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Abstract: Low periconceptional vitamin B6 (B6) status has been associated with an increased risk
of preterm birth and early pregnancy loss. Given many pregnancies are unplanned; it is important
for women to maintain an adequate B6 status throughout reproductive years. There is limited data
on B6 status in Canadian women. This study aimed to assess the prevalence of B6 deficiency and
predictors of B6 status in young adult women in Metro Vancouver. We included a convenience sample
of young adult non-pregnant women (19–35 years; n = 202). Vitamin B6 status was determined
using fasting plasma concentrations of pyridoxal 5’-phosphate (PLP). Mean (95% confidence
interval) plasma PLP concentration was 61.0 (55.2, 67.3) nmol/L. The prevalence of B6 deficiency
(plasma PLP < 20 nmol/L) was 1.5% and that of suboptimal B6 status (plasma PLP = 20–30 nmol/L)
was 10.9%. Body mass index, South Asian ethnicity, relative dietary B6 intake, and the use of
supplemental B6 were significant predictors of plasma PLP. The combined 12.4% prevalence of B6
deficiency and suboptimal status was lower than data reported in US populations and might be due
to the high socioeconomic status of our sample. More research is warranted to determine B6 status in
the general Canadian population.

Keywords: vitamin B6; pyridoxal 5’-phosphate; suboptimal status; deficiency; ethnicity;
dietary intake; supplement use; women; periconceptional

1. Introduction

Vitamin B6 (B6) has an obligatory role in the endocrine system, immune competence, and heme
biosynthesis. In the form of pyridoxal 5’-phosphate (PLP), B6 serves as a coenzyme for >140 reactions
in human metabolism, including in the interconversion of amino acids, synthesis of neurotransmitters,
regulation of energy homeostasis, and formation of heme [1]. In one-carbon metabolism, PLP acts
as a coenzyme for the glycine cleavage system, the interconversion of glycine and serine, and the
transsulfuration pathway [2,3]. Other coenzyme functions of PLP include reactions in the kynurenine
pathway that catabolizes tryptophan [4].

Maternal B6 adequacy is crucial at conception and throughout pregnancy to ensure healthy
pregnancy outcomes. In a meta-analysis of maternal B6 interventions (n = 247), maternal B6
supplementation (2.6 to ≥50 mg/day) was associated with a 217 g higher infant birth weight [5].
A lower incidence of preeclampsia was reported in women supplementing with 10 mg/day of
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B6 during pregnancy compared to those who did not use supplements [6]. Low maternal B6
status has been associated with a lower Apgar score, an indicator of infant birth health assessed
within minutes after delivery [7,8]. In a prospective cohort of 458 young Chinese women, women
who experienced an early pregnancy loss had significantly lower periconceptional plasma PLP
concentration compared to women with a healthy pregnancy outcome [9]. Also, low periconceptional
B6 status (plasma PLP < 30 nmol/L) has been associated with a reduced probability of conception [10].
Given an estimated 50% of pregnancies are unplanned [11], it is important for women to maintain an
adequate B6 status throughout reproductive years.

Despite the crucial role of B6 in health, there is no nationally representative data on biochemical
B6 status of Canadian women. The Canadian Community Health Survey (CCHS), Cycle 2.2, Nutrition
Focus, in 2004 reported that 18% of Canadian adult women did not meet the Estimated Average
Requirement (EAR; 1.1 mg/day) of B6 from dietary sources; however, there was no biochemical
measurement of B6 status [12]. In the US National Health and Nutrition Examination Survey
(NHANES), over 40% of young adult women (21–44 years) had B6 deficiency (defined as having
plasma PLP concentration < 20 nmol/L; [13]). In light of these findings, there is an urgent need to
investigate the B6 status of Canadian women.

In several other countries (US, Ireland, Norway), various socioeconomic and lifestyle factors
have been associated with plasma PLP concentrations, including oral contraceptive use [13], use of
supplemental B6 [13,14], smoking [15,16], physical inactivity, and poverty [17]. Finding predictors of
low B6 status in a Canadian population will contribute to the identification of vulnerable populations
groups for low B6 status and related health consequences in Canada.

