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Abstract: Metabolic syndrome is a cluster of metabolic abnormalities characterized by
obesity, insulin resistance, hypertension and dyslipidemia. Ferulic acid (FA) is the major
phenolic compound found in rice oil and various fruits and vegetables. In this study, we
examined the beneficial effects of FA in minimizing insulin resistance, vascular dysfunction
and remodeling in a rat model of high-carbohydrate, high-fat diet-induced metabolic
changes, which is regarded as an analogue of metabolic syndrome (MS) in man. Male
Sprague-Dawley rats were fed a high carbohydrate, high fat (HCHF) diet and 15% fructose
in drinking water for 16 weeks, where control rats were fed with standard chow diet
and tap water. FA (30 or 60 mg/kg) was orally administered to the HCHF and control
rats during the last six weeks of the study. We observed that FA significantly improved
insulin sensitivity and lipid profiles, and reduced elevated blood pressure, compared to
untreated controls (p < 0.05). Moreover, FA also improved vascular function and prevented
vascular remodeling of mesenteric arteries. The effects of FA in HCHF-induced MS
may be realized through suppression of oxidative stress by down-regulation of p47phox,
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increased nitric oxide (NO) bioavailability with up-regulation of endothelial nitric oxide
synthase (eNOS) and suppression of tumor necrosis factor-α (TNF-α). Our results suggest
that supplementation of FA may have health benefits by minimizing the cardiovascular
complications of MS and alleviating its symptoms.

Keywords: endothelial dysfunction; ferulic acid; high-carbohydrate-high-fat diet;
inflammation; metabolic syndrome; oxidative stress; vascular remodeling

1. Introduction

Plant polyphenols are phytochemical compounds found in various plants and fruits. This group of
compounds has been intensively investigated as a potential source for treatment of various diseases
including metabolic syndrome, diabetes and cancer [1]. Polyphenolic compounds are classified into
simple phenols, flavonoids, hydroxycinnamic acids, coumarins, xanthones, acetophenones, phenylacetic
acids and the less common stibenes and lignans [2,3]. These natural polyphenols have been shown
to have varying bioavailability and marked health benefits in various diseases [1]. Ferulic acid (FA;
4-hydroxy-3-methoxycinnamic acid), a hydroxycinnamic acid derivative, is abundant in fruits and
vegetables, such as tomato, orange, other citrus fruits, carrot, sweet corn, cabbage, broccoli, banana
and rice bran [4,5]. FA is esterified in various forms in these sources. It is relatively well absorbed
when compared with flavonoid compounds [6]. Numerous studies have shown that FA possesses potent
antioxidant activity by scavenging free radicals and enhancing the cell stress response through the
up-regulation of the cytoprotective system [7]. Moreover, FA has been shown to reduce systolic blood
pressure in spontaneously hypertensive rats (SHR) [8], and to elicit improved endothelial function in
2 kidney-1 clip (2K-1C) hypertensive rats and high fat diet rabbits [9,10]. Treatment with FA decreased
blood glucose in mice [11], reduced plasma triglyceride, free fatty acid and total cholesterol in diabetic
rats and mice [12,13]. FA also decreases some inflammatory mediators such as prostaglandin E2 and
tumor necrosis factor-alpha (TNF-α) [14], improves nitric oxide (NO) bioavailability and increases NO
synthesis [9]. Based on this evidence, FA may offer beneficial effects against many disorders associated
with oxidative stress and inflammation including metabolic syndrome, diabetes, cardiovascular disease,
Alzheimer’s disease and cancer [5,7].

Metabolic syndrome is a major health problem which predisposes those affected to the development
of type 2 diabetes, cardiovascular and kidney diseases [15]. It is characterized by the presence of three
or more of the following risk factors: hypertension, hyperglycemia, dyslipidemia, obesity and insulin
resistance [15]. The prevalence of metabolic syndrome is rapidly increasing worldwide including the
developing countries. This is due primarily to prevailing sedentary lifestyles and unhealthy dietary
habits [16], specifically a diet rich in saturated fat and carbohydrates such as fructose and sucrose. Intake
of this diet is associated with many complications including cardiovascular disease, nonalcoholic fatty
liver disease (NAFLD) and metabolic syndrome [17].

Although the pathogenesis of metabolic syndrome is complex and the underlying mechanisms are
not clearly understood, many experimental animal models for metabolic syndrome have enriched our
understanding of the etiology, pathophysiological basis and the development of therapies as described
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in the literature [18–20]. Data obtained from various studies has shown that the animal models of
metabolic syndrome mimic the major signs of metabolic syndrome in humans, especially hypertension,
dyslipidemia, diabetes, impaired glucose tolerance, obesity and insulin resistance. Among all these
animal models, the evidence suggests that chronic consumption of a high-carbohydrate (in the form
of fructose) and high-fat diet by normal rodents comes the closest to fulfilling the criteria by which
metabolic syndrome in man are defined [20]. Accordingly, in what follows, the abbreviation (metabolic
syndrome (MS)) should be taken to denote the high carbohydrate, high fat (HCHF) rat model of MS.
Previous studies have demonstrated that rats fed with high carbohydrate and high fat diet for few
months develop as revealed by insulin resistance, dyslipidemia, vascular dysfunction, inflammation,
fibrosis and enlargement of the heart with structural remodeling [17,21]. Compounds that could prevent
MS and long-term vascular complications, such as vascular remodeling, could be very beneficial for
health promotion.

