

Review

Exploring Strategies to Promote Exercise as a Viable Obesity and Chronic Disease Treatment

Kyle D. Flack ^{1,*}, Matthew A. Stults-Kolehmainen ^{2,3}, Robert E. Anderson III ⁴, Reed Handlery ⁵, Seth A. Creasy ^{6,7} and Victoria A. Catenacci ^{6,7}

- Research Institute Health and Wellness Center, Arkansas Colleges of Health Education, Fort Smith, AR 72916, USA
- ² Yale-New Haven Hospital, New Haven, CT 06510, USA; matthew.stults@ynhh.org
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY 10027, USA
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; robert.anderson@unc.edu
- School of Physical Therapy, Arkansas Colleges of Health Education, Fort Smith, AR 72916, USA; reed.handlery@achehealth.edu
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; seth.creasy@cuanschutz.edu (S.A.C.); vicki.catenacci@cuanschutz.edu (V.A.C.)
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- * Correspondence: kyle.flack@achehealth.edu; Tel.: +1-479-434-4019

Abstract: Obesity and its related comorbidities continue to be a primary public health concern, especially in the United States (US). Such comorbidities include the top two causes of death in the US: cardiovascular disease and cancer. Obesity is also associated with several other chronic conditions that affect millions of adults and children, including diabetes, kidney, and liver disease. Weight loss has long been considered the front-line treatment and prevention strategy for these conditions. Lifestyle approaches, including dietary modification and increasing physical activity, are typically recommended for individuals with obesity, although rates of achieving and maintaining clinically meaningful weight loss remain low. Understanding the root causes of minimal weight loss and weight regain has been a prime focus among many researchers over the past several decades. The present review addresses several advantages of prioritizing exercise as an obesity and chronic disease treatment. We discuss current challenges when exercise is the primary treatment strategy, including physiological parameters that may influence the efficacy of exercise in addition to behavioral and environmental factors that play a role in exercise adherence and adoption. We also explore strategies and principles that, although not commonly utilized in an obesity/chronic disease treatment setting, may be applied and adapted to fit this model.

Keywords: obesity; weight loss; exercise; adoption; chronic diseases

Academic Editor: Iavier Gómez-Ambrosi

Received: 25 April 2025 Revised: 9 June 2025 Accepted: 10 June 2025 Published: 13 June 2025 Citation: Flack, K.D.;

Citation: Flack, K.D.;
Stults-Kolehmainen, M.A.; Anderson, R.E., III; Handlery, R.; Creasy, S.A.;
Catenacci, V.A. Exploring Strategies to Promote Exercise as a Viable Obesity and Chronic Disease Treatment.
Nutrients 2025, 17, 1997. https://doi.org/10.3390/nu17121997

Copyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Lifestyle Obesity Treatments: Potential Advantages of Exercise

Obesity prevalence in the U.S. continues to be a growing concern. Most recent Center for Disease Control (CDC) data demonstrates 23 states have obesity rates exceeding 35%, while no states reached a 35% prevalence in 2013 [1]. Although new anti-obesity medications (AOMs) are demonstrating promise, AOMs are not accessible for all individuals due to issues with cost, insurance coverage, side effects, contraindications, and the need for long-term therapy. Thus, lifestyle obesity interventions are still considered first-line treatments.