This study aimed to determine the prevalence of suboptimal B6 status and B6 deficiency in a
convenience sample of young adult women in Metro Vancouver, using plasma PLP, a biochemical
marker of B6 status. Demographic, dietary, and lifestyle predictors associated with plasma PLP were
also assessed.

2. Experimental Section

2.1. Participants

This study used data from a descriptive cross-sectional study conducted between 2012 and
2013. The original study was designed to determine the prevalence and predictors of low vitamin
B12 status in a convenience sample of young adult women of South Asian and European descent.
The recruitment and methods of the original study have been described in detail [18]. In brief, a total of
207 healthy, non-pregnant women aged 19 to 35 years of either South Asian or European descent living
in Metro Vancouver were recruited by active and passive recruitment using paper and internet-based
advertising, community outreach, and word of mouth. Eligibility of the potential research participants
was determined by using a screening questionnaire that assessed multiple factors, including age,
ethnicity, residence, and health condition to identify individuals who fit the target demographic.
Informed written consent was obtained from all participants in the study. The UBC Clinical Research
Ethics Board (H11-01216), Vancouver Coastal Health Research Ethics Board, and Fraser Health Research
Ethics Board granted human ethics approval.

2.2. Blood Collection and Analysis

Fasting venous blood samples were obtained from all participants during a single clinic visit.
Samples were collected into lithium heparin vacutainers. Plasma was separated using centrifugation
and stored at –80 ◦C until analyses. Blood samples of 202 subjects were available for plasma
PLP analysis. Plasma PLP was measured by quantification of its semicarbazide derivative using
high-performance liquid chromatography (HPLC) with fluorescence detection [19]. The assay showed
good agreement and high precision when measuring external controls at low, medium, and high
PLP concentrations, with intra- and inter-assay coefficients of variation of 2.6%, 2.2%, and 2.3%,
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and 15.7%, 9.5%, and 10.2%, respectively. The cut-off values used for plasma PLP were: Plasma
PLP > 30 nmol/L for adequate B6 status, plasma PLP = 20–30 nmol/L for suboptimal B6 status [20],
plasma PLP < 20 nmol/L for B6 deficiency [20,21].

2.3. Demographic, Anthropometric, Exercise and Dietary Data

A demographic questionnaire, the “International Physical Activity Questionnaire (IPAQ)—Short
Last 7 Day Self-Administered Format” [22,23], and a semi-quantitative Food Frequency Questionnaire
(FFQ) “Your dietary intake” [24] were administered under the supervision of research staff during the
clinic visit.

The demographic questionnaire collected information on age, ethnicity, immigration, education,
household income, oral contraceptive use, and supplement use. South Asian and European ethnicities
were defined as having at least three grandparents from a single ethnic group. South Asian ethnicity
included Bangladeshi, Bengali, East Indian, Goan, Gujarati, Hindu, Ismaili, Kashmiri, Nepali, Pakistani,
Punjabi, Sikh, Sinhalese, Sri Lankan, and Tamil ethnic groups. Because of the low number of
participants (n = 8) indicating secondary school education or less than secondary school education,
education was dichotomized. Low education was considered as below a bachelor’s degree, and
high education as equal or higher than bachelor’s degree. Due to the low number of participants
(n = 36) in the lowest household income bracket, household income was dichotomized into the
following categories: Low income, total annual household income < $30,000 if 1–2 people, <$40,000
if 3–4 people, <$60,000 if ≥5 people, and high income, total annual household income ≥ $30,000
if 1–2 people, ≥$40,000 if 3–4 people, ≥$60,000 if ≥5 people. Participants who reported use of
oral contraceptives were classified as oral contraceptive (OC) users. Duration and frequency of OC
use were recorded. Participants who reported current consumption of any nutritional vitamin or
mineral supplements were classified as nutritional supplement users. Participants were asked to
bring in nutritional supplement bottles. Brand names and frequencies of intake were recorded and B6
content (yes/no) was obtained retrospectively by researchers from web-based product information.
Participants who were taking supplements containing B6 were classified as supplemental B6 users.
Subjects were asked about their smoking habit and categorized as non-smoker, former smoker, current
occasional smoker (1–9 cigarettes/day), current regular smoker (10–19 cigarettes/day) or current
frequent smoker (≥20 cigarettes/day). Due to the high number of non-smokers (n = 174), smoking
data were dichotomized to non-smoker and smoker (including current smokers and former smokers).

