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Abstract 

Background/Objectives: This study investigated how phase-specific dietary strategies 
and weight regulation influence gut microbiota composition and diversity in competitive 
weightlifters. Particular emphasis was placed on integrating energy intake, macronutrient 
clustering, and weight fluctuations across distinct training phases. Methods: Thirteen 
competitive weightlifters were recruited, with 10–12 contributing complete data per 
phase. Fecal and dietary samples were collected during the preparation, competition, and 
transition phases. Gut microbiota was profiled via 16S rRNA gene sequencing, and al-
pha/beta diversity was analyzed using QIIME2. K-means clustering based on caloric/mac-
ronutrient intake identified dietary patterns. Taxonomic differences were assessed using 
DESeq2, and microbial structures were compared across training phases, weight classes, 
and weight-change categories. Results: Overall phylum- and genus-level profiles and di-
versity indices remained stable across training phases, indicating community-level resili-
ence. However, specific genera varied with dietary and physiological factors. Enterococcus 
was higher during the preparation phase, whereas Lactobacillus was enriched during the 
competition and transition phases as well as in the high-calorie cluster. Lightweight and 
heavyweight athletes also showed distinct microbial structures, and pre- and post-com-
petition weight changes were associated with shifts in selected taxa. Notably, the low-
calorie group exhibited higher Shannon diversity than the high-calorie group (p = 0.0058), 
with Lactobacillus dominance contributing to reduced evenness in high-energy diets. Con-
clusions: Despite overall microbial stability, dietary energy availability and body-weight 
regulation modulated specific taxa relevant to performance and recovery. By integrating 
dietary clustering, weight-class comparison, and pre- and post-competition weight 
changes, this study provides novel insight into the microbiota of resistance-trained ath-
letes, a population underrepresented in previous research. Despite the modest sample 
size and single-season scope, this study offers new evidence linking dietary strategies, 
weight regulation, and gut microbiota in weightlifters, and highlights the need for vali-
dation in broader cohorts. 

Keywords: dietary periodization; energy intake; gut microbiota; microbial diversity; 
weight-class athletes 
 

Academic Editor: Yoshitaka  

Hashimoto 

Received: 16 August 2025 

Revised: 4 October 2025 

Accepted: 10 October 2025 

Published: 11 October 2025 

Citation: Kuo, C.-Y.; Lo, Y.-C.; Chen, 

W.-L.; Hsu, Y.-J. Phase-Specific  

Alterations in Gut Microbiota and 

Their Associations with Energy  

Intake and Nutritional Clustering in 

Competitive Weightlifters. Nutrients 

2025, 17, 3199. 

https://doi.org/10.3390/nu17203199 

Copyright: © 2025 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Nutrients 2025, 17, 3199 2 of 23 
 

 

1. Introduction 
The gut microbiota constitutes a diverse and dynamic ecosystem that plays a pivotal 

role in regulating metabolic processes, immune function, and overall host homeostasis 
[1,2]. Recent evidence suggests that gut microbes not only modulate nutrient absorption 
and immune responses but may also contribute to athletic performance through the pro-
duction of short-chain fatty acids (SCFAs) and the maintenance of intestinal barrier integ-
rity [3]. These mechanisms are proposed to support skeletal muscle energy utilization, 
reduce exercise-induced inflammation, and improve neuromuscular function, thereby fa-
cilitating endurance and recovery [4]. Moreover, exercise-induced alterations in microbial 
diversity and composition have been observed in both endurance [5] and strength- or 
team-based sports [6], reinforcing the bidirectional interaction between physical activity 
and the gut microbiome. Direct evidence further supports this link. For example, Veil-
lonella atypica isolated from marathon runners metabolizes exercise-derived lactate into 
propionate, thereby enhancing performance in murine models [7]. For weightlifters, 
maintaining microbial stability may be particularly relevant, as gut microbes have been 
implicated in protein metabolism, muscle hypertrophy, and immune resilience, which are 
key factors influencing recovery and performance under high-intensity training demands. 
Taken together, such evidence highlights microbial modulation as a central mechanism 
mediating the physiological benefits of exercise and suggests that athlete populations pro-
vide a particularly relevant context for microbiome research. 

Gut microbiota composition is shaped by multiple factors, including genetics, envi-
ronment, physical activity, and especially diet, which is both modifiable and influential 
[8,9]. Among athletes, competitive weightlifters commonly adopt phase-specific nutri-
tional strategies, with considerable fluctuations in energy intake and macronutrient dis-
tribution across training cycles [10]. A typical periodized model includes general prepa-
ration, competition preparation, competition, and transition phases, each imposing dis-
tinct physiological and dietary demands [11]. Energy intake is typically elevated during 
high-volume training in the preparation phase [12]. In contrast, the competition phase is 
often characterized by acute caloric restriction and weight-cutting to meet specific body 
mass categories [13,14]. Unlike wrestlers, boxers, or martial artists, whose weight-class 
demands are coupled with endurance or combat performance, weightlifters must main-
tain maximal strength and technical precision while undergoing rapid body-weight ma-
nipulation. This dual requirement distinguishes weightlifting as a unique model for ex-
amining how repeated cycles of caloric surplus and restriction affect the gut microbiota. 
Moreover, weightlifters often begin competing at a young age and are repeatedly exposed 
to cycles of caloric surplus and restriction throughout their careers, potentially exerting 
cumulative effects on the gut microbiota that remain poorly understood. Despite growing 
interest in athlete microbiomes, most existing studies have focused on endurance popula-
tions, leaving resistance-trained and weight-class athletes underrepresented. Addressing 
this gap, recent evidence from weight-class sports has shown that acute weight-cutting 
practices are widespread and may impose considerable physiological demands during 
the competition phase, potentially leading to rapid weight reduction and disruption of 
gut microbial stability [15,16]. 

In athletic populations, particularly those engaged in high-intensity or weight-class 
training, the impact of dietary variation on gut microbiota remains underexplored and 
often overlooked. Certain dietary compositions have been shown to influence gut micro-
bial profiles by promoting the growth of bacterial taxa involved in the metabolism of avail-
able macronutrients, such as proteins and carbohydrates [17,18]. Among these, carbohy-
drate-rich diets have been associated with enhanced activity of saccharolytic (fermenta-
tive) bacteria, leading to increased production of short-chain fatty acids (SCFAs), which 
support intestinal pH balance and help attenuate inflammatory responses [19]. While such 
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macronutrient-driven microbial shifts may provide physiological benefits, more extreme 
dietary practices such as severe caloric restriction and rapid weight loss, which are partic-
ularly common in weight-class athletes, have the potential to disrupt microbial homeosta-
sis. Evidence indicates that substantial reductions in energy intake may diminish micro-
bial diversity, compromise gut barrier integrity, impair immune responses, and increase 
the risk of gastrointestinal distress [20,21]. Understanding these interactions not only ad-
vances mechanistic insight but also highlights the potential of microbiome profiling to 
inform individualized nutrition strategies, such as targeted macronutrient adjustments or 
probiotic interventions, to support recovery and performance in weight-class athletes. 