Nutrients **2025**, 17, 1997 2 of 22

Such lifestyle approaches to obesity treatment are centered on reducing energy intake (EI) and increasing physical activity (PA), typically producing modest (5–10%) weight loss over 3–6 months [2–4]. Energy-restricted diets have been employed for decades, with some individuals seeing great weight loss success; however, adherence to energy-restricted diets can be difficult to sustain beyond 1-4 months, and as a result, some individuals are unable to achieve clinically meaningful weight loss with this approach [5–7]. There are several reasons some individuals struggle with adherence to energy-restricted diets, including environmental determinants (lack of access to healthy foods or an abundance of non-healthy foods, social cues/expectations), or individual factors (stress, emotions, cravings, or general preferences) [7–10]. For some individuals, chronic food restriction may produce psychological consequences such as eating binges once food is available, dysphoria, and distractibility, all of which limit weight loss [11]. Even when weight loss is achieved, one-third to two-thirds of weight lost by energy restriction is typically regained in 1 year, and almost all lost weight is typically regained in 5 years for up to 90% of adults [12]. Such weight cycling can produce metabolic issues, including glucose and insulin dysregulation, and cardiac dysrhythmias [13–15]. These negative effects and difficulties are not universal, and strategies have been developed to promote healthy diet-induced weight loss, including counseling with a registered dietitian, support groups, individually tailored meal plans, and additional behavioral training [16]. However, for some people, these additional strategies may not be available or preferable, and thus, focusing on exercise as the primary treatment for obesity and related comorbidities may be more appealing. In fact, 63% of U.S. adults who attempt weight loss report engaging in exercise as their primary strategy [17]. An additional benefit of exercise-focused weight loss interventions is that almost all of the weight that is lost is fat mass, whereas 15–30% of weight loss from energy restriction interventions can be lean mass [18]. Thus, an equivalent weight loss produced by exercise could have greater health benefits than that produced by diet alone. However, the response variability to exercise is wide, and special considerations are needed when employing exercise as a weight loss and chronic disease prevention strategy.

1.2. Energy Compensation Limits Weight Loss in Response to Exercise

The notion that exercise is a health-promoting activity is well recognized across professional organizations, with numerous consensus statements focusing on the benefits of exercise for obesity treatment [19] and related comorbidities such as cancer [20], Type II diabetes [21], cardiovascular disease [22,23], chronic pain [24], and fatty liver disease [25]. Although improvements in these diseases can be obtained through exercise independent from weight loss, such benefits are substantially improved when clinically meaningful $(\geq 5-10\%)$ weight loss is also achieved [2]. Despite the universal recommendations for exercise in obesity and its comorbidities, exercise rarely results in the amount of weight loss expected based on the energy expended in the exercise program [26,27]. Well-designed and tightly controlled longitudinal trials have consistently demonstrated that weight loss from exercise alone is only 30-40% of that predicted based on the measured energy expenditure of exercise sessions [28–33]. The discrepancy between the amount of weight loss predicted from exercise-associated energy expenditure and the observed weight loss has been termed "energy compensation", driven by various "compensatory mechanisms" that function to maintain energy homeostasis by either promoting greater EI or conserving energy (reducing total daily energy expenditure, TDEE) [34,35]. Such mechanisms are considered evolutionarily conserved, once serving as a desirable trait to conserve energy for vital bodily functions, such as reproduction, during times of food shortage [26,27,34]. These traits, however, are a detriment in today's environment, resisting intended weight loss and weight loss maintenance. Mechanisms contributing to these compensatory increases in

Nutrients 2025, 17, 1997 3 of 22

EI or reductions in TDEE are complex and vary among individuals, contributing to the response heterogeneity observed with exercise-induced weight loss [30,36]. Disagreement also exists among scientists, with some proposing that energy compensation can be negated by large doses of exercise (3000 kcal/week) [33], while others point to greater exercise doses resulting in larger compensatory responses [28]. Other large trials have reached contrasting conclusions regarding the compensatory responses elicited from aerobic exercise. For instance, the Midwest Exercise Trial 2 (MET-2) demonstrated that "compensators" (individuals with <5% weight loss) decreased non-exercise physical activity (NEPA), whereas "non-compensators" (individuals with \geq 5% weight loss) increased NEPA across a 10-month aerobic exercise intervention [37]. This is in contrast to the more recent E-MECHANIC trial where changes in EI (measured via doubly labeled water) increased 865 kcal/week when exercising to expend ~1760 kcal/week. At the same time, resting energy expenditure only slightly (non-significantly) increased by 135 kcal/week with virtually no changes in NEPA [38]. It is thus apparent that more research into the compensatory responses to exercise, mechanisms controlling these responses, sources of individual variability, and strategies to ameliorate energy compensation are needed if we are to understand how to optimize and personalize exercise for the treatment of obesity and chronic diseases.