The IPAQ asked the participants to recall their physical activities in the past seven days categorized
as: Walking, moderate-intensity activities, and vigorous intensity activities. Each activity was recorded
with its frequency (days per week) and duration (time per day). Participants were categorized into
three physical activity levels; low, medium, and high, according to the IPAQ analysis protocol [22].

A semi-quantitative FFQ was used to determine dietary B6 intake. The questionnaire contained
78 food items and has been validated to assess micronutrient intakes in the Canadian population [24,25].

Anthropometric measurements, including height, weight, and waist circumference, were taken
by research staff during the clinic visit. Body mass index (BMI) was calculated based on weight
and height.

2.4. Statistical Analyses

The primary outcome of the presented analyses is B6 status and described using the direct
biomarker plasma PLP and established cut-offs for adequate B6 status, suboptimal B6 status [20],
and B6 deficiency [21]. Data were examined for normality by visual histogram assessment. Plasma PLP
concentration was log-transformed to carry out statistical analyses and was presented as geometric
mean (95% confidence interval (CI)). Relative dietary B6 intakes were presented as quartile ranges.

Bivariate analysis was conducted to identify variables associated with plasma PLP concentration
(as continuous variable and as categorical variable using B6 status cutoffs) and relative dietary B6
intake. Two sample t tests were used for dichotomous variables, one-way ANOVA followed by
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Tukey’s Honest Significance test for categorical variables with more than two levels, and simple linear
regression for continuous variables. If the P value from bivariate analysis was ≤0.2, the variable was
carried forward to the stepwise multiple linear regression model. The full model with plasma PLP
concentration as the dependent variable was controlled for relative dietary B6 intake, South Asian
ethnicity, first generation immigrant status, BMI, education status, household income status, smoking
status, and supplemental B6 use. Backward elimination procedure was used to establish the best fit
multiple linear regression model. The estimated percentage change in plasma PLP concentration was
presented for each variable after adjustment for other variables. Statistical significance was set at a
two-sided p value of <0.05. All statistical analyses were performed using R software (3.1.2 windows
version; R Foundation for Statistical Computing: Vienna, Austria).

3. Results

3.1. Participant Characteristics

Overall, subjects (n = 202) were highly educated, with 71% having a bachelor’s degree or higher
(Table 1). The rate of supplemental B6 use was 28% and did not differ based on age, BMI, ethnicity,
household income, level of education, level of physical activity, OC use, or smoking status.

Table 1. Demographic and lifestyle characteristics of 202 healthy young adult women in
Metro Vancouver.

Variables Total (n = 202)

Age *, years 26.7 ± 4.2
Body mass index †, kg/m2 22.7 (22.2, 23.1)
Waist circumference †, cm 74.9 (73.7, 76.1)
Total energy intakes †,‡, kcal/day 1566 (1504, 1629)
Relative dietary vitamin B6 intake ‡, mg/day

Q1 0–1.1
Q2 1.1–1.4
Q3 1.4–1.7
Q4 >1.7

Ethnicity, n (%)
European 147 (73)
South Asian 55 (27)

Education, n (%)
Less than secondary school education 2 (1)
Secondary school diploma 5 (3)
Post-secondary education 51 (25)
Bachelor’s degree 87 (43)
University degree or >bachelor’s degree 57 (28)

Household income §, n (%)
Lowest 36 (20)
Lower-middle 44 (24)
Upper-middle 52 (28)
Highest 51 (28)

Physical activity level ||, n (%)
Low 8 (4)
Medium 110 (55)
High 82 (41)

Use of oral contraceptives, n (%) 58 (29)
Use of nutritional supplements, n (%) 97 (48)
Use of supplemental vitamin B6, n (%) 56 (28)
Current or former smoker, n (%) 28 (14)