While extreme dietary practices may affect gut microbial stability, it remains unclear 
how planned dietary changes across training phases shape microbial diversity in compet-
itive weightlifters. Most prior microbiome studies have focused on endurance athletes, 
leaving resistance-trained and weight-class populations underrepresented and limiting 
understanding of how their unique nutritional demands influence gut microbial ecology. 
Integrating microbiome profiling with detailed assessments of energy intake and dietary 
structure across defined training cycles offers a valuable opportunity to better understand 
the interactions between nutrition and the gut microbiota in this population. Accordingly, 
this investigation focused on characterizing gut microbiota dynamics across the prepara-
tion, competition, and transition phases in relation to both energy intake and overall die-
tary patterns. By examining phase-related microbial shifts alongside changes in nutri-
tional intake and body weight regulation, this study aimed to clarify how dietary variation 
across training cycles influences gut microbial diversity and functional potential in 
strength athletes. We hypothesized that competitive weightlifters would exhibit distinct, 
phase-dependent shifts in gut microbiota composition, particularly at the genus level, that 
parallel variations in dietary intake and body weight regulation, with the most pro-
nounced disruptions occurring during competition-related caloric restriction. 

2. Materials and Methods 
2.1. Participants 

A total of 13 healthy weightlifting athletes were recruited for this study. Inclusion 
criteria required that participants had not consumed any lactic acid bacteria–related foods 
or probiotics during the three months preceding the study and had no history of food 
allergies, cardiovascular diseases, hypertension, metabolic disorders, or asthma. Partici-
pants were excluded if they had experienced neuromuscular injuries within the previous 
six months. All participants provided written informed consent before participation. The 
study protocol was reviewed and approved by the Institutional Review Board of Land-
seed International Hospital (IRB No. IRB-19-039-A2). 

Prior to study initiation, an a priori sample size calculation was performed using 
G*Power (version 3.1.9.7; Heinrich-Heine-University, Düsseldorf, Germany). Based on a 
repeated-measures ANOVA design with three time points, assuming a medium effect size 
(f = 0.25), α = 0.05, and power (1 − β) = 0.80, the required sample size was estimated to be 
12 participants. Accordingly, 13 competitive weightlifters were successfully recruited, 
slightly exceeding this requirement. 

Consistent with the a priori sample size calculation, 10 athletes provided complete 
data during the preparation phase, while 12 completed the competition and transition 
phases. The missing participants differed across phases and were not the same individuals. 
Therefore, a total of 13 unique athletes contributed data to the study overall. Accordingly, 
blood, fecal, and dietary samples were collected from 10 athletes during the preparation 
phase and from 12 athletes during the competition and transition phases. For subgroup 
analyses (e.g., weight class, weight change, dietary clusters), paired data across relevant 
phases were required, and participants with incomplete records were excluded to ensure 
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consistency. The exact number of athletes included in each analysis is reported in the cor-
responding tables and figure legends. 

2.2. Experimental Design 

This study employed a longitudinal observational design (Figure 1), in which the 
same cohort of competitive weightlifting athletes was followed across three distinct train-
ing phases: (1) preparation (3–4 months before competition), (2) competition (from three 
days before to the day of competition), and (3) transition (within three days after compe-
tition). Athletes maintained their regular training routines throughout the study, consist-
ing of six sessions per week involving both sport-specific and strength training. They were 
instructed to follow their habitual dietary and lifestyle practices, except for avoiding pro-
biotic or lactic acid bacteria supplements. The use of medications and dietary supplements 
was documented. 

 

Figure 1. Study design and sample collection across training phases. Thirteen competitive weight-
lifters were enrolled and followed longitudinally across three training phases: preparation (Pre), 
competition (In), and transition (Off). At each phase, dietary records, body composition, fecal sam-
ples, and blood samples were collected. Effective sample sizes differed across phases due to incom-
plete data (Pre = 10, In = 12, Off = 12). 

As noted in Section 2.1, effective sample sizes varied slightly across phases and sub-
group analyses due to scheduling conflicts and the requirement for paired data. Exact 
numbers are provided in the corresponding tables and figure legends. 

2.3. Body Composition 

Basic demographic information (age and sex) was collected. Body composition was 
assessed using a bioelectrical impedance analyzer (InBody 570, Biospace, Inc., Seoul, Re-
public of Korea) following an overnight fast of at least eight hours, with measurements 
taken during the preparation, competition, and transition phases. 

  



Nutrients 2025, 17, 3199 5 of 23 
 

 

2.4. Dietary Intake Assessment 

During the preparation, competition, and transition phases, participants were in-
structed to complete three days of dietary records within the 3–4 days preceding each fecal 
sample collection, including the collection day itself. Participants photographed all foods 
and beverages consumed, including meals, snacks, drinks, and dietary supplements. For 
packaged foods, participants were asked to provide the brand name, product weight, and 
nutrition label. Prior to the study, participants received detailed instructions on how to 
complete the dietary record and were asked to maintain their habitual diet during the 
recording period. The three-day window was designed to capture both training and non-
training days of varying intensity whenever possible, thereby reflecting typical intake un-
der real-world training conditions. A nutritionist converted the dietary data into daily 
energy intake and macronutrient composition (carbohydrates, proteins, and fats) using 
the Taiwan Food Nutrition Database provided by the Ministry of Health and Welfare 
(MOHW, Taipei, Taiwan) [22], and all entries were further cross-checked by a registered 
dietitian to ensure accuracy. Analyses focused on daily energy and macronutrient com-
position, whereas micronutrients were not assessed, as the study specifically aimed to 
capture dietary factors most relevant to energy availability and gut microbiota. 

For dietary intake and gut microbiota comparisons, analyses focused on the compe-
tition and transition phases, which represent critical periods of dietary manipulation in 
weight-class athletes. In total, 24 dietary records were expected (12 from the competition 
phase and 12 from the transition phase). However, one athlete did not provide competi-
tion-phase data, and another did not provide transition-phase data. To ensure consistency, 
both competition and transition records from these athletes were excluded, resulting in 22 
valid records from 11 participants. 

To classify dietary patterns, k-means clustering was performed using standardized 
(Z-score) values of daily energy intake and macronutrient distribution (carbohydrates, 
proteins, and fats). The optimal number of clusters was evaluated using the elbow method, 
which assesses the reduction in within-cluster sum of squares as cluster number increases. 
Based on this evaluation, three clusters (k = 3) were selected as this provided the most 
appropriate balance between statistical robustness and nutritional interpretability, 
thereby grouping dietary records into high-, moderate-, and low-calorie intake patterns. 
Based on total energy intake, these 22 records were classified into three dietary clusters: 
group 1 (G1; high-calorie, n = 10), group 2 (G2; moderate-calorie, n = 8), and group 3 (G3; 
low-calorie, n = 4). The average macronutrient composition and energy intake were as 
follows: G1, 44.6% carbohydrates, 18.5% proteins, and 37.0% fats, with 1859.2 kcal/day; 
G2, 44.4% carbohydrates, 18.4% proteins, and 35.1% fats, with 1231.1 kcal/day; and G3, 
45.7% carbohydrates, 18.5% proteins, and 35.8% fats, with 449.7 kcal/day. Further analyses 
were conducted to examine associations between energy intake and gut microbiota diver-
sity. 

