3 secretion
from human macrophages [72].

7. Conclusions

Obese AT inflammation and dysfunction is sustained via multiple interrelated mechanisms
that integrate the effects of altered immune cell AT infiltration and altered cellular abundance of
inflammatory subsets [12,13,21-25], with cross-talk via paracrine interactions with adipocytes to
stimulate the secretion of a panel of inflammatory adipokines that collectively influence local AT and
systemic metabolic function [11,15,16,19,60,79,80]. Interestingly, we have outlined both the immune
cell- and adipocyte-mediated mechanisms through which LC n-3 PUFA impact AT immune cell
polarization and function via critical cell signaling pathways within AT to modulate inflammatory
adipokine secretion as well as local (i.e., AT) and systemic metabolic function, thereby improving
these critical aspects of the obese phenotype. Further research is required to explore these LC 1-3
PUFA-mediated mechanisms to improve obese AT dysfunction and to determine how other dietary
fatty acids can influence these cellular processes. Additionally, determining the effective dosage
of LC n-3 PUFA intake (either through dietary or supplemental sources) as well as that of other
dietary fatty acids, namely plant-derived n-3 PUFA (i.e., ALA) represent other potential future
directions. Collectively, the AT response to dietary LC n-3 PUFA may provide a strategy to mitigate
obesity-associated AT inflammation prior to the development of systemic IR and T2D.
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