1.3. Enhancing Effectiveness of Exercise in the Treatment of Obesity and Chronic Diseases

Exercise is commonly defined as "activity requiring physical effort, carried out to sustain or improve health and fitness." In this way, not all activities requiring physical effort are considered "exercise," but if the purpose is to improve/sustain health and fitness, the possibilities of what could be considered exercise are extensive [39]. Exercise scientists can thus modify many variables such as intensity (measured via heart rate or % of max effort), mode (aerobic to resistance exercise), frequency (sessions per week), duration of exercise sessions or duration of an intervention, or timing of exercise. The numerous combinations of these parameters and others give us the ability to create a wide variety of exercise treatments that produce substantially different physiological adaptations and require different considerations in terms of implementation into practice guidelines [40]. The purpose of this narrative review is not to outline how exercise is beneficial for obesity and related comorbidities, rather, we will delve into how exercise can be structured and implemented to improve its utility among individuals with obesity and chronic diseases. In this way, we can divide the "how to make exercise more effective" question into two aspects: (1) what physiological variables related to the exercise prescription can be targeted to make it a more effective weight loss treatment? and (2) How can we make exercise recommendations more translatable into practice, i.e., improve exercise adherence and adoption? In the sections that follow, we review several studies that may be applied to an obesity and chronic disease treatment perspective. Many of these trials and concepts reviewed have not been applied to these disease states; thus, an important future research focus should be testing these targets and concepts through clinical trials utilizing specifically participants with obesity or these certain conditions.

2. Physiological Targets to Improve Efficacy of Exercise in Promoting Improvements in Obesity and Associate Chronic Disease Outcomes

2.1. Considering the Physiological State in Which Exercise Is Performed: Post-Absorbative vs. Post-Prandial

The post-absorbative state (most commonly referred to as the fasted state) presents 6–12 h after a meal and is characterized by low levels of available carbohydrates (blood glucose, muscle glycogen) and insulin [41]. This is in contrast to the post-prandial state (most commonly referred to as the fed state), which is the hours immediately after eating.

Nutrients **2025**, 17, 1997 4 of 22

The lack of available carbohydrates promotes a shift in metabolic processes to more readily oxidize free fatty acids (FFAs) for energy, while low levels of blood insulin further enable lipolysis to ensue [42]. The presence and activity of many hormones are also very different in these opposing states, including cortisol, catecholamines, leptin, and ghrelin, issuing very different metabolic responses to environmental stimuli [43]. With the greater propensity to oxidize FFA in the fasted state, there has been considerable attention on fasted exercise training to promote FFA oxidation and improve oxidative capacity [44,45]. This has been demonstrated in acute exercise, where FFA oxidation was upregulated during and after fasted exercise compared to post-prandial (aka, fed state) exercise, leading to many theorizing that fasted exercise training would be more beneficial for weight management [46–50]. A recent review has even concluded that acute fasted exercise can create a larger acute energy deficit and thus could be a powerful weight loss intervention [51].

Although acute studies are helpful in understanding the underlying physiology and formulating hypotheses, longitudinal trials are needed to evaluate the utility of fast exercise training in promoting weight loss and improving chronic conditions associated with obesity. To our knowledge, only four short-term trials (4–6 weeks) have evaluated the efficacy of fasted exercise compared to exercise in the post-prandial state in a longitudinal nature, with three of them demonstrating significant improvements in a variety of FFA oxidative markers [47-50] (Table 1). Importantly, only one of these studies employed a dose of exercise aligned with current guidelines for weight management, and all of the studies were too short in duration to demonstrate clinically significant changes in weight loss or other markers of chronic disease. An additional study included in Table 1 aimed to quantify EI and EE for two days after an acute bout of exercise (75-min run) performed either in the fasted or post-prandial state [52]. This trial, similar to the 4-6 week interventions, did not detect a difference in EI or TDEE in the days after fasted exercise compared to fed exercise. Longer term trials (6+ months) are thus needed to determine if greater fat loss can ensue from fasted exercise training. If a significantly greater fat mass loss when exercising in the fasted state compared to an identical exercise prescription performed in the fed state can be demonstrated, this would represent an innovative method that may be employed to improve the weight loss response to exercise.