2.5. Blood Sample Collection and Analysis 

Venous blood samples were obtained from each participant at every study phase af-
ter an overnight fast of at least 8 h. Whole blood was centrifuged at 3000 rpm for 15 min 
at 4 °C using a refrigerated centrifuge to separate serum. Serum concentrations of glucose 
(GLU), blood urea nitrogen (BUN), creatinine, uric acid (UA), glutamic oxaloacetic trans-
aminase (GOT), glutamic pyruvic transaminase (GPT), creatine phosphokinase (CPK), lac-
tate dehydrogenase (LDH), and ammonia (NH3) were measured using an automated bio-
chemical analyzer (Hitachi 7070A; Hitachi High-Technologies Corp., Tokyo, Japan). 
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2.6. Faecal Specimen Collection 

For each study phase, participants collected one faecal sample using a sterile collec-
tion tube prefilled with DNA/RNA Shield (Zymo Research, Irvine, CA, USA) and 
equipped with a spoon attached to the screw cap, into which approximately 0.5 g of stool 
was transferred. The tube was then tightly sealed and shaken for 30 s to homogenize the 
stool with the preservation solution, before being placed in a plastic biohazard bag for 
transport. Samples were self-collected at home and delivered to the study investigator on 
the same day. If defecation occurred the evening before the scheduled visit, participants 
were instructed to temporarily store the sample in a household refrigerator (~5 °C) and 
deliver it the following morning. Upon receipt, all specimens were logged and immedi-
ately stored at −80 °C. Across all collections, the interval between defecation and freezing 
did not exceed 24 h. All samples were handled under standardized conditions to ensure 
proper preservation and subsequent processing for microbial DNA extraction. 

2.7. DNA Extraction 

Fresh fecal samples were suspended in phosphate-buffered saline (PBS) at a ratio of 
1:9 and vortexed until a homogeneous suspension was obtained. A 200 µL homogenized 
suspension was then washed twice with 1 mL of PBS and centrifuged at 16,200× g for 5 
min, and 1 mL of the supernatant was discarded. Fecal DNA was subsequently extracted 
using a modified method developed by Zhu Heng et al. [23]. To the 200 µL washed fecal 
suspension, 700 mg of glass beads (product No. 11079101, 0.1 mm; BioSpec Products, 
Bartlesville, OK, USA), 250 µL of extraction buffer (containing 100 mM Tris-HCl, 40 mM 
EDTA, pH 9.0), and 500 µL of the phenol-chloroform isoamyl alcohol mixture (product 
No. 77617, Sigma-Aldrich, St. Louis, MO, USA) were added. The mixture was then ho-
mogenized at 6.5 m/s for 30 s using FastPrep-24™ (MP Biomedicals, Irvine, CA, USA). 
After homogenization, the mixture was added to 50 µL of 10% SDS and heated at 50 °C 
for 20 min. Next, it was mixed with 150 µL of 3 M sodium acetate on ice for 5 min and 
centrifuged at 16,200× g for 5 min at 4 °C. The supernatant was transferred to a new 1.5 
mL centrifuge tube and mixed with 450 µL of isopropanol to precipitate DNA, followed 
by centrifugation at 16,200× g for 10 min at 4 °C. The DNA pellet was washed twice in 70% 
ethanol and centrifuged at 16,200× g for 1 min at 4 °C. After centrifugation, the supernatant 
was discarded, and the DNA pellet was heated at 65 °C for 10 to 15 min. The dried DNA 
pellet was then resuspended in 30 µL of ddH2O and stored at −20 °C until further analysis. 

2.8. 16S rRNA Gene Sequencing and Bioinformatics Processing 

The V3-V4 region of the 16S rRNA gene was amplified using specific primers (341F: 
5′-CCTACGGGNGGCWGCAG-3′ and 805R: 5′-GACTACHVGGGTATCTAATCC-3′) fol-
lowing the 16S Metagenomic Sequencing Library Preparation procedure (Illumina, San 
Diego, CA, USA). Amplicon pools were sequenced on the Illumina MiSeq™ sequencing 
platform (Illumina, San Diego, CA, USA). Bioinformatic analysis was conducted with 
QIIME2 (version 2021.2; https://qiime2.org) as previously described [24]. Based on the 
characteristics of the compositional data, networks of specific families in each group were 
built using SparCC (https://bitbucket.org/yonatanf/sparcc) correlation coefficients [25]. 
The networks were visualized using Cytoscape (version 3.8.2; https://github.com/cyto-
scape/cytoscape/releases/3.8.2/, accessed on 23 November 2021). Correlations between the 
relative abundances of taxa and exercise performance indices and total amino acids were 
performed using Spearman correlation. The Kyoto Encyclopedia of Genes and Genomes 
(KEGG; https://www.genome.jp/kegg/, accessed on 6 December 2021) database was used 
to analyze pathway enrichment, utilizing Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States (PICRUSt2; version 2.5.0; https://github.com/pic-
rust/picrust2). The raw sequence files supporting the findings of this article are deposited 
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in the NCBI Sequence Read Archive (SRA) database, with the project accession number 
PRJNA953842. 

2.9. Statistical Analysis 

All data are presented as mean ± standard deviation (SD). One-way analysis of vari-
ance (ANOVA) was employed to compare body composition, macronutrient and energy 
intake, as well as blood biochemical parameters across different training phases, using 
SPSS Statistics for Windows, Version 20.0 (IBM Corp., Armonk, NY, USA). For gut micro-
biota analyses, non-parametric tests were used due to the non-normal distribution of mi-
crobial data. Alpha diversity metrics, including Observed Species and the Shannon index, 
were calculated using QIIME2 (version 2021.2; https://qiime2.org) and compared across 
training phases, weight classes, weight-change groups, and dietary intake clusters using 
the Kruskal–Wallis test. Pairwise comparisons were conducted using the Wilcoxon rank-
sum test. Beta diversity was assessed based on both weighted and unweighted UniFrac 
distances and visualized using Principal Coordinates Analysis (PCoA). Group-level dif-
ferences in microbial community structure across training phases, weight classes, weight-
change groups, and dietary intake clusters were evaluated using permutational multivar-
iate analysis of variance (PERMANOVA). To identify differentially abundant taxa, the 
DESeq2 package (version 1.38.0) in R software (version 4.3.2; R Foundation for Statistical 
Computing, Vienna, Austria) was used. This method models microbial count data with a 
negative binomial distribution while adjusting for sample variance. Genera present in less 
than 25% of samples were excluded prior to analysis to reduce zero-variance errors and 
spurious significance. This prevalence filtering step was applied to minimize the impact 
of zero-inflated features, which are common in microbiome datasets. Comparisons were 
conducted across training phases (preparation, competition, transition), weight-change 
groups (lightweight ≤ 64 kg vs. heavyweight ≥ 67 kg), dietary intake clusters (high-calorie 
vs. low-calorie), and pre- and post-competition weight-change groups (gain vs. loss). 
Wald tests were used to evaluate differential abundance, and genera with a Benjamini–
Hochberg adjusted p-value < 0.05 (false discovery rate [FDR] < 5%) were considered sta-
tistically significant. K-means clustering analysis was performed in R software (version 
4.3.2; R Foundation for Statistical Computing, Vienna, Austria) to classify dietary intake 
patterns based on total energy and macronutrient distribution. Correlations between mi-
crobial taxa and macronutrient intake were evaluated using Spearman’s rank correlation. 
All statistical tests were two-tailed, and a significance level of p < 0.05 was applied 
throughout the study. For subgroup analyses, athletes were categorized into two groups 
(lightweight ≤ 64 kg; heavyweight ≥ 67 kg) to reflect practical distinctions in weight-class 
sports, and into weight gain vs. weight loss groups to capture the direction of short-term 
weight manipulation before and after competition. Because paired data were required, 
participants with incomplete measurements in the relevant phases were excluded, leading 
to slight variations in sample size across analyses. The exact number of athletes included 
in each comparison is reported in the corresponding tables and figure legends. These var-
iations in n reflect differences in data completeness across phases rather than additional 
recruitment. 