* Values presented as arithmetic mean ± SD. † Values presented as geometric mean (95% confidence interval).
‡ 18 samples were excluded due to plausible misreports in the food frequency questionnaire (n = 184). § Income
quartiles are: Lowest: <$15,000 if 1–2 people, <$20,000 if 3–4 people, <$30,000 if ≥5 people, Lower-middle:
$15,000–29,999 if 1–2 people, $20,000–39,999 if 3 or 4 people, $30,000 to 50,000 if ≥5 people, Upper-middle:
$30,000–59,999 if 1–2 people, $40,000–79,999 if 3–4 people, $60,000–79,999 if ≥5 people, Highest: >$60,000
if 1–2 people, >$80,000 if ≥3 people. Only 183 subjects provided household income information. || Only
200 subjects completed physical activity questionnaire.
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3.2. Blood Analyses

Mean (95% CI) concentration of plasma PLP was 61.0 (55.2, 67.3) nmol/L (Table 2). The prevalence
of B6 deficiency (plasma PLP < 20 nmol/L) was 1.5% and that of suboptimal B6 status
(plasma PLP = 20–30 nmol/L) was 10.9%.

Table 2. Differences in plasma pyridoxal 5’-phosphate (PLP) concentration in 202 healthy young adult
women by categories of demographic and lifestyle factors.

Variables
Plasma PLP concentration

Subjects n Mean (95% CI)
nmol/L

<20 nmol/L
n (%) *

20–30 nmol/L
n (%) *

>30 nmol/L
n (%)

Overall 202 61.0 (55.2, 67.3) 3 (1.5) 22 (11) 177 (88)
Anemia

Hb > 12 g/dL 166 62.0 (55.5, 69.2) 3 (1.8) 17 (10) 146 (88)
Hb < 12 g/dL 36 56.4 (45.0, 70.8) 0 5 (14) 31 (86)

Ethnicity
European ‡ 147 66.9 (59.2, 75.6) † 2 (1.4) 14 (10) 131 (89)
South Asian 55 47.6 (41.2, 54.8) 1 (1.8) 8 (15) 46 (84)

Education
Low 7 57.7 (28.5, 116.9) 0 2 (29) 5 (71)
High 195 61.1 (55.3, 67.5) 3 (1.5) 20 (10) 172 (88)

Household income
Low 80 59.5 (52.1, 68.0) 1 (1.3) 7 (9) 72 (90)
High 103 63.6 (55.3, 73.0) 2 (1.9) 15 (13) 86 (83)

Physical activity level
Low 8 44.4 (37.8, 52.3) 0 0 8 (100)
Medium 110 60.6 (53.0, 69.4) 2 (1.8) 13 (12) 95 (86)
High 82 63.8 (54.5, 74.8) 1 (1.2) 9 (11) 72 (88)

Oral contraceptive use
Non-user 144 59.9 (53.5, 67.1) 2 (1.4) 17 (12) 125 (87)
User 58 63.6 (52.0, 77.8) 1 (1.7) 5 (9) 52 (90)

Supplemental vitamin B6 use
Non-user ‡ 146 48.5 (45.0, 52.3) 3 (2.1) 18 (12) 125 (86)
User 56 111.5 (87.2, 139.9) † 0 4 (7) 52 (93)

Smoker
No 174 61.1 (55.0, 67.8) 2 (1.2) 18 (10) 154 (89)
Yes 28 60.2 (44.0, 82.3) 1 (3.6) 4 (14) 23 (82)

Plasma PLP concentration was presented as geometric mean (95% confidence interval (CI)) and was
log-transformed to carry out the following statistical analyses. Hb, hemoglobin. * Chi-squared test
revealed no significant difference in the prevalence of B6 deficiency and suboptimal B6 status in all the
variables. † p value < 0.05 for two-sample t test comparing the indicated category with the referent category.
‡ Referent category.