Table 1. Trials comparing fasted vs. fed exercise training on weight change and muscle biochemistry.

Study	Intervention	Weight Loss	Fat/Carbohydrate Oxidation Markers
Schoenfeld, et al. 2014 [47]	Aerobic exercise, 60 min, 3×/week plus dietary restriction.	No difference between fasted and fed groups.	None.
Van Proeyen, et al. 2010 [48]	Aerobic exercise, 30–60 min, $4 \times$ week, 6 weeks plus hyper-energetic diet.	Fasted exercise attenuated weight gain.	Fasted exercise increased FFA oxidative markers (AMPK, CD36, CPT1).
Van Proeyen, et al. 2011 [50]	Aerobic exercise, 60–90 min, $4\times$ /week, 6 weeks plus isoenergetic diets.	None.	Fasted exercise increased lipid breakdown, maximal fat oxidation, increased FFA oxidative markers (CS, B-HAD).
Gillen, et al. 2013 [49]	Interval training aerobic exercise, 20 min, 3×/week, 6 weeks.	No difference between fasted and fed groups.	Fasted exercise increased FFA oxidative markers (CS, B-HAD).
Blannin, et al. 2024 [52]	75-min run, energy intake and expenditure assessed for 2 days after.	No difference in energy intake or expenditure between fasted and fed groups.	No difference in interstitial glucose between fasted and fed groups.

Nutrients **2025**, 17, 1997 5 of 22

2.2. Considering the Time-of-Day Exercise Is Performed

The time of day that exercise is performed may impact weight loss and energy balance regulation [53]. Two observational studies have found preliminary evidence that morning physical activity is associated with lower body weight and lower body mass index (BMI) [54,55]. Similarly, Creasy et al. found that successful weight loss maintainers (i.e., individuals maintaining a weight loss of >30 lbs. for >1 year) engaged in 2-to-3 fold more moderate-to-vigorous physical activity (MVPA) in the morning (within 3 h of waking) compared to controls with and without obesity [56]. In a secondary analysis of the Midwest Exercise Trial 2, Willis et al. examined the effect of time of day of exercise on weight loss and energy balance [57]. Participants were categorized based on the time of day in which they completed the majority of their exercise sessions as follows: morning exercisers: >50% of sessions completed between 7:00 and 11:59 am; (n = 21, 70% of exercise sessions completed in the morning) and evening exercisers: >50% of sessions completed between 3:00 and 7:00 p.m.; (n = 25, 66% of exercise sessions completed in the evening). Morning exercisers lost significantly more weight than evening exercisers at 10 months ($-7.2 \pm 1.2\%$ vs. $-2.1 \pm 1.0\%$). Interestingly, there were no differences between morning and evening exercisers in baseline characteristics, exercise adherence, or exercise energy expenditure $(528 \pm 105 \text{ vs. } 490 \pm 103 \text{ kcal/session, respectively})$. The differences in weight loss appeared to result from differential changes in EI and non-exercise expenditure (i.e., TDEE not associated with exercise training). Morning exercisers exhibited slight decreases in EI, while evening exercisers increased EI (-63 ± 444 vs. 121 ± 484 kcal/d, non-significant). In addition, morning exercisers exhibited slight increases in non-exercise expenditure compared to evening exercisers (28 \pm 446 vs. -105 ± 510 kcal/d, non-significant). However, these results could have been affected by confounders as participants self-selected exercise times. In addition, that study only included young adults (18-30 years), which limits the generalizability of the study.