3. Results 
3.1. Characteristics of the Study Population 

Table 1 presents the characteristics of the study participants. A total of 13 unique 
athletes were recruited, but complete data were not available for all phases. Specifically, 
10 athletes provided data during the preparation phase, while 12 athletes contributed to 
the competition and transition phases. The missing participants differed across phases 
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and were not the same individuals. No significant differences were observed in body com-
position variables, including body weight, skeletal muscle mass, and fat mass, across the 
three training phases (p > 0.05). 

Table 1. Characteristic of study participants. 

 Preparation (pre) Competition (in) Transition (off) p Value 
N (male/female) 10 (5/5) 12 (8/4) 12 (7/5) 0.731 
Age (years) 21.0 ± 1.6 20.7 ± 1.5 20.8 ± 1.5 0.881 
Body height (cm) 161.3 ± 9.0 163.4 ± 9.7 163.0 ± 9.8 0.864 
Body weight (kg) 70.8 ± 18.5 73.8 ± 18.0 74.6 ± 17.1 0.873 
Skeletal muscle mass 
(kg) 

29.7 ± 6.0 32.3 ± 6.0 32.3 ± 6.1 0.518 

Skeletal muscle mass (%) 42.5 ± 3.7 44.5 ± 4.9 43.8 ± 4.7 0.590 
Fat mass (kg) 18.5 ± 9.7 17.2 ± 10.1 17.9 ± 9.8 0.951 
Fat mass (%) 25.0 ± 6.8 22.1 ± 8.4 23.0 ± 8.2 0.678 
Data are expressed as the mean ± SD. 

3.2. Macronutrient and Energy Intake Across Training Phases 

Data were analyzed according to the available samples in each phase. Table 2 sum-
marizes the average dietary intake across three-day periods during each training phase. 
Significant differences were observed in daily total energy intake per kilogram of body 
weight across the three phases (F(2, 29) = 4.963, p = 0.014, η2 = 0.255). Post-hoc Tukey HSD 
tests revealed that energy intake was significantly higher during the transition phase com-
pared to the competition phase (p = 0.012). Protein intake (F(2, 29) = 3.942, p = 0.031, η2 = 
0.214) and fat intake (F(2, 29) = 5.562, p = 0.009, η2 = 0.277) also differed significantly across 
phases, with both macronutrients being significantly higher in the transition phase than 
in the competition phase (p = 0.042 and p = 0.006, respectively). Carbohydrate intake was 
higher in the transition phase than in the competition phase, but this difference was not 
statistically significant (p = 0.156). The percentage of energy intake from protein (p = 0.195) 
and fat (p = 0.055) tended to be higher during the transition phase compared to the com-
petition phase, although the differences did not reach statistical significance. Conversely, 
the percentage of energy intake from carbohydrates tended to be lower during the transi-
tion phase, but this difference was also not statistically significant (p = 0.261). 

Table 2. Macronutrient and energy intake of weightlifters during preparation, competition, and 
transition phases. 

 
Preparation  

(pre) 
n = 10 

Competition  
(in) 

n = 11 

Transition  
(off) 

n = 11 
η2 p Value Post Hoc 

Carbohydrate (g/day) 160.2 ± 85.5 124.9 ± 62.7 177.9 ± 45.3 0.120 0.156  
Carbohydrate (g/kg/day) 2.3 ± 1.3 1.7 ± 0.8 2.5 ± 0.7 0.142 0.108  
Carbohydrate (% kcal/day) 45.1 ± 9.2 46.7 ± 6.9 41.7 ± 5.7 0.089 0.261  
Fat (g/day) 55.8 ± 28.1 40.0 ± 21.8 71.3 ± 18.1 0.277 0.009 ** in < off 
Fat (g/kg/day) 0.8 ± 0.4 0.5 ± 0.3 1.0 ± 0.3 0.305 0.005 ** in < off 
Fat (% kcal/day) 33.6 ± 5.1 34.4 ± 5.8 38.5 ± 3.8 0.181 0.055  
Protein (g/day) 78.8 ± 50.8 46.0 ± 25.2 80.4 ± 16.8 0.214 0.031 * in < off 
Protein (g/kg/day) 1.1 ± 0.5 0.6 ± 0.3 1.1 ± 0.3 0.299 0.006 ** in < pre, off 
Protein (% kcal/day) 21.3 ± 6.6 17.5 ± 4.9 19.8 ± 2.2 0.107 0.195  
Calories (kcal/day) 1457.5 ± 693.8 1043.7 ± 526.9 1674.6 ± 387.0 0.220 0.027 * in < off 
Calories (kcal/kg/day) 20.9 ± 9.2 13.8 ± 6.6 23.4 ± 6.8 0.255 0.014 * in < off 

Data are expressed as the mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001. effect size (η2). 
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3.3. Blood Biochemical Parameters Across Training Phases 

Data were analyzed according to the available samples in each phase. Table 3 sum-
marizes the changes in blood biochemical parameters across the three training phases. 
Significant differences were observed in glucose levels across the three phases (F(2, 31) = 
4.596, p = 0.018, η2 = 0.229). Post-hoc Tukey HSD tests revealed that glucose concentrations 
were significantly higher during the preparation phase compared to the competition 
phase (p = 0.019). Significant differences were observed in lactate levels across the three 
phases (F(2, 31) = 43.184, p < 0.001, η2 = 0.736). Post-hoc Tukey HSD tests revealed that 
lactate concentrations were significantly lower during the transition phase compared to 
the competition phase (p = 0.009), and significantly lower during the competition phase 
compared to the preparation phase (p < 0.001), indicating a progressive decrease across 
phases (off < in < pre). Similarly, significant differences were also observed in LDH levels 
across the three phases (F(2, 31) = 21.870, p < 0.001, η2 = 0.585). Post-hoc Tukey HSD tests 
indicated that LDH concentrations were significantly lower during the transition phase 
compared to the competition phase (p = 0.001), and significantly lower during the compe-
tition phase compared to the preparation phase (p = 0.027), suggesting a consistent de-
creasing trend (off < in < pre). 

Table 3. Blood biochemical parameters of weightlifters during preparation, competition, and tran-
sition phases. 

 
Preparation  

(pre) 
n = 10 

Competition 
(in) 

n = 12 

Transition 
(off) 

n = 12 
η2 p Value Post Hoc 

GLU(mg/dL) 92.1 ± 6.8 82.4 ± 10.1 84.1 ± 6.0 0.229 0.018 * in < pre 
BUN(mg/dL) 16.2 ± 1.2 18.1 ± 2.2 18.0 ± 2.3 0.162 0.064  
Creatinine(mg/dL) 1.30 ± 0.03 1.29 ± 0.15 1.22 ± 0.24 0.039 0.541  
UA(mg/dL) 5.77 ± 0.33 6.14 ± 0.62 5.96 ± 0.71 0.065 0.353  
GOT(U/L) 27.5 ± 3.7 22.8 ± 8.9 24.2 ± 4.9 0.091 0.226  
GPT(U/L) 19.6 ± 2.5 18.5 ± 13.5 21.5 ± 10.8 0.016 0.776  

Lactate(mmol/L) 2.31 ± 0.36 1.39 ± 0.47 0.94 ± 0.11 0.736 <0.001 *** 
off < in < 

pre 

CPK(U/L) 445.1 ± 14.5 320.8 ± 178.4 
369.0 ± 
300.3 0.059 0.387  

LDH(U/L) 395.0 ± 38.1 341.5 ± 48.9 267.3 ± 47.8 0.585 <0.001 *** off < in < 
pre 

NH3(µmol/L) 88.0 ± 5.0 53.5 ± 13.8 74.8 ± 22.8 0.456 <0.001 *** in < pre, 
off 

Data are expressed as the mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001. effect size(η2), Glucose (GLU), 
blood urea nitrogen (BUN), creatinine, uric acid (UA), glutamic oxaloacetic transaminase (GOT), 
glutamic pyruvic transaminase (GPT), creatine phosphokinase (CPK), lactate dehydrogenase 
(LDH), and ammonia (NH3). 