Impaired vascular function is probably associated witha diminution of the vasoprotective effect of
endothelial NO and increased oxidant stress by enhanced formation of reactive oxygen species (ROS)
and release of pro-inflammatory mediators (e.g., TNF-α) [14,22]. The aim of this study was to determine
whether FA could prevent metabolic syndrome and vascular remodeling in rats in which MS was
induced by an HCHF diet, and to elucidate the mechanism underlying the alleviation of oxidative stress,
inflammation and vascular dysfunction.

2. Experimental Section

2.1. Animals and Diets

Male Sprague-Dawley rats weighing 220–250 g were supplied by the National Laboratory weighing
Center, Mahidol University, Salaya (Nakornpathom, Thailand). After 7 days of acclimatization, the
rats were randomly assigned to 2 groups: a control group (C, n = 32) received standard rat chow diet
(Chareon Pokapan Co. Ltd., Bangkok, Thailand) with tap water; and a high-carbohydrate, high-fat diet
group (HCHF; n = 48), which were fed with HCHF diet together with 15% fructose in drinking water
for 16 weeks. At week 10, the metabolic syndrome state was confirmed by measurement of fasting
blood glucose (FBG) (ě100 mg/dL), systolic blood pressure (SBP) (ě140 mmHg) and lipid profiles
(hypertriglyceridemia or low high density lipoprotein-cholesterol (HDL-C) level). All HCHF rats that
satisfied the presumptive MS criteria were randomly divided into 3 groups (n = 16/group) with matched
body weight, SBP, FBG and lipid profiles. The studied groups were treated as follows for the last 6 weeks
of the experimental period: (1) Normal control rats were divided into 2 groups of 16. The first (group
1) was treated orally with vehicle alone, propylene glycol (PG), at 1.5 mL/kg/day: (C + PG), the second
control group (2) was treated orally with ferulic acid (FA) 60 mg/kg/day: (C + FA60). The first of the
three groups of the HCHF rat model of MS (3) was treated orally with PG, vehicle at 1.5 mL/kg/day:
(MS + PG), the second MS group (4) was treated orally with a FA (30 mg/kg/day): (MS + FA30); and
the third MS group, (5) was treated orally with a high dose of FA (60 mg/kg/day): (MS + FA60).

Ferulic acid (FA; trans-Ferulic acid 99%) (Figure 1) was obtained from Sigma-Aldrich (St. Louis,
MO, USA) (Figure 1). All the rats were housed at the Northeast Laboratory Animal Center (Khon Kaen
University, Khon Kaen, Thailand) in a temperature-controlled (25 ˘ 2 ˝C) room, on a 12h light/dark
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cycle with free access to the group-specific diets and water. All experimental protocols were approved
by the Animal Ethics Committee of Khon Kaen University.
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Figure 1. Ferulic acid. 

The composition and preparation of the HCHF diet has been described in a previous study [17] with 
some modifications. It consisted of 175 g fructose, 350 g condensed milk, 200 g pork tallow, 200 g 
powdered rat chow, 25 g of Hubble, Mendel and Wakeman salt mixture, and 50 g water per kilogram of 
diet. The energy densities in the food pellets of control and HCHF feeding diets are shown in Table 1. 
As the key carbohydrate for the HCHF group is fructose, the drinking water for this group was 
supplemented with 15% fructose. Meanwhile, the standard chow-fed rats received tap water. Therefore, 
animals in the HCHF group received more carbohydrate than those in the control group. Rats in all 
groups were given free access to food and water. 

Table 1. Energy densities in the food pellets of control and MS groups. 

Macronutrient Composition Standard Chow Diet HCHF Diet 
Total carbohydrate, g/100g 56.24 55.06 

Total fat, g/100g 5.78 18.85 
protein, g/100g 24.76 8.83 

Crude fiber, g/100g 1.91 0.75 
Ash, g/100g 6.12 3.94 

Moisture, g/100g 4.40 13.82 
Energy, Kcal/100g 386.82 423.21 

MS, a rat model of metabolic syndrome; HCHF, high carbohyrate and high fat. 

2.2. Physiological and Metabolic Variables 

All rats were monitored for diet consumption and water intake. The weight gain of each rat was 
measured weekly. Plasma concentrations of total cholesterol, triglyceride (TG) and HDL-cholesterol 
were monitored before the feeding period (i.e., at the end of the 7 day acclimatization period), at week 
10 and at the end of experimental period by using a timed-endpoint methods [23]. 

2.3. Indirect Measurement of Blood Pressure in Conscious Rats 

The SBP was monitored every 4 weeks in conscious rats, pre-warmed (32 °C) for 10 min by  
non-invasive tail-cuff plethysmography (IITC/Life Science, Woodland Hills, CA, USA). Five repeated 
measurements were taken for each rat. The individual SBPs were obtained from an average of  
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The composition and preparation of the HCHF diet has been described in a previous study [17] with
some modifications. It consisted of 175 g fructose, 350 g condensed milk, 200 g pork tallow, 200 g
powdered rat chow, 25 g of Hubble, Mendel and Wakeman salt mixture, and 50 g water per kilogram of
diet. The energy densities in the food pellets of control and HCHF feeding diets are shown in Table 1. As
the key carbohydrate for the HCHF group is fructose, the drinking water for this group was supplemented
with 15% fructose. Meanwhile, the standard chow-fed rats received tap water. Therefore, animals in the
HCHF group received more carbohydrate than those in the control group. Rats in all groups were given
free access to food and water.