Only a few short-term (≤12 week) prospective studies have examined the effects of exercise timing on changes in body weight or fat mass in adults with overweight or obesity. Alizadeh et al. randomized women to 6 weeks of supervised morning or afternoon aerobic exercise [58]. The exercise dose was modest (90 min/wk). In a completers' analysis, body weight significantly decreased in morning exercisers compared to afternoon exercisers (-1.6 vs. -0.3 kg). This difference in weight loss appeared to be due to changes in EI as self-reported EI tended to decrease more in morning exercisers compared to afternoon exercisers. Arciero et al. also found that women who completed 12 weeks of exercise in the morning lost more fat mass $(-1.0 \pm 0.2 \text{ kg})$ compared evening exercisers $(-0.3 \pm 0.2 \text{ kg})$ [59]. However, no differences in fat mass loss were observed for men. In a pilot and feasibility study, Creasy et al. found that individuals randomized to 2000 kcal/wk of morning aerobic exercise training lost -0.9 ± 2.8 kg, and evening exercisers lost -1.4 ± 2.3 kg with no significant differences between groups [60]. Two additional recent trials also found that 12 weeks of morning and evening exercise resulted in no significant differences in weight loss [61,62]. In contrast, Di Blasio et al. found that postmenopausal women participating in a 12-week walking program lost more fat mass if they exercised in the evening compared to the morning (-1.7 kg vs. -0.2 kg) [63]. Mancilla et al. also found that evening exercise led to greater reductions in fat mass compared to morning exercise after 12 weeks of training [64]. Thus, these short-term studies focused on the effect of exercise time of day on weight and fat mass have mixed results.

The lack of consistent findings may be due, in part, to the limitations of these prior studies and different exercise training variables between studies. For example, these studies have recruited heterogeneous populations, and it is possible that age, body size, sex, and other participant characteristics influence the effect of exercise time of day

Nutrients **2025**, 17, 1997 6 of 22

on weight loss. In addition, the duration of the exercise interventions (\leq 12 weeks) may have been too short to produce clinically meaningful weight loss for the dose employed [29,30]. Further, objective measures of compensatory mechanisms that affect energy balance regulation were not measured; thus, the effect of morning versus evening exercise on compensatory mechanisms remains unknown. Finally, some of these studies used exercise prescriptions that do not align with current exercise guidelines for weight loss [65]. Given the methodological limitations of these prior studies, there is a need for fully powered, randomized trials of longer durations and with an adequate dose of exercise to determine the effect of exercise timing on body composition [53].

2.3. Considering When to Initiate Exercise: Before or After Energy-Restricted Weight Loss

Most behavioral weight loss programs recommend concurrently decreasing EI and increasing physical activity/exercise. However, many individuals with overweight or obesity are unable to achieve and sustain high levels of exercise with this simultaneous approach [66–69]. An alternative strategy, which has not been widely considered, is to deliver diet and exercise interventions sequentially. Delaying the start of an exercise intervention until after an initial period of diet-induced weight loss could result in enhanced exercise adherence and improved long-term weight loss because (1) perceived enjoyment of exercise may be greater at a lower body weight [70], (2) risk of exercise-related injuries may be reduced after weight loss [71]. (3) Joint pain may be reduced, and thus exercise tolerance may be greater after weight loss [72], and (4) focusing on one behavioral change at a time may lead to greater long-term adherence to both diet and exercise behaviors [73,74].