Ammonia (NH3) levels also differed significantly across phases (F(2, 31) = 12.990, p < 
0.001, η2 = 0.456). Concentrations were significantly lower during the competition phase 
compared to both the preparation (p < 0.001) and transition phases (p = 0.008), while no 
difference was found between the preparation and transition phases (p = 0.150), suggest-
ing a transient reduction during competition. No statistically significant differences were 
detected in BUN, creatinine, UA, GOT, GPT, or CPK levels across the phases (p > 0.05 for 
all). 
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3.4. Gut Microbiota Composition Across Training Phases 

Data were analyzed according to the available samples in each phase. Figure 2A and 
2B illustrate the relative abundance of gut microbiota across different training phases at 
the phylum and genus levels, respectively. Distinct shifts in microbial composition were 
observed at both taxonomic levels. At the phylum level, the dominant phyla included Fir-
micutes, Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria, and Verrucomicrobia (Fig-
ure 2A). The Firmicutes to Bacteroidetes (F/B) ratio did not differ significantly across the 
training phases (Kruskal–Wallis, p = 0.167; Figure 2C). Although the relative abundance 
of Fusobacteria was significantly different among the phases (Kruskal–Wallis, p = 0.049; 
Figure 2C), post hoc Dunn’s test did not identify any significant pairwise differences (p > 
0.05). 

At the genus level, the dominant genera were Bacteroides, Prevotella, Bifidobacterium, 
Faecalibacterium, Collinsella, and Megamonas (Figure 2B). The relative abundance of 
Burkholderia differed significantly among the phases (Kruskal–Wallis, p < 0.001; Figure 
2D), with significantly higher levels observed in the competition and transition phases 
compared to the preparatory phase (p = 0.002 and p < 0.001, respectively). Similarly, Fuso-
bacterium abundance varied significantly across phases (Kruskal–Wallis, p = 0.037; Figure 
2D), though Dunn’s post hoc test did not detect any significant pairwise differences (p > 
0.05). 
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Figure 2. The diversity and composition of the gut microbiome across training phases. (A,B) The 
relative abundance of major bacterial taxa at the (A) phylum and (B) genus levels across three train-
ing phases. (C) Firmicutes to Bacteroidetes (F/B) ratio and the relative abundance of Fusobacteria at 
the phylum level. Only Fusobacteria exhibited a significant difference across phases. (D) Relative 
abundance of genera with significant phase-specific differences, including Burkholderia and Fusobac-
terium. (E) Alpha diversity assessed by observed species and Shannon index. (F) Beta diversity vis-
ualized using principal coordinate analysis (PCoA) based on unweighted UniFrac and weighted 
UniFrac distances. Explained variance of PC1 and PC2 is indicated as percentages on each axis. * p 
< 0.05, ** p < 0.01, *** p < 0.001. (G) Differential abundance of bacterial taxa between Pre vs. In and 
Pre vs. Off phases. Taxa with Benjamini–Hochberg corrected p-value below 0.05 are shown. * padj < 
0.05, ** padj < 0.01, *** padj < 0.001. Preparation (pre, n = 10), Competition (in, n = 12), Transition (off, 
n = 12). 

3.5. Alpha and Beta Diversity Analysis Across Training Phases 

Alpha diversity indices (Observed Species and Shannon index) were assessed across 
training phases using microbiota data from 10 athletes in the preparation phase, 12 ath-
letes in the competition phase, and 12 athletes in the transition phase (Figure 2E). No sig-
nificant differences were detected in microbial richness and diversity between phases (p > 
0.05). Beta diversity was examined using principal coordinates analysis (PCoA) based on 
weighted and unweighted UniFrac distances (Figure 2F). No significant clustering was 
observed among training phases (p > 0.05), indicating that gut microbial community struc-
tures remained stable across training periods. 

3.6. Taxonomic Abundance Changes Across Training Phases 

Differential abundance analysis was conducted on microbiota data from 10 athletes 
in the preparation phase, 12 athletes in the competition phase, and 12 athletes in the tran-
sition phase (Figure 2G). Results revealed a significantly higher relative abundance of En-
terococcus in the preparation phase compared to the competition phase, whereas 
Burkholderia and Lactobacillus were significantly lower (adjusted p < 0.05). No genera 
demonstrated statistically significant differences between the competition and transition 
phases, while comparisons between the preparation and transition phases revealed sig-
nificantly lower abundances of Burkholderia, Lactobacillus, and Fusobacterium in the prepa-
ration phase (adjusted p < 0.05). Although several other genera displayed large log2 fold 
changes (>2.0 or <−2.0), these did not reach statistical significance and are reported in Ta-
bles S1–S3. These shifts indicate that Enterococcus may be particularly responsive to die-
tary protein conditions, while the enrichment of Lactobacillus during the competition and 
transition phases suggests a potential role in carbohydrate-associated adaptation and re-
covery processes. 

3.7. Alpha and Beta Diversity Analysis Across Weight Classes 

Data derived from 31 valid datasets after excluding one athlete who did not provide 
competition-phase samples. As shown in Figure 3A, alpha diversity was assessed using 
Observed Species and the Shannon index. No statistically significant differences were ob-
served in microbial richness or diversity between the light and heavy groups (Wilcoxon 
rank-sum test; p = 0.44 and p = 0.46, respectively). 

Beta diversity was further evaluated using principal coordinates analysis (PCoA) 
based on unweighted and weighted UniFrac distances (Figure 3B). Clear clustering pat-
terns were observed between the groups, with significant differences in community com-
position detected for both unweighted (p < 0.001) and weighted (p < 0.001) UniFrac dis-
tances, indicating distinct microbial structures between lightweight and heavyweight ath-
letes. 
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Figure 3. The diversity and composition of the gut microbiome across weight classes. (A) Alpha 
diversity assessed by observed species and Shannon index. (B) Beta diversity visualized using prin-
cipal coordinate analysis (PCoA) based on unweighted UniFrac and weighted UniFrac distances. 
Explained variance of PC1 and PC2 is indicated as percentages on each axis. * p < 0.05, ** p < 0.01, 
*** p < 0.001. (C) Differential abundance of bacterial taxa between heavy and light weight classes. 
Taxa with Benjamini–Hochberg corrected p-value below 0.05 are shown. * padj < 0.05, ** padj < 0.01, 
*** padj < 0.001. Data were derived from the preparation, competition, and transition phases. A total 
of 34 datasets were originally available. After excluding one athlete who did not provide competi-
tion-phase samples (and the corresponding preparation and transition data), 31 valid datasets re-
mained: lightweight (n = 18) and heavyweight (n = 13). 

3.8. Taxonomic Abundance Changes Across Weight Classes 

Differential abundance analysis was performed on the 31 valid datasets (lightweight 
n = 18, heavyweight n = 13) derived from the preparation, competition, and transition 
phases (Figure 3C). The results revealed a significantly higher relative abundance of Oxa-
lobacter, Alistipes, Lactobacillus, Lachnobacterium, Anaerostipes, and Fusobacterium in the 
heavy weight group compared to the light weight group, whereas Parabacteroides, Strepto-
coccus, Ruminococcus, Anaerotruncus, Slackia, Veillonella, Klebsiella, Eubacterium, Desulfovib-
rio, Prevotella, and Catenibacterium were significantly lower (adjusted p < 0.05). Several ad-
ditional genera exhibited large log2 fold changes (>2.0 or <−2.0), but these differences were 
not statistically significant and are summarized in Table S4. These class-specific patterns 
may reflect long-term differences in dietary energy intake and body composition de-
mands across weight categories. 