Users of supplemental B6 had significantly higher plasma PLP concentration compared to
non-users of supplemental B6; mean (95% CI) plasma PLP concentrations were 48.5 (45.0, 52.3)
and 111.5 (87.2, 139.9), respectively (p < 0.001). Women of South Asian descent had significantly
lower plasma PLP concentration (47.6 (41.2, 54.8)) compared with women of European descent
(66.9 (59.2, 75.6), p = 0.002). There was no significant difference in plasma PLP concentration based
on education level, household income, physical activity level, OC use, or smoking status in bivariate
analyses. There was no significant difference in the prevalence of B6 deficiency, suboptimal B6 status or
both combined (plasma PLP < 30 nmol/L) compared to adequate B6 status based on any demographic
or lifestyle factors.

3.3. Dietary Analyses

Quartiles of dietary B6 intake were 0–1.1 mg/day, 1.1–1.4 mg/day, 1.4–1.7 mg/day and
>1.7 mg/day, respectively. Individuals with low household income had significantly lower dietary B6
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intake compared to individuals with high household income (mean ± SD: 1.4 ± 0.42 vs. 1.5 ± 0.47,
respectively; p = 0.045). Plasma PLP concentration and relative dietary B6 intake were positively but
weakly correlated (r = 0.17; p = 0.02).

Dietary vitamin B6 intake derived mainly from meat and meat alternatives in this sample of
young adult women of South Asian and European descent, as shown by multiple linear regression
of dietary B6 intake (Table 3). There was no significant difference in the intake of meat and meat
alternatives between women of South Asian and European descent (2.8 versus 3.0 servings; p = 0.2).

Table 3. Food sources of vitamin B6.

Variables Adjusted change in dietary
B6 intake, mg/day (95%CI) Adjusted p value

Grains, serving 0.03 (0.01, 0.04) <0.001
Fruits and Vegetables, serving 0.10 (0.08, 0.11) <0.001
Dairy, serving 0.10 (0.07, 0.13) <0.001
Meat and Alternatives, serving 0.19 (0.16, 0.22) <0.001

Adjusted changes and p value were from multiple linear regression model controlled for intake of grains, fruits
and vegetables, dairy, and meat and alternatives. Number of observation = 184, Model p value < 0.001, R2: 0.79,
Adjusted R2: 0.79.

3.4. Multivariate Analyses

Relative dietary B6 intake, BMI, ethnicity and the use of supplemental B6 were significant
predictors of plasma PLP concentration (Table 4). Relative dietary B6 intake and the use of
supplemental B6 were positively associated with plasma PLP concentration; BMI and South Asian
ethnicity were negatively associated with plasma PLP concentration. The model explained 32% (R2) of
the variance in plasma PLP concentration.

Table 4. Predictors of plasma PLP concentration from unadjusted and adjusted linear
regression models.

Variables Unadjusted % change in
plasma PLP (95% CI) *

Unadjusted
p value

Adjusted % change in
plasma PLP (95% CI) *

Adjusted
p value

Relative B6 intake
Q2 (1.1–1.4 mg/day) 7.7 (–20.0, 45.0) 0.62 9.0 (–15.8, 41.2) 0.51
Q3 (1.4–1.7 mg/day) 27.5 (–5.3, 71.6) 0.11 23.1 (–4.4, 58.6) 0.11
Q4 (>1.7 mg/day) 35.6 (0.7, 82.4) 0.045 29.3 (0.3, 66.7) 0.048
BMI, kg/m2 –3.7 (–6.3, –1.0) 0.007 –2.7 (–5.1, –0.2) 0.034
South Asian descent –28.9 (–33.6, –24.0) 0.002 –21.1 (–35.7, –3.1) 0.024
Supplemental B-6 use 127.7 (115.6, 140.8) <0.001 114.5 (75.6, 162.0) <0.001

Unadjusted percentage changes and p value were from simple linear regression models. Adjusted percentage
changes and p value were from multiple linear regression model controlled for relative dietary B-6 intake, South
Asian ethnicity, BMI, and supplemental B-6 use. Number of observation = 184, Model p value <0.001, R2: 0.32,
Adjusted R2: 0.29. * The percentage change in plasma PLP concentration was calculated by (eβ1 − 1) × 100%.