However, two studies have suggested that the timing of exercise initiation does not impact weight loss. A trial by Goodpaster et al. enrolled 130 adults with class II obesity or higher (BMI > 35 kg/m²) in a 1-year intensive lifestyle intervention consisting of diet and physical activity. Participants were randomized to either initial physical activity (diet and physical activity for the entire 12 months) or delayed physical activity (identical dietary intervention but with physical activity delayed for 6 months). Both groups achieved significant weight loss at 12 months (initial: 12.1 kg (95% CI, 10.0-14.2) vs. delayed: 9.9 kg (95% CI, 8.0-11.7), and there were no significant differences between groups in weight loss, waist circumference, blood pressure or insulin resistance [75]. Similarly, a study by Catenacci et al. enrolled 170 adults with overweight or obesity (BMI 27–42 kg/m²) into an 18-month behavioral weight loss program consisting of a reduced-energy diet, exercise, and group-based support [76]. Participants were randomized to either a standard group which received a supervised exercise program (progressing to 300 min/wk of moderateintensity aerobic exercise) during months 0 to 6, or a sequential group, which was asked to refrain from changing exercise during months 0 to 6 and received the supervised exercise program during months 7 to 12. On completion of supervised exercise, both groups were instructed to continue 300 min/wk of moderate-intensity exercise for the study duration. At 18 months, both groups lost weight (standard: -6.9 ± 1.2 kg; sequential: -7.9 ± 1.2 kg), and there were no differences between groups in changes in weight, fat mass, lean mass, physical activity, or attrition. Combined, these studies suggest that both immediate and delayed exercise initiation within a behavioral weight loss program resulted in clinically meaningful weight loss and improvements in health across a range of BMI; thus, the timing of exercise initiation can be personalized based on patient preference.

2.4. Considering Mode of Exercise

Aerobic exercise is characterized by its extended and continuous duration (e.g., 10–40 min) at a low to moderate intensity with large muscle groups that challenge the delivery of oxygen to the active muscles [77]. This type of exercise has been at the forefront

Nutrients **2025**, 17, 1997 7 of 22

of clinical recommendations since Dr. Kenneth Cooper's 1968 book "Aerobics," which set the stage for exercise physiology research and integration into clinical practice as a health-promoting activity [78]. Since this early work, aerobic exercise has consistently demonstrated profound effects on various markers of chronic disease [79–82]. Chronic physiological adaptations to aerobic exercise include greater blood and stroke volume, greater cardiac output and perfusion, lower resting heart rate, improved ejection fraction, improved fatty-acid oxidative capacities, greater metabolic efficiency, and many others [83]. Common aerobic exercises, such as brisk walking, running, and cycling, are relatively simple to implement and require little specialized knowledge, helping make aerobic exercise the most common form of exercise both in terms of public health engagement and clinical recommendations. Also, walking is the most preferred mode of exercise for people with obesity [10].

Recent years have seen an increase in research focusing on strength/weight training exercises (also referred to as resistance training) involving the use of high-resistance machines or other external weights with specific movements limited to a few repetitions (generally less than 20) to reach or approach muscular exhaustion [83]. If considering a continuum where physical activities are either highly oxidative (low intensity, long duration) or highly glycolytic (short bursts, high intensity), resistance and aerobic exercise would occupy the opposite ends of this spectrum. Thus, the metabolic and physiological adaptations to resistance training have the potential to vary greatly from those of aerobic exercise. Despite this, more literature is demonstrating resistance training can have similar improvements in areas such as lowering blood pressure, improving insulin sensitivity and blood lipid profiles, decreasing the cardiovascular demands to exercise, and improving functional capacity [84]. Resistance training has demonstrated promising effects on health benefits for treating diseases such as cardiovascular disease [85,86], cancer [87], diabetes [88], and liver disease [89]. Resistance training may be a more appropriate exercise mode for individuals with factors such as obesity, arthritis, low back pain, and physical disabilities that make continuous aerobic activity difficult. By using machines that provide external resistance with controlled movements, even those confined to a wheelchair or a walker can perform some types of resistance training [88]. However, certain barriers present with resistance exercise training, such as the specialized knowledge and equipment compared to aerobic exercise training that may dissuade some individuals from resistance training. Supervision by a qualified professional and proper program design has been deemed the key elements of an effective resistance training program [84,90]. If these barriers can be overcome, resistance exercise can serve as an effective treatment for chronic diseases and weight loss for some individuals.