3.9. Alpha and Beta Diversity Analysis Across to Pre- and Post-Competition Weight Change 

Data were derived from the competition (n = 11) and transition (n = 11) phases, re-
sulting in 22 datasets, which were stratified into four weight-change categories: In_Pos (n 
= 5), In_Neg (n = 6), Off_Pos (n = 7), and Off_Neg (n = 4) (Figure 4C). As shown in Figure 
4A, alpha diversity indices (Observed Species and Shannon index) were compared be-
tween the paired subgroups. No significant differences were observed in microbial rich-
ness or diversity between the paired subgroups (Wilcoxon rank-sum test, all p > 0.05). 
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Beta diversity was assessed using principal coordinates analysis (PCoA) based on 
unweighted and weighted UniFrac distances (Figure 4B). Significant separation between 
In_Pos and In_Neg for both unweighted (p = 0.034) and weighted (p = 0.029) UniFrac met-
rics, indicating that the direction of pre-competition weight change was associated with 
compositional shifts in the gut microbiota. By contrast, no significant differences were ob-
served between Off_Pos and Off_Neg (all p > 0.05), suggesting that post-competition 
weight fluctuations had a lesser impact on overall community structure. 

 

Figure 4. The diversity and composition of the gut microbiome across weight change. (A) Alpha 
diversity assessed by observed species and Shannon index. (B) Beta diversity visualized using prin-
cipal coordinate analysis (PCoA) based on unweighted UniFrac and weighted UniFrac distances. 
Explained variance of PC1 and PC2 is indicated as percentages on each axis. * p < 0.05, ** p < 0.01, 
*** p < 0.001. (C) Differential abundance of bacterial taxa between In_Pos vs. In_Neg and Off_Pos vs. 
Off_Neg weight change. Taxa with Benjamini–Hochberg corrected p-value below 0.05 are shown. * 
padj < 0.05, ** padj < 0.01, *** padj < 0.001. Data were derived from the competition (n = 11) and tran-
sition (n = 11) phases, resulting in 22 datasets. Participants were categorized into four groups ac-
cording to the direction of body-weight change: In_Pos (n = 5), In_Neg (n = 6), Off_Pos (n = 7), and 
Off_Neg (n = 4). “In” groups were defined by comparing competition weight with official weigh-in 
body weight, whereas “Off” groups were defined by comparing official weigh-in body weight with 
transition-phase body weight. One athlete did not provide competition-phase data; therefore, this 
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individual’s transition data were also excluded to ensure consistency, resulting in the final sample 
sizes shown above. 

3.10. Taxonomic Abundance Changes Across to Pre- and Post-Competition Weight Change 

Differential abundance analysis was performed using the 22 valid datasets derived 
from the competition (n = 11) and transition (n = 11) phases, which were stratified into 
four weight-change categories: In_Pos (n = 5), In_Neg (n = 6), Off_Pos (n = 7), and Off_Neg 
(n = 4) (Figure 4C). The results revealed a significantly lower relative abundance of Eubac-
terium, Dialister, Alistipes, Mitsuokella, Desulfovibrio, and Catenibacterium in the In_Pos 
group compared to the In_Neg group (adjusted p < 0.05). When comparing the Off_Pos 
group and Off_Neg group, the relative abundances of Catenibacterium, Fusobacterium, 
Prevotella, Haemophilus, Klebsiella, Eubacterium, Enterococcus, and Veillonella were signifi-
cantly higher in the Off_Pos group, whereas Alistipes was significantly lower in the 
Off_Pos group (adjusted p < 0.05). Additional genera showing large log2 fold changes (>2.0 
or <−2.0), but these differences were not statistically significant and are summarized in 
Tables S5 and S6. These results suggest that acute pre- and post-competition weight 
changes drive taxon-specific alterations in the gut microbiota, highlighting their potential 
role as markers of nutritional adaptation and physiological stress in weight-class athletes. 

3.11. Impact of Dietary Intake on Gut Microbiota Diversity 

Gut microbiota data were analyzed in relation to dietary intake clusters derived from 
paired competition and transition phases. Originally, 24 dietary datasets (12 competition 
and 12 transition) were expected. However, one athlete did not provide competition-
phase data, and another did not provide transition-phase data. To ensure consistency, 
both competition and transition records from these athletes were excluded, leaving 22 
valid datasets from 11 athletes for cluster analysis. 

Participants were classified into three dietary intake clusters using k-means analysis: 
Cluster 1 (high-calorie: 44.6% carbohydrates, 18.3% protein, 37% fat; total energy: 1859.2 
kcal), Cluster 2 (moderate-calorie: 44.4% carbohydrates, 18.4% protein, 35.1% fat; total en-
ergy: 1231.1 kcal), and Cluster 3 (low-calorie: 45.7% carbohydrates, 18.6% protein, 35.8% 
fat; total energy: 449.7 kcal) (Figure 5). In the competition phase, 2 participants clustered 
into the high-calorie group (G1), 5 into the moderate-calorie group (G2), and 4 into the 
low-calorie group (G3). In the transition phase, 8 participants clustered into G1, 3 into G2, 
and none into G3. These distributions clarify the subgroup sizes used in subsequent anal-
yses. 

Figure 6A,B show the relative abundance of gut microbiota across clusters. The dom-
inant phyla and genera were consistent with those identified across training phases (Sec-
tion 3.4), with Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria, Verru-
comicrobia, and genera such as Bacteroides, Prevotella, Faecalibacterium, Bifidobacterium, Col-
linsella, and Megamonas prevailing across clusters. (Figure 6A,B). 

The Firmicutes to Bacteroidetes (F/B) ratio did not differ significantly across dietary 
intake clusters (Kruskal–Wallis, p = 0.678; Figure 6C). The relative abundance of TM7 dif-
fered significantly among the clusters (Kruskal–Wallis, p = 0.003; Figure 6C), with signifi-
cantly higher levels observed in the moderate-calorie group (G2) compared to the high-
calorie group (G1) (p = 0.003). 

The relative abundance of Parabacteroides differed significantly among the clusters 
(Kruskal–Wallis, p = 0.043; Figure 6D), with significantly higher levels observed in the low-
calorie group (G3) compared to the high-calorie group (G1) (p = 0.042). The relative abun-
dance of Roseburia differed significantly among the clusters (Kruskal–Wallis, p = 0.020; 
Figure 6D), with significantly higher levels observed in the moderate-calorie group (G2) 
compared to the high-calorie group (G1) (p = 0.025). 
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Alpha diversity analysis revealed a significantly higher Shannon index in the low-
calorie group (G3) compared to the high-calorie group (G1) (p = 0.006; Figure 6E). How-
ever, beta diversity analysis based on weighted and unweighted UniFraction distances 
showed no significant clustering (p > 0.05; Figure 6F). 

 

Figure 5. K-means clustering of participants based on energy and macronutrient intake profiles. (A) 
K-means cluster plot (k = 3) visualizing three distinct dietary clusters from paired competition and 
transition phases (originally n = 24, reduced to n = 22 after excluding one athlete missing competition 
data and one missing transition data). (B–E) Comparisons of dietary intake characteristics among 
clusters, including (B) total energy intake (kcal/day), (C) fat (% of total energy), (D) carbohydrate (% 
of total energy), and (E) protein (% of total energy). Cluster 1 (n = 10) was characterized by the 
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highest caloric intake, Cluster 2 (n = 8) showed moderate intake, and Cluster 3 (n = 4) showed the 
lowest. Macronutrient distribution appeared similar across clusters, except for total energy. 