Women taking supplemental B6 are expected to have ~113% higher plasma PLP after adjusting for
relative dietary B6 intake, BMI and ethnicity (compared to ~127% higher plasma PLP in the unadjusted
model) (Table 4). South Asian descent was associated with 21% lower plasma PLP concentration
compared to women of European descent (p = 0.026), after adjusting for relative dietary B6 intake,
BMI and the use of supplemental B6.

4. Discussion

Since the vitamin B6 status of Canadian women was previously unknown, and the relationship
between demographic, dietary, and lifestyle factors and plasma PLP had not been assessed,
we conducted a study of B6 status in a convenience sample of 202 healthy young Canadian adult
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women. We identified a combined prevalence of B6 deficiency and suboptimal B6 status of 12.4%.
We also found that body mass index, South Asian ethnicity, relative dietary B6 intake, and the use of
supplemental B6 were significant predictors of plasma PLP.

As defined by the Institute of Medicine, a plasma PLP concentration of <20 nmol/L corresponds
with B6 deficiency [21]. The prevalence of B6 deficiency (1.5%) in this sample was much lower
than the 40% prevalence of B6 deficiency reported for women aged 21–44 years in the NHANES
2003–2004 [13]. This large discrepancy may partly be due to the high socioeconomic status of the
women in our study compared with participants of the NHANES, a representative population-based
survey in the US. Low socioeconomic status has been associated with low B6 status [15,17] and overall
poorer nutritional intake [26]. Education and income status accounted for 6% of the variation in
plasma PLP in the NHANES [15]. The discrepancy between our study and the NHANES may also be
attributed to different analytical methods employed for quantification of plasma PLP. The enzymatic
assay used for the NHANES 2003–2004 samples has been reported to underestimate plasma PLP
concentrations to a degree that would result in a doubling of the prevalence of B6 deficiency compared
to the HPLC method we employed [27]. In the recent Alberta Pregnancy Outcomes and Nutrition
(APrON) cohort study, none of the 119 pregnant women in the first trimester and only one out of
528 (0.2%) second-trimester pregnant women was B6 deficient; the prevalence of suboptimal B6 status
was not reported [28]. Like our study, the APrON cohort is comprised of women of high socioeconomic
status and the lack of B6 deficiency observed is likely due to the high rate (>94%) of multivitamin
supplement use throughout pregnancy [28].

Suboptimal B6 status has been associated with an increased risk of several chronic diseases,
including cardiovascular disease [29], colorectal cancer [30], breast cancer [31] and ovarian cancer [32].
In our study, 11% of our subjects had suboptimal B6 status. A cross-sectional study in Boston reported
18% of suboptimal B6 status among Puerto Rican women aged 45–75 years (n = 1236) [17]. The lower
education level and income of subjects in that study may explain the higher prevalence of suboptimal
B6 status compared with our study. In light of the limited data on B6 status in Canadians [12,28]
and our finding of a substantial rate of suboptimal status in a cohort of healthy women of high
socioeconomic status, a representative, population-based study to determine B6 status of Canadians is
timely and crucial. We predict a higher prevalence of B6 deficiency and suboptimal B6 status would be
observed in a representative sample of Canadian women compared to our study.

The use of supplemental B6 was a strong predictor of plasma PLP concentration both before and
after multivariate adjustment. This is consistent with large scale studies that reported higher plasma
PLP concentrations and a lower prevalence of B6 deficiency in nutritional supplement users [13] and
supplemental B6 users [14] compared with non-users. In this sample, 48% of women used nutritional
supplements (i.e., any type of vitamin or mineral supplement) of whom 58% were retrospectively
categorized as supplemental B6 users. The prevalence of nutritional supplement use in this sample
(48%) was higher than the prevalence reported in the CCHS in 2004 [33] with 35% of Canadian women
aged 19–30 years reporting nutritional supplement use.