2.5. Considering the Intensity of Exercise Sessions

Exercise intensity can broadly be defined as the level of difficulty or exertion during exercise. Exercise intensity can be quantified (e.g., % heart rate max, % maximal oxygen uptake, % 1-repetition max, rating of perceived exertion) and qualified (e.g., light, moderate, vigorous) in dozens of ways, often dependent on the mode of exercise (e.g., aerobic or resistance). For aerobic exercise, the American College of Sports Medicine provides the following intensity categories based on percent of maximum heart rate (%HRmax): very light < 57%, light 57–63%, moderate 64–76%, vigorous 77–95% and maximal \geq 96% [91]. Traditionally, moderate-intensity aerobic exercise has been the most studied, but the last 20 years have seen a shift to studying higher-intensity exercise. This is likely because, in general, exercising at a greater intensity is associated with greater health benefits [92]. In terms of comparing moderate to high intensity, multiple meta-analyses have found high intensity to be superior in terms of improving fat mass loss and body composition [93,94]

Nutrients 2025, 17, 1997 8 of 22

and cardiorespiratory fitness [93–95]. Even in analyses that show comparable health effects, high-intensity exercise may take up to 40% less time [96]. This is vital, as time is often reported as a major barrier to exercise in those with obesity [10]. While potentially superior for certain outcomes, moderate-intensity aerobic exercise is still a viable option to improve waist circumference and body fat, especially when performed at least 150 min per week [97]. Therefore, the choice of whether to perform moderate or high-intensity exercise should likely be person-dependent and consider contextual factors such as time, motivation, resources, and preference.

A great deal of attention has been spent on studying the health benefits of moderateto-high-intensity exercise, but perhaps equally important is light-intensity physical activity. During waking hours, the majority of time is not spent performing moderate-to-high intensity exercise rather, it is performing daily activities or engaging in sedentary behavior. While attaining physical activity recommendations should continue to be emphasized, we must acknowledge that despite efforts over the past three decades, the proportion of adults meeting physical activity guidelines remains low (24.2% of U.S. adults in 2020) [98]. Performing higher volumes of physical activity is associated with reduced mortality risk, regardless of intensity [99]. Thus, incorporating more movement and reducing sedentary time should be a public health focus. An example of this may be the inclusion of "exercise snacks" or short bouts of purposeful exercise (e.g., stair climbing) interspersed throughout the day [100]. A scoping review in adults and older adults found that exercise snacks were feasible and may be associated with reduced all-cause mortality and reduced risk of major cardiovascular events [101]. While research on exercise snacks is in its infancy, they may serve as a viable alternative to exercise occurring in a more formal setting such as a fitness center.

For resistance exercise, intensity is measured by load or the amount of weight used in an exercise, typically in relation to a person's one repetition maximum (1-RM) [102]. The intensity of resistance exercise is dependent on whether the goal is to increase muscle strength, hypertrophy, power, and/or endurance. For example, if maximizing muscle strength is the goal, resistance exercises should be performed at \geq 60% 1-RM in individuals unaccustomed to resistance exercise and \geq 80% 1-RM for those with experience [102,103]. While resistance training alone benefits body composition, a recent meta-analysis compared seven types of exercise (including aerobic only, resistance only) at various intensities and found that for improving lean body mass and decreasing abdominal fat, combining high-intensity aerobic (i.e., >75% heart rate max) with high-intensity resistance (>75% 1-RM) training was best [104]. While this multi-modal training does not always lead to outcomes that are superior to a single modality [105], they may be more time-efficient in terms of meeting physical activity guidelines, which have both an aerobic and strength component.

High-intensity functional training (HIFT) is a form of exercise that combines aerobic and resistance exercises, with an emphasis on movements that replicate real-life task demands such as carrying groceries or climbing stairs [106]. HIFT has been shown to improve strength, power, speed, endurance, and agility in healthy males [107] and, when compared to traditional circuit training, improve body composition in females [108]. Compared to a combined aerobic plus resistance training program performed at a moderate intensity, HIFT participants spent less time exercising but reported similar levels of enjoyment and greater intentions to continue to exercise [109]. HIFT may be even more effective at improving body composition when combined with time-restricted eating. In a three-armed study comparing time-restricted eating, HIFT, and a combined HIFT plus time-restricted eating, those in the combined group observed greater decreases in fat mass compared to the other groups [110]. Given the range of benefits following HIFT participation, it's not surprising that as of 2023, HIFT was the sixth most popular fitness trend in the U.S. With the time-efficient nature of

Nutrients 2025, 17, 1997 9 of 22

combining aerobic and resistance exercise, HIFT is another option to combat the common barrier of lack of time to exercise.