Table 1. Energy densities in the food pellets of control and MS groups.

Macronutrient Composition Standard Chow Diet HCHF Diet

Total carbohydrate, g/100 g 56.24 55.06

Total fat, g/100 g 5.78 18.85

protein, g/100 g 24.76 8.83

Crude fiber, g/100 g 1.91 0.75

Ash, g/100 g 6.12 3.94

Moisture, g/100 g 4.40 13.82

Energy, Kcal/100 g 386.82 423.21

MS, a rat model of metabolic syndrome; HCHF, high carbohyrate and high fat.

2.2. Physiological and Metabolic Variables

All rats were monitored for diet consumption and water intake. The weight gain of each rat was
measured weekly. Plasma concentrations of total cholesterol, triglyceride (TG) and HDL-cholesterol
were monitored before the feeding period (i.e., at the end of the 7 day acclimatization period), at week
10 and at the end of experimental period by using a timed-endpoint methods [23].

2.3. Indirect Measurement of Blood Pressure in Conscious Rats

The SBP was monitored every 4 weeks in conscious rats, pre-warmed (32 ˝C) for 10 min by
non-invasive tail-cuff plethysmography (IITC/Life Science, Woodland Hills, CA, USA). Five repeated
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measurements were taken for each rat. The individual SBPs were obtained from an average of
3 consistent readings of SBP. After 8 weeks, SBP was measured every 2 weeks until the end of
experimental period.

2.4. Fasting Blood Glucose, Oral Glucose Tolerance Test

An oral glucose tolerance test (OGTT) was performed every 4 weeks and FBG was measured every
2 weeks starting before the feeding period. Blood samples were taken from a lateral tail vein to
measure FBG using a glucometer (Roche Diagnostics, Sydney, Australia). After 8 weeks, the OGTT
was measured every 2 weeks throughout the last 8 weeks of experimental period. Before the OGGT, rats
were deprived of diet for 8–12 h. And the 15% fructose-supplement drinking water in the HCHF group
was replaced by normal drinking water during this period. The rats were subjected to a glucose load
of 2 g/kg body weight (orally administered) and blood glucose concentrations were measured before
glucose loading and at 30, 60, and 120 min after administration. Blood glucose concentrations over the
period of 120 min were used to calculate the area under the curve (AUC) of the concentration time curve.

2.5. Fasting Serum Insulin Assessments and Homeostasis Model Assessment-Estimated Insulin
Resistance (HOMA-IR) Calculation

Fasting serum insulin concentrations was measured at the end of experimental period using a Rat
Insulin enzyme-linked immunosorbent assay (ELISA) Kit (Millipore, Billerica, MA, USA). HOMA-IR
score, an index of insulin resistance [24] was calculated using Expression (1):

HOMA “ pFasting glucose pmmol{LqˆFasting insulin pµlU{mLqq{22.5 (1)

2.6. Hemodynamic Measurements

At the end of the 16 week experimental period, all rats were anesthetized with an intraperitoneal
injection of pentobarbital sodium (60 mg/kg). The femoral artery was cannulated with a polyethylene
tube and connected to a pressure transducer for monitoring blood pressure (BP) and heart rate
(HR). Hindlimb blood flow (HBF) and hindlimb vascular resistance (HVR) were also measured, as
previously described [25]. After blood flow measurements, vascular reactivity was evaluated by
infusing vasoactive agents at various doses through an additional catheter in the femoral vein in
a stepwise fashion at 5-min intervals. The vasoactive agents tested were an endothelial-dependent
vasodilator, acetylcholine, (ACh; 3, 10, 30 nmol/kg) [26], an endothelial-independent vasodilator,
sodium nitroprusside (SNP; 1, 3, 10 nmol/kg) [26], and an alpha sympathomimetic agent, phenylephrine
(Phe; 0.01, 0.03, 0.1 µmol/kg) [27]. Changes in blood pressure were expressed as percentage of control
values obtained immediately before the administration of the test substance. After hemodynamic
measurements, rats were sacrificed with an overdose of the anesthetic drug. Blood samples were
collected from the abdominal aorta and centrifuged at 3500ˆ g for 15 min at 4 ˝C to obtain the plasma for
assaying plasma TNF-α and oxidative stress markers. Heart, left ventricle (LV) and liver were separated
and weighted. Organ weights were normalized with respect to body weight (mg/g body weight (BW)).
The aorta and carotid arteries were rapidly isolated from the rats and used for Western blot analysis
of endothelial nitric oxide synthase (eNOS) and p47phox nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase expression, and superoxide production (O2

‚´).
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2.7. Oxidative Stress and Inflammation

2.7.1. Superoxide Production and Plasma MDA

Assessment of vascular superoxide (O2
‚´) production was performed in isolated carotid arteries

using a lucigenin-enhanced chemiluminescence technique as previously reported [25,26]. Plasma
malondialdehyde concentrations (MDA) were determined by measuring thiobarbituric acid reactive
substances following a previously described method [28].

2.7.2. Assay of Nitric Oxide Metabolites

The levels of nitrate/nitrite in the plasma, the end products of NO metabolism, were quantified by an
enzymatic conversion method with the Griess reaction as previously described [26].

2.7.3. Plasma TNF-α

The plasma concentration of TNF-α was determined by an ELISA kit (eBioscience, San Diego,
CA, USA).

2.8. Histology

Arteries from six rats of each group were used for histology. At the end of the experiment, rats
were sacrificed with an overdose of pentobarbital sodium, mesenteric resistance arteries were collected
and fixed with 4% phosphate-buffered formaldehyde. To determine medial cross-sectional area (CSA),
arterial wall thickness and media to lumen ratio (M/L), the mesenteric arteries were embedded in paraffin
blocks and 5 µm thick sections were cut and stained with hematoxylin and eosin (H&E). The stained
sections were examined with light microscopy (Nikon ECLIPSE Ni-u, Nikon Instruments Inc., Melville,
NY, USA) and the images were captured with a digital microscope camera (Nikon DS-Ri1 Camera).
CSA, measured in tissue sections under a ˆ40 objective was calculated by subtractingthe lumen area
(Ai) from the total vessel area including the lumen (Ae). The external radius (Re) and the internal radius
(Ri) were calculated as the square root of Ae/π and Ai/π, respectively. Arterial wall thickness was
calculated as Re minus Ri. Finally, M/L ratio was calculated as the wall thickness divided by radius of
the lumen [25].

2.9. Western Blot Analysis

Western blotting was performed in aortas from each experimental group to detect eNOS and
p47phox as previously described [25,28]. Briefly, proteins of aortic homogenates were separated
by electrophoresis on 10% sodium dodecyl sulfate polyacrylamide gel. The proteins were
electrophoretically transferred to a polyvinylidene difluoride membrane, blocked with 5% skimmed milk
in Tris buffered saline containing 0.1% Tween-20 and then incubated with primary antibody of mouse
monoclonal anti-eNOS (BD Bioscience, San Jose, CA, USA) and mouse monoclonal anti-p47phox (Santa
Cruz Biotechnology, Indian Gulch, CA, USA) overnight. Then membranes were repeatedly washed and
incubated with the secondary antibody horseradish peroxidase goat anti-mouse immunoglobulin G (IgG)
(Santa Cruz Biotechnology) for 2 h at room temperature. The blots were incubated in the enhanced
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chemiluminescent (ECL) substrate solution (Thermo Fisher Scientific, Rockford, IL, USA). The
intensity of specific eNOS, p47phox and β-actin bands was visualized and captured by ImageQuantTM
400 (GE Healthcare Life Science, Pittsburgh, PA, USA). The expression of eNOS, p47phox protein
wasnormalized to β-actin expression from the same sample and values are presented as percentages
of those from the aorta of normal controls.

2.10. Statistical Analysis

All data are presented as mean ˘ standard error of the mean (SEM). Statistically significant
differences among groups were calculated using one way analysis of variance (ANOVA) followed by
the Student-Newman-Keuls post hoc test. Statistical significance was defined as p < 0.05.

3. Results

3.1. Effect of FA on Body Weight and Organ Weight of MS Rats

Rats fed with HCHF gained weight at a similar rate to control animals on the normal diet and
supplementation with FA in the normal diet or HCHF diet groups did not affect body weight (Table 2).
However, MS rats showed a marked increase in liver weight and a small increase in heart and left
ventricular weight when compared with control rats. Treatment with FA apparently normalized the
increased liver weight, while FA did not alter organ weight in normal rats (Table 2).

Table 2. Effect of FA on body weight and organ weight in all experimental groups.

Variables C + PG C + FA60 MS + PG MS + FA30 MS + FA60

Body weight (g) 460.3 ˘ 3.7 463.2 ˘ 5.6 465.1 ˘ 8.6 449.1 ˘ 8.1 452.1 ˘ 9.4
Liver wet weight/B.W. (mg/g) 28.6 ˘ 0.6 28.7 ˘ 0.4 39.8 ˘ 2.0 * 30.9 ˘ 0.2 *# 29.7 ˘ 0.7 #:

Heart wet weight/ B.W. (mg/g) 2.76 ˘ 0.02 2.79 ˘ 0.08 3.08 ˘ 0.04 * 3.07 ˘ 0.04 * 3.07 ˘ 0.02 *
LV wet weight/ B.W. (mg/g) 1.87 ˘ 0.14 1.93 ˘ 0.04 2.23 ˘ 0.04 * 2.16 ˘ 0.04 * 2.13 ˘ 0.02 *

C + PG, normal control rats received propylene glycol as a vehicle; C + FA60, normal control rats received
ferulic acid 60 mg/kg; MS + PG, MS rats received propylene glycol; MS + FA30, MS rats received ferulic acid
30 mg/kg; MS + FA60, MS rats received ferulic acid 60 mg/kg; B.W., body weight. Values are expressed as
mean ˘ standard error of the mean (SEM) (n = 10/group). * p < 0.05 vs. C + PG; # p < 0.05 vs. MS group;
: p < 0.05 vs. MS with FA 30 mg/kg.

3.2. Effect of FA on Fasting Blood Glucose and Oral Glucose Tolerance Test

HCHF diet was associated with a significant increase in FBG levels, AUC for the oral glucose
tolerance test, fasting serum insulin and HOMA-IR scores when compared to control rats at the end
of 16 weeks. The changes indicate an impaired glucose tolerance in the HCHF rats. FA treatment
(30 and 60 mg/kg) significantly prevented these changes and alleviated the insulin resistant state in a
dose-dependent manner. FA had no hypoglycemic effect and did not alter the glucose tolerance test
results in control rats (Table 3).
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Table 3. Effect of FA on metabolic variables and inflammatory cytokine.

Variables C + PG C + FA60 MS + PG MS + FA30 MS + FA60

FBG (mg/dL) 86.7 ˘ 1.4 87.2 ˘ 1.7 117.0 ˘ 3.4 * 100.4 ˘ 0.9 *# 93.4 ˘ 1.2 *#:

AUC (mg/dL/120 min) 14,597 ˘ 137 14,455 ˘ 433 17,609 ˘ 263 * 16,808 ˘ 273 *# 15,840 ˘ 248.4 *#:

HOMA-IR 1.73 ˘ 0.05 1.68 ˘ 0.67 17.85 ˘ 3.2 * 4.45 ˘ 0.44 *# 2.91 ˘ 0.26 *#:

Cholesterol (mg/dL) 58.1 ˘ 3.2 57.7 ˘ 2.2 87.6 ˘ 2.0 * 69.9 ˘ 1.3 *# 63.5 ˘ 4.2 *#

Triglycerides (mg/dL) 38.40 ˘ 6.15 36.14 ˘ 5.83 78.29 ˘ 3.96 * 50.60 ˘ 2.91 *# 49 ˘ 2.89 *#

HDL-C (mg/dL) 34.32 ˘ 1.54 34.33 ˘ 0.95 19.07 ˘ 1.55 * 33.29 ˘ 0.97 *# 33.50 ˘ 1.49 *#

Plasma TNF-α (pg/mL) 27.77 ˘ 3.15 25.83 ˘ 3.36 173.14 ˘ 16.30 * 52.98 ˘ 8.90 *# 42.02 ˘ 3.84 *#

C + PG: normal control rats received propylene glycol as a vehicle; C + FA60: normal control rats receiving
ferulic acid 60 mg/kg; MS + PG: MS rats receiving propylene glycol; MS + FA30: MS rats receiving ferulic
acid 30 mg/kg; MS + FA60: MS rats receiving ferulic acid 60 mg/kg. Values are expressed as mean ˘ standard
error of the mean (SEM) (n = 10/group). * p < 0.05 vs. C + PG; # p < 0.05 vs. MS group; : p < 0.05 vs. MS
with FA 30 mg/kg. FBG, fasting blood glucose; AUC, area under the curve; HOMA-IR, homeostasis model
assessment-estimated insulin resistance; HDL-C, high density lipoprotein-cholesterol; TNF-α, tumor necrosis
factor-α.

3.3. Effect of FA on Lipid Profile and Plasma TNF-α

The HCHF diet induced significant increases in plasma total cholesterol, triglycerides and a significant
decrease in HDL-cholesterol when compared with the control group. FA (30 and 60 mg/kg) significantly
prevented the increase in plasma triglycerides, total cholesterol and decrease in plasma HDL-C. The
values of these variables in normal controls-treated with FA did not differ from control values (C + PG,
Table 3). A chronic inflammatory state is one of the important characteristics of metabolic syndrome.
Plasma TNF-α was markedly elevated in MS rats and treatment with FA in HCHF animals largely
suppressed release of the inflammatory cytokine (Table 3).

3.4. Effect of FA on Blood Pressure

Metabolic syndrome is characterized by an elevation of blood pressure. The HCHF diet induced an
increase in SBP (Figure 2) which was significant when compared to controls within 4 weeks of feeding
and progressively increased throughout the 16 weeks of the study period. FA, administered from week 10
through week 16, significantly prevented the increased SBP when compared to the MS (MS + PG) group.
The antihypertensive effect was evident within 2 and 4 weeks following the adminsitration of high and
low doses of FA, respectively, and the antihypertensive effect was demonstrated in a dose-dependent
manner. In contrast, FA when administered to control rats fed a normal diet did not show any hypotensive
or blood pressure lowering effect.

3.5. Effect of FA on Hemodynamic Parameters and Vascular Reactivity

HCHF diet fed rats showed the abnormalities of cardiovascular dynamics as demonstrated by the
increase in SBP, mean arterial pressure (MAP), diastolic blood pressure (DBP) and HR when compared
with controls (Table 4). These changes were associated with a decrease in HBF and increased HVR
(Table 4). Increased heart rate in HCHF-fed rats could be the cause of blood pressure elevation. However,
we found that heart rate contributed less to the development of hypertension than the peripheral vascular
resistance, since the heart rate of the HCHF group increased by only 23%, whereas the hindlimb vascular
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resistance more than doubled with respect to the normal control values (Table 4). Interestingly, treatment
with FA (30 and 60 mg/kg) significantly alleviated the changes in a dose-dependent manner when
compared with MS rats.
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Figure 2. Effect of FA on systolic blood pressure in high carbohyrate and high fat (HCHF) 
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standard error of the mean (SEM) (n = 10/group). * p < 0.05 vs. C + PG; # p < 0.05 vs.  
MS group; † p < 0.05 vs. MS with FA 30 mg/kg. FA, ferulic acid; MS, metablic syndrome;  
C + PG, normal control rats receiving ferulic acid. 
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glycol (solid inverted triangles), MS rats treated ferulic acid 30 mg/kg (open triangles),
MS rats treated with ferulic acid 60 mg/kg (solid squares). Each point represents the
mean ˘ standard error of the mean (SEM) (n = 10/group). * p < 0.05 vs. C + PG; # p < 0.05
vs. MS group; : p < 0.05 vs. MS with FA 30 mg/kg. FA, ferulic acid; MS, metablic
syndrome; C + PG, normal control rats receiving ferulic acid.

Table 4. Effect of FA on hemodynamic parameters in MS rats.

Variables C + PG C + FA60 MS + PG MS + FA30 MS + FA60

SBP (mmHg) 120.4 ˘ 1.4 120.7 ˘ 1.1 151.6 ˘ 2.0 * 140.6 ˘ 3.6 *# 132.7 ˘ 1.6 *#:

DBP (mmHg) 78.1 ˘ 1.7 75.6 ˘ 1.7 108.4 ˘ 1.9 * 97.7 ˘ 1.3 *# 89.4 ˘ 1.5 *#:

MAP (mmHg) 95.4 ˘ 1.6 94.4 ˘ 1.2 124.5 ˘ 1.9 * 117.3 ˘ 2.4 *# 109.0 ˘ 1.3 *#:

HR (beat/min) 344.7 ˘ 3.4 346.6 ˘ 8.8 424.0 ˘ 3.2 * 406.3 ˘ 10.3 * 383.3 ˘ 7.6 *#:

HBF (mL/min/100 g tissue) 6.3 ˘ 0.3 6.3 ˘ 0.2 4.0 ˘ 0.2 * 5.2 ˘ 0.1 *# 5.9 ˘ 0.2 #:

HVR
(mmHg/mL/min/100 g tissue)

15.14 ˘ 0.30 15.68 ˘ 0.30 31.73 ˘ 0.30 * 23.93 ˘ 0.30 *# 17.72 ˘ 0.30 *#:

C + PG: normal control rats received propylene glycol as a vehicle; C + FA60: normal control rats received
ferulic acid 60 mg/kg; MS + PG: MS rats received propylene glycol; MS + FA30: MS rats received ferulic
acid 30 mg/kg; MS + FA60: MS rats received ferulic acid 60 mg/kg. Values are expressed as mean ˘ standard
error of the mean (SEM) (n = 10/group). * p < 0.05 vs. C + PG; # p < 0.05 vs. MS group; : p < 0.05 vs. MS
with FA 30 mg/kg; FA, ferulic acid; MS, metabolic syndrome; SBP, systolic blood pressure; DBP, diastolic
blood pressure; MAP, mean arterial blood pressure; HR, heart rate; HBF, hindlimb blood flow; HVR, hindlimb
vascular resistance.
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Furthermore, MS rats showed diminished vascular responses to the vasoactive agents, Phe (Figure 3A)
and ACh (Figure 3C) when compared with the normal control group. MS rats-treated with FA in
a dose-dependent manner restored the vascular responsiveness by preventing the attenuation of the
vasoconstrictive and vasodilatory effects of Phe and ACh (Figure 3A,C). In MS rats, the vascular
response to SNP, an endothelium-independent vasodilator, was unchanged (SNP; Figure 3B) and was
not altered following the treatment with FA.
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rats to (A) phenylephrine-induced high blood pressure; (B) sodium nitroprusside-induced
decreased blood pressure; and (C) acetylcholine-induced decreased blood pressure was
assessed. The mean arterial pressures are presented as mean ˘ standard error of the mean
(SEM) (n = 10/group); * p < 0.05 vs. C + PG; # p <0.05 vs. MS group; : p < 0.05
vs. MS with FA 30 mg/kg. C + PG: normal control rats received propylene glycol as a
vehicle; C + FA60: normal control rats receiving ferulic acid 60 mg/kg; MS+PG: metabolic
syndrome rats receiving propylene glycol; MS+FA30: metabolic syndrome rats receiving
ferulic acid 30 mg/kg; MS+FA60: metabolic syndrome rats receiving ferulic acid 60 mg/kg.
FA, ferulic acid; MS, metabolic syndrome.
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3.6. Effect of FA on Oxidative Stress

Excess production of ROS is one of the main factors contributing to lipid peroxidation and oxidative
damage in metabolic syndrome. In this study, we assessed vascular oxidative status by measurement
of superoxide production in carotid arteries and oxidative products of lipid peroxidation in plasma.
Figure 4A shows that vascular superoxide production from carotid strips was significantly higher in
MS rats than in the control groups. Plasma MDA levels were significantly greater in MS rats than
controls (Figure 4B). Administration of FA (30 and 60 mg/kg) significantly prevented the HCHF-induced
increase in vascular superoxide production and plasma MDA in a dose dependent manner (Figure 4A,B).
FA treatment did not alter basal superoxide formation or any of the oxidative stress markers in normal
control rats.
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plasma samples were taken for assay of malondialdehyde (MDA) (B). Values are presented
as mean ˘ standard error of the mean (SEM) (n = 10/group); * p < 0.05 vs. C + PG;
# p < 0.05 vs. MS group; : p < 0.05 vs. MS with FA 30 mg/kg. C + PG: normal control
rats received propylene glycol as a vehicle; C + FA60: normal control rats received ferulic
acid 60 mg/kg; MS + PG: MS rats received propylene glycol; MS + FA30: MS rats received
ferulic acid 30 mg/kg; MS + FA60: MS rats received ferulic acid 60 mg/kg. FA, ferulic acid;
MDA, malondialdehyde.

3.7. Effect of FA on Nitric Oxide Formation

NO released from vascular tissues plays critical roles in the vascular response, changes in pressure and
flow, and cardiovascular protection [29]. The plasma nitrate/nitrite ratio, representing NO metabolites,
in MS rats was significantly lower than in the control groups. FA prevented the attenuation of plasma
nitrate/nitrite levels when compared with the HCHF group not treated with FA. FA treatment did not
affect plasma NO in control rats (Figure 5).
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3.8. Effect of FA on Arterial Histomorphometry

Figure 6 illustrates the histological changes in mesenteric arteries from the various experimental
groups. Vascular wall thickness, M/L ratio and CSA were significantly increased in the HCHF group.
However the luminal cross sectional area remained unchanged (Figure 6D). The histological changes
in the vessel medial layer were indicative of hypertrophic vascular remodeling. These results show
that, chronic consumption of HCHF induced vascular remodeling and that treatment with FA (30 and
60 mg/kg) attenuated this remodeling in a dose dependent manner as indicated by significantly reduced
vascular wall thickness, M/L ratio and CSA (Figure 6A–C).

3.9. Effect of FA on Arterial Protein Expression of eNOS and p47phox

There were changes in NO and O2
‚´ production in MS rats which were largely prevented by

FA. However, it is not clear whether these changes were associated with up-regulation and/or
down-regulation of eNOS and NADPH oxidase enzymes. Therefore, Western blot analysis was
performed to examine the expression levels of eNOS and NADPH oxidase subunit p47phox in the
aorta. When comparing MS rats with controls, we observed a significant decrease in eNOS expression
(Figure 7A), whereas the protein expression of p47phox was significantly increased (Figure 7B). Thus,
FA administration (60 mg/kg) prevented the reduction of eNOS and the increased p47phox expression.
However, FA treatment in normal control rats did not cause any significant changes in the protein
expression of eNOS and p47phox subunit (Figure 7A,B).
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Figure 6. Effect of FA on vascular remodeling of mesenteric arteries in MS
rats. Representative photomicrographs of the mesenteric arteries (ˆ400) stained with
hematoxylin and eosin are shown and morphometric analysis was performed for (A) the
wall thickness; (B) media to lumen ratio (M/L); (C) cross-sectional area (CSA) of the media
layer; (D) lumen area. Values are presented as mean ˘ standard error of the mean (SEM)
(n = 6/group); * p < 0.05 vs. C + PG; # p < 0.05 vs. MS group; : p < 0.05 vs. MS with FA
30 mg/kg. FA, ferulic acid; MS, metabolic syndrome.
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* p < 0.05 vs. C + PG, # p < 0.05 vs. MS group. FA, ferulic acid; eNOS, endothelial nitric 
oxide synthase; MS, metabolic syndrome; C + PG, normal control rats received propylene 
glycol. 

4. Discussion 
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weights. This suggests that cardiac hypertrophy having resulted from remodeling would take more time 
to regress to normal. Moreover, FA also decreased the liver weight. The exact mechanism of this effect 
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of MS rats. Data are presented as a percentage of normal controls values and expressed
as mean ˘ standard error of the mean (SEM). Data obtained from at least five different
experiments. * p < 0.05 vs. C + PG, # p < 0.05 vs. MS group. FA, ferulic acid; eNOS,
endothelial nitric oxide synthase; MS, metabolic syndrome; C + PG, normal control rats
received propylene glycol.

4. Discussion

In the present study we have demonstrated that rats fed with the HCHF diet for 16 weeks developed
the signs of metabolic syndrome including hyperglycemia, insulin resistance, dyslipidemia, high
blood pressure, vascular remodeling, oxidative stress and inflammation. The beneficial effect of oral
supplementation of FA in MS rats for six weeks was evaluated and it was found that FA could reverse
almost all the deleterious changes in these animals. The protective effects resulted from the restoration
of insulin sensitivity, and normalization of blood pressure and vascular responsiveness, whereas the
underlying mechanism may be the suppression of oxidative stress by downregulation of NADPH
oxidases, inhibition of inflammatory cytokine and maintenance of nitric oxide availability.

Animals fed with HCHF diet did not gain weight in comparison with control rats. However, organ
weight, particularly that of the liver was increased. This is consistent with other reports using a similar
HCHF rat model which found liver inflammation and steatosis, together with cardiac hypertrophy [30].
In this study, FA supplementation was started at week 10, which was after hypertension had already
developed. FA was associated with decreased blood pressure, but not decreased heart and left ventricular
weights. This suggests that cardiac hypertrophy having resulted from remodeling would take more time
to regress to normal. Moreover, FA also decreased the liver weight. The exact mechanism of this effect is
not known and needs further study. However, since liver cells can change rather rapidly due to their high
rate of division when they are stimulated, the reduced liver weight in FA-supplemented rats is probably
due to the suppression of liver cells’ proliferation. FA reduces oxidative stress and insulin resistance,
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thereby, normalizing lipid metabolism and suppressing inflammation, leading to an alleviation of the
fatty liver and also preventing the changes in arterial morphology and function.

Insulin resistance is a hallmark of metabolic syndrome and type 2 diabetes. The elevation of FBG
and plasma insulin resulting in an increase of HOMA-IR is largely alleviated by FA. This suggests that
FA may have an insulin sensitizing effect, which it is consistent with previous reports of the anti-diabetic
action of FA in type 2 diabetic mice [11]. The restoration of insulin sensitivity, in turn, may account
for the improvement in lipid profile, i.e., reduction in hypercholesterolemia and hypertriglyceridemia
and increased HDL-C. It should be noted that the HCHF diet-induced MS is in part associated with
the release of inflammatory cytokines, i.e., TNF-α in the present study. The release of inflammatory
cytokines is known to be a very strong inducer of insulin resistance [31]. In a recent study we
reported the inflammatory cytokine-induced insulin resistance in human hepatocellular liver carcinoma
cell line (HepG2), whereas suppression of its signaling pathway restored insulin sensitivity [32]. The
suppression of plasma TNF-α by FA found in the present study may significantly contribute to the insulin
sensitizing effect.

The elevation of blood pressure is another feature of the metabolic syndrome state. Patients with MS
and type 2 diabetes are frequently afflicted with cardiovascular complications, for instance: hypertension,
coronary heart disease and ischemic stroke [33]. The good control of blood pressure in hypertensive
and diabetic patients is known to benefit cardiovascular outcomes [34]. The etiology of hypertension
remains poorly understood. However, oxidative stress in association with a chronic inflammatory
state plays a major role in the modulation of vasomotor tone and vascular remodeling [29]. We
observed an impaired vascular response and high blood pressure in MS rats, which was associated with
vascular dysfunction, suppression of cytoprotection plasma nitric oxide and vascular eNOS expression,
and an increase of p47phox expression. Ferulic acid has been shown to be a potent antioxidant
in vitro and in vivo by up-regulating the strongly cytoprotective enzyme, heme oxygenase-1(HO-1),
heat shock protein 70 (HSP70) and Protein kinase B (Akt), as well as suppressing oxidant and
inflammation generation by down-regulation of cyclooxygenase-2 (COX-2) [4,7]. Moreover, FA was
shown to inhibit angiotensin converting enzyme (ACE) activity [8]. In the HCHF diet-induced high blood
pressure and vascular dysfunction reported here, the antioxidant, anti-inflammation and ACE inhibition
of FA could account for the antihypertensive and vascular protective effects. It should be noted that FA
did not lower blood pressure in normal rats, suggesting that its blood pressure lowering effect is observed
only under pathological conditions.

Long standing insulin resistance in metabolic syndrome and diabetes, as well as hypertension cause
macrovascular changes like atherosclerosis and eventually leads to cardiovascular complications and
ischemic stroke [33]. In this study, there was a thickening of the media of the mesenteric arterial
wall, which may be due to the proliferation and migration of smooth muscle cells and or accumulation
of extracellular matrix [35]. The thickened media may lead to increased arterial stiffness, a feature
associated with the development of atherosclerosis. Treatment with FA attenuated the vascular changes
in HCHF diet rats so that the vessels appeared normal. Previous reports have shown that FA can reduce
inflammatory cell infiltration and collagen deposition in kidney and heart tissue [36]. Moreover, the
effects of angiotensin II and oxidants which play a critical role in vascular damage could be abolished
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by FA [37]. Altogether, the prevention of vascular remodeling could be very important aspect of the way
in which FA may prevent cardiovascular complications in the chronic metabolic syndrome state.

The antioxidant effects of FA may be due not only to free radical scavenging activity which was
observed as inhibition of superoxide and MDA formation, but may also include suppression of p47phox

expression, the enzymes generating reactive oxygen species. The restoration of eNOS expression may
be a consequence of suppression of oxidant formation, as FA had no effect on NO and eNOS levels in
control animals.

5. Conclusions

The present study demonstrates that the HCHF diet induces metabolic syndrome-like signs in
rats and that this was associated with oxidative stress, inflammation and vascular remodeling. Oral
supplementation of FA ameliorates HCHF-induced MS, improves insulin sensitivity, lipid profiles and
vascular endothelial function, decreases blood pressure, and reduces oxidative stress and inflammation.
These therapeutic effects of FA may be due to its antioxidant and anti-inflammatory properties. This
study provides evidence of the health benefit of FA consumption.
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