 

Figure 6. The diversity and composition of the gut microbiome across dietary intake clusters. (A,B) 
The relative abundance of major bacterial taxa at the (A) phylum and (B) genus levels across three 
dietary intake clusters derived from paired competition and transition phases. Originally 24 datasets 
were expected (12 competition and 12 transition), but one athlete did not provide competition data 
and another did not provide transition data. To maintain paired analyses, both phases from these 
athletes were excluded, leaving 22 valid datasets (n = 22; Cluster 1 = 10, Cluster 2 = 8, Cluster 3 = 4). 
(C) Firmicutes to Bacteroidetes (F/B) ratio and the relative abundance of TM7 at the phylum level. 
Only TM7 exhibited a significant difference across clusters. (D) Relative abundance of genera with 
significant group-specific differences, including Parabacteroides and Roseburia. (E) Alpha diversity 
assessed by observed species and Shannon index. (F) Beta diversity visualized using principal co-
ordinate analysis (PCoA) based on unweighted UniFrac and weighted UniFrac distances. Explained 
variance of PC1 and PC2 is indicated as percentages on each axis. * p < 0.05, ** p < 0.01, *** p < 0.001. 
(G) Differential abundance of bacterial taxa between G1 and G3 group. Taxa with Benjamini–
Hochberg corrected p-value below 0.05 are shown. (H) Association between the relative abundance 
of Megamonas and carbohydrate intake (g/day). * padj < 0.05, ** padj < 0.01, *** padj < 0.001. 
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3.12. Differential Abundance Analysis Between High- and Low-Calorie Groups 

Differential abundance analysis was conducted using the paired datasets retained for 
dietary intake clusters (n = 22; G1 = 10, G2 = 8, G3 = 4). As shown in Figure 6G, there is a 
significantly higher relative abundance of Lactobacillus in the high-calorie group (G1) com-
pared to the low-calorie group (G3) (adjusted p < 0.05). Several additional genera exhibited 
large log2 fold changes (>2.0 or <−2.0), but these differences were not statistically signifi-
cant and are summarized in Table S7. The enrichment of Lactobacillus in the high-calorie 
group indicates a potential link between energy surplus and the proliferation of carbohy-
drate-fermenting taxa. 

3.13. Association Between Specific Bacterial Genera and Macronutrient or Energy Intake 

Associations between bacterial genera and dietary intake variables were assessed us-
ing Spearman’s correlation based on the same 22 paired datasets. As illustrated in Figure 
6H, Megamonas showed a positive correlation with carbohydrate intake (rs [20] = 0.444, p = 
0.038). No other genera demonstrated statistically significant correlations with macronu-
trient or energy intake. 

4. Discussion 
This study examined the interplay between training-phase-specific dietary strategies, 

body weight regulation, and gut microbiota composition in competitive weightlifters. Alt-
hough significant variations in energy and macronutrient intake were observed across 
phases, the gut microbiota showed overall stability at the broader community scale, with 
no significant differences detected in phylum- or genus-level profiles, alpha diversity, or 
beta diversity indices. Nevertheless, differential abundance analyses revealed phase-as-
sociated shifts in certain bacterial genera, and community composition varied by weight 
class and body-weight fluctuation. Taken together, these results suggest that while the gut 
microbiota in weightlifters may demonstrate resilience at the global community level, it 
also undergoes targeted adjustments associated with physiological status and energy 
availability. This pattern is consistent with athlete studies showing stable community pro-
files but sport- or diet-related shifts in specific taxa, such as increased Prevotella in cyclists 
consuming carbohydrate-rich diets [26] and Veillonella enrichment in endurance runners 
following exercise [7]. Comparable observations have also been reported in rugby players, 
where overall diversity remained stable while diet and training status shaped the abun-
dance of particular genera [27]. Notably, recent studies of weightlifters have identified 
distinctive gut microbial and metabolic profiles that separate strength athletes from en-
durance counterparts, highlighting compositional signatures aligned with anaerobic ver-
sus aerobic energy system demands [28,29]. Such evidence underscores that the microbi-
ota of strength- and weight-class athletes is not randomly variable but reflects the physi-
ological and nutritional pressures of their sport. In line with these reports, our findings 
suggest that although community-level stability was preserved, weightlifters exhibited 
specific microbial adjustments corresponding to dietary restriction during competition 
and increased energy availability during transition. This pattern may reflect ecological 
resilience, where functional redundancy ensures that overall community diversity is 
maintained, even as specific taxa shift in response to dietary and physiological pressures. 

Consistent with nutritional periodization practices in weight-class sports, dietary en-
ergy and protein intake were significantly lower during the competition phase compared 
to the transition phase, consistent with pre-weigh-in weight-control strategies [13,14]. The 
post-competition transition phase featured higher energy and protein intake, in line with 
guidelines that support muscle recovery and metabolic restoration [12]. Experimental 
work has shown that protein consumption stimulates muscle protein synthesis, 
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contributing to training-related accrual of lean mass over time [30,31], and meta-analyses 
have indicated that resistance training combined with protein supplementation is associ-
ated with greater gains in muscular strength and hypertrophy [32,33]. Overall, these ob-
servations are consistent with evidence that increased energy and protein availability after 
competition facilitates recovery and muscle remodeling. 

Importantly, these intake patterns coincided with microbial changes, as Enterococcus 
was higher in the preparation phase than in the competition phase. This observation is 
consistent with reports that high-protein diets can favor Enterococcus proliferation [34–36], 
suggesting that Enterococcus may be particularly responsive to dietary protein manipula-
tion in weight-class athletes. Together, the dietary and microbial findings highlight the 
importance of considering protein-focused strategies not only for muscle adaptation but 
also for their ecological impact on the gut microbiota. Beyond protein-related shifts, car-
bohydrate availability may also shape microbial dynamics. Lactobacillus was more abun-
dant during the competition and transition phases than in the preparation phase. This 
pattern may reflect dietary conditions favoring its proliferation, such as a higher propor-
tion of carbohydrate intake during competition and a relative relaxation of dietary re-
strictions during transition. Previous studies have described Lactobacillus as a versatile 
fermenter that supports gut health [19,37,38], and its consistent enrichment across phases 
suggests it could represent a characteristic genus within the microbiota of weight-class 
athletes. 

Blood biochemical results revealed patterns that paralleled the observed dietary dif-
ferences. BUN showed a non-significant upward trend in the competition phase com-
pared with preparation (p = 0.064), which may reflect transient changes in protein metab-
olism or hydration status. CK levels also did not change significantly, but their marked 
interindividual variability suggests heterogeneous responses in muscle stress and recov-
ery status among athletes, a phenomenon frequently reported in strength and weight-
class sports [39]. These findings are consistent with the nutritional strategies employed, 
where lower energy and protein intake during competition may increase reliance on en-
dogenous substrates, while higher intake during transition supports recovery. In contrast, 
lactate and LDH concentrations declined progressively from preparation to competition 
to transition (all p < 0.001), indicating reduced acute metabolic strain across phases and 
aligning with the shift toward nutritional and physiological restoration during the post-
competition period. 