3. Adoption of Exercise-Translating from Structured Interventions to Real-World Behavior Change

3.1. Applying the Socioecological Model

An overarching premise to consider is that an exercise intervention that cannot be maintained will not be a very effective treatment for overweight/obesity and chronic diseases. Thus, it is important to understand factors that can promote adherence to an exercise intervention. The socioecological model provides a comprehensive framework for understanding how various levels of influence—from individual factors to broader environmental and policy-related factors—affect health behaviors like exercise adherence [111]. This framework emphasizes that behavior is shaped not only by personal choices but also by the social, community, and environmental contexts in which individuals live. Applying the Socioecological Model to exercise adherence is increasingly recommended for promoting long-term weight loss and improving chronic disease outcomes, as it recognizes that interventions must target multiple levels of influence to be effective. However, improving exercise adherence across all levels of the socioecological model presents unique and multifaceted challenges, requiring a focus on both individual factors and environmental determinants [112].

Key personal characteristics, such as motivation, self-efficacy, exercise history, social support, and stage of change/habit, are critical determinants of exercise engagement [10,113,114]. Research indicates that women are often motivated by social factors, while men are typically driven by perceived health benefits [112,115]. Despite these differences, exercise initiation and adoption are often cyclical, with engagement fluctuating in response to varying motivational inputs [116]. Social support is a key social determinant of exercise adherence and can significantly influence activity levels, with family, coworkers, and community support all playing potentially meaningful roles in improving exercise engagement [112,117]. The relationship between exercise and social support is dynamic, evolving over time as individuals progress through different stages of health behavior change [115]. Time constraints, a common barrier to regular exercise, can be mitigated by establishing a "time hierarchy" that prioritizes exercise despite stressful and competing life demands [118]. While interventions that target social support and time management have shown promise, further research is needed to understand their impact on behavior change in specific populations, particularly those in rural and food-insecure communities, where barriers to both time and access to exercise facilities may be more pronounced [119–121]. This underscores the need for interventions that address both personal and environmental factors to foster long-term engagement and develop effective strategies that support exercise adherence in underserved populations [122].

3.2. Theory, Targeting, and Tailoring Behavioral Interventions

Interventions based on theoretical frameworks and practical strategies have effectively increased exercise adherence [123]. One such framework is social cognitive theory (SCT), which promotes self-management behaviors, such as adopting a healthy lifestyle, through self-regulating cognitive processes [124]. Evidence supports the application of SCT in PA interventions, showing small-to-moderate effect sizes for PA improvements [125,126]. Key SCT domains—social support, self-efficacy, self-regulation, and outcome expectations—have been identified as significant mechanisms of action for increasing PA, particularly among rural populations [127,128]. Interventions that incorporate community engagement strategies have been shown to improve health behavior

Nutrients **2025**, 17, 1997

outcomes, including social support and self-efficacy, in underserved populations [129]. These findings highlight the importance of addressing both individual and environmental determinants to foster long-term exercise adherence. More advanced models combine SCT with dual-process theories, which incorporate constructs like environmental cues, affective evaluations, and automatic behavioral impulses [130,131].

Building on the need for targeted theoretical frameworks, the selection and combination of effective behavior change techniques (BCTs) are crucial for enhancing the efficacy of interventions aimed at improving exercise adherence [132]. Michie et al. emphasize that BCTs, when strategically chosen and tailored to the specific needs of the target population, can significantly improve health-related behaviors, including exercise [133]. Through tailoring and taking into account personal preferences, needs, and environmental context, interventions can increase the likelihood of successfully increasing exercise adherence [134]. Short message service (SMS) or text messaging has increasingly demonstrated promise as a delivery vehicle for improving exercise behaviors by providing