Relative dietary B6 intake was not a strong predictor of plasma PLP concentration both before
and after multivariate adjustment. The weak association may partially be due to the use of a
semi-quantitative FFQ. The validation study of the FFQ reported an 11% underestimation of relative
dietary B6 intake compared to the use of dietary recalls [24]. Although the FFQ was validated to
assess micronutrient intakes in the Canadian population [24], it is possible that it was unable to record
certain ethnic specific foods. Further, under-reporting appears to be a factor, as a 1566 kcal/day
average daily energy intake is lower than would be anticipated. In the NHANES 2003–2004, a stronger
association between total B6 intake (from food sources and supplements combined) and plasma
PLP (r = 0.32, p < 0.001) was observed [13]. We are unable to report quantitative intake of B6 from
supplements due to limitations of secondary analysis. The weaker association between plasma PLP
and dietary B6 intake in this study compared to the NHANES data might be explained by our data
reflecting dietary B6 from food alone and not supplemental B6.
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Our study is the first to report that women of South Asian descent may have lower plasma PLP
concentrations compared with women of European descent. The difference in B6 status between South
Asian and European women was not related to the consumption of different food sources of B6; meat
and meat alternatives were the main dietary B6 sources in these healthy adult women. The negative
association between South Asian ethnicity and plasma PLP concentrations remained significant after
adjustment for relative dietary B6 intake, BMI, and supplemental B6 use. Although the South Asian
population was only 56, compared to the European population of 146 in this study, the sample size
was sufficient to give over 80% of power with a small effect size of 0.2 and significance level of 0.05 in
the multiple linear regression model. Ethnicity has been shown to correlate with nutritional biomarker
levels of other micronutrients [34].

Body mass index was inversely associated with plasma PLP concentration after adjustment for
relative dietary B6 intake, supplemental B6 use, and South Asian ethnicity. An inverse relationship of
BMI and plasma PLP was also reported in the NHANES; every 25% increase in BMI was associated
with a 13% decrease in plasma PLP [15]. The volumetric dilution of the blood was suggested as
a potential underlying mechanism for the linkage between increasing body mass and decreasing
concentrations of B6 as well as other B-vitamins [35]. In addition, plasma PLP concentration has been
inversely associated with circulating concentration of C-reactive protein (CRP), a marker of systemic
inflammation that is elevated in obesity [36,37].

Compared to other studies, we did not find OC use to be a significant predictor of B6
status. In recent literature, lower-dose OC use was associated with low B6 status [38]. In the
NHANES 2003–2004, plasma PLP concentration was also significantly lower in OC users compared to
non-users [13]. It was suggested that this may be due to the disruption of tryptophan metabolism by
estrogen, independent of B6 status [39]. In our study, the effect of OC use on plasma PLP concentration
was small and we had insufficient sample size to detect a statistically significant difference. We also
lacked power to detect associations with other variables including physical activity and smoking.

The predictors of B6 status we assessed explained only 32% of the variability in plasma PLP.
Our results might be confounded by unexplained biological factors or genetic modifiers. One recent
study reported some variants in tissue nonspecific alkaline phosphatase gene influenced plasma PLP
concentration, but the clinical implications of these variants were unclear [40].

Some weaknesses of this study include the recruitment of a convenience sample of relatively
healthy women of high education and the lack of data on genetic variants. Over 71% of our study
participants obtained a bachelor’s degree or higher, where a comparatively lower proportion (35%)
of women aged 25 to 64 in Metro Vancouver reported this high level of education, according to the
National Household Survey [41]. We used plasma PLP as our single biomarker to assess B6 status
since it is currently the only established biomarker with cut-offs to define B6 deficiency [21]. However,
plasma PLP only reflects the circulating concentration of B6 and is influenced by several factors, such
as inflammation, serum albumin and alkaline phosphatase concentrations [42]. The derivation of
reference intervals for sensitive functional biomarkers, e.g., plasma cystathionine [43], is crucial for
evaluation of intracellular B6 status.

5. Conclusions

We report a 12.4% combined prevalence of B6 deficiency and suboptimal B6 status in healthy
young adult women in Metro Vancouver (n = 202). Periconceptional B6 adequacy is crucial for healthy
pregnancy outcomes; and women with higher BMI and South Asian ethnicity might be more likely
to have low B6 status. The lower prevalence of B6 deficiency and suboptimal B6 status in these
women compared to reports from representative samples in other countries may be due to the high
socioeconomic status of these women. Given the central roles of B6 in key biological functions and
health, more research is warranted to determine B6 status in the general Canadian population.
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