In addition to training-phase effects, we observed important differences in gut mi-
crobiota by weight class. Although alpha diversity did not differ significantly, beta diver-
sity showed clear clustering between lightweight and heavyweight athletes, suggesting 
that long-term differences in energy intake or metabolic demands may shape microbial 
structure. Lactobacillus, Alistipes, and Fusobacterium were more abundant in heavyweight 
athletes, whereas Prevotella, Parabacteroides, and Veillonella were enriched in lightweight 
athletes. These patterns likely reflect differences in dietary intake, with heavier athletes 
consuming more fermentable substrates that support carbohydrate-fermenting taxa. In 
contrast, taxa such as Prevotella and Veillonella, often linked to fiber metabolism and en-
durance [7,40,41], may indicate adaptations aligned with leaner body composition. We 
categorized athletes into lightweight (≤64 kg) and heavyweight (≥67 kg) groups to reflect 
practical distinctions in weight-class sports rather than arbitrary subdivisions. This group-
ing allowed us to explore potential microbiota differences associated with long-term en-
ergy intake and metabolic demands, thereby providing contextually relevant insights de-
spite the modest cohort size. These microbial differences likely mirror long-term dietary 
and training adaptations in different weight classes. Beyond long-term weight-class dif-
ferences, acute weight regulation also provided meaningful contrasts. Similarly, the pre- 
and post-competition weight-change groups (gain vs. loss) captured the actual direction 
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of acute weight manipulation, a physiologically meaningful process in weight-class sports. 
This grouping enabled us to capture short-term microbial shifts associated with rapid 
body mass adjustments, thereby complementing the long-term perspective provided by 
weight-class comparisons and highlighting the dynamic nature of microbial responses to 
both chronic and acute weight regulation in athletes. These short-term microbial shifts 
likely reflect acute dietary and physiological adaptations during weight regulation in 
weight-class athletes. 

Body weight changes before and after competition were associated with shifts in gut 
microbiota despite no significant differences in alpha diversity. Beta diversity analyses 
revealed distinct clustering between athletes who lost versus gained weight. Pre-compe-
tition weight gain (In_Pos) was linked to reduced abundance of SCFA-producing genera 
such as Eubacterium, Alistipes, and Mitsuokella, whereas post-competition weight gain 
(Off_Pos) showed higher relative abundance of Fusobacterium, Klebsiella, Enterococcus, and 
Veillonella. These findings indicate that rapid body mass manipulation can alter the rela-
tive abundance of specific taxa, even in the absence of changes in overall diversity. 

Beyond these short-term effects, analysis of dietary energy intake clusters showed 
that Shannon diversity was significantly lower in the high-calorie group (G1) compared 
with the low-calorie group (G3), while species richness remained comparable. This reduc-
tion in diversity coincided with a higher relative abundance of Lactobacillus in G1 (ad-
justed p < 0.05), a genus widely recognized for its carbohydrate-fermenting capacity and 
role in gut health [19]. Together, these results highlight that both acute weight regulation 
and absolute caloric load influence gut microbial composition in weight-class athletes. 

Collectively, these findings indicate that the gut microbiota of competitive weight-
lifters shows overall resilience at the community level, as phylum- and genus-level pro-
files remained stable across training phases. However, phase- and group-specific taxa still 
varied with protein intake, caloric load, weight regulation, and athlete size, pointing to 
candidate microbial markers of nutritional adaptation and metabolic stress. Integrating 
microbiome profiling with performance nutrition may inform strategies to support meta-
bolic recovery, immune health, and overall well-being in weight-class athletes. These re-
sults highlight the complex interplay among training-phase dietary practices, body-
weight regulation, and gut microbiota in competitive weightlifters. Although constrained 
by a modest sample size and single-season scope, the findings underscore practical impli-
cations for tailoring phase-specific dietary strategies and exploring microbiota-based 
monitoring to support recovery and performance. Taken together, they provide a foun-
dation for applied research that connects microbiota changes with dietary planning and 
performance optimization across the competitive season, and they emphasize the need for 
larger, longitudinal studies to confirm these associations and extend their relevance across 
diverse athletic populations. 

5. Conclusions 
Although the overall gut microbiota composition of competitive weightlifters re-

mained relatively stable across training phases, specific genera showed phase-related var-
iation potentially reflecting differences in protein intake, energy availability, and post-
competition recovery. Enterococcus was more abundant during the preparation phase, 
whereas Lactobacillus increased during the competition and transition phases, suggesting 
links to protein intake, energy availability, and post-competition recovery. Microbial pro-
files also varied by weight class, weight-change direction, and dietary energy clusters, 
with Lactobacillus enriched in the high-calorie group and Megamonas positively associated 
with carbohydrate intake. These multi-dimensional findings are summarized in Figure 7 
to provide an integrated overview of microbiota shifts across conditions. Collectively, 
these findings highlight the interplay between dietary strategies, weight regulation, and 
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the gut microbiota in weight-class athletes, underscoring the potential of microbiome 
monitoring to inform sports nutrition planning and athlete health management. These 
findings should be interpreted in light of the modest sample size and single-season scope, 
which limit generalizability. Future multi-center and longitudinal studies with larger co-
horts will be essential to validate these associations and extend their application to per-
formance optimization in diverse athletic populations. 

 

Figure 7. Summary of gut microbiota shifts in relation to training phases, weight classes, weight 
changes, and dietary intake clusters in competitive weightlifters. Arrows indicate relative increases 
(↑) or decreases (↓) in bacterial genera. 

6. Limitations 
This study has several limitations. The sample size was modest, and one athlete’s 

missing competition data required exclusion of the corresponding preparation and tran-
sition records, resulting in unbalanced repeated measures (n = 10 in preparation, n = 12 in 
competition and transition). All data were collected within a single season at a single cen-
ter, which limits generalizability. Microbiome profiling relied on 16S rRNA sequencing 
without functional or metabolic analyses, and no direct performance outcomes were as-
sessed, restricting mechanistic inference. Body composition was measured with BIA ra-
ther than DXA, although standardized procedures were applied to ensure within-subject 
consistency. In terms of statistical analyses, multiple testing correction was applied only 
to high-dimensional taxa-level analyses (DESeq2) using the Benjamini–Hochberg proce-
dure, while raw p-values were reported for alpha and beta diversity metrics. No covari-
ates (e.g., sex, training load, or energy intake) were included in the PERMANOVA or 
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ANOVA models. This decision was made because sex distribution did not differ signifi-
cantly across phases, training load was not systematically recorded, and energy intake 
was analyzed as a primary variable of interest rather than a confounder. Additionally, 
PERMANOVA results were reported without corresponding effect size metrics (pseudo-
F, R2), which limits the ability to quantify the proportion of variance explained by group-
ing factors. Moreover, although the study design was longitudinal, the incomplete data 
across phases precluded the use of a full repeated-measures statistical model. Therefore, 
one-way ANOVA was applied as a pragmatic approach to compare phase-specific differ-
ences. For these reasons, the findings should therefore be regarded as exploratory, yet the 
longitudinal design with synchronized dietary and fecal sampling and conservative sta-
tistics supports their internal validity. Larger multi-center studies with integrated func-
tional and performance measures are warranted to confirm and extend these results. 
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the samples obtained through heavy and light; Table S5: DESeq2 analysis identifying differentially 
abundant genera between the samples obtained through In_Pos and In_Neg; Table S6: DESeq2 anal-
ysis identifying differentially abundant genera between the samples obtained through Off_Pos and 
Off_Neg; Table S7: DESeq2 analysis identifying differentially abundant genera between the samples 
obtained through G1 and G3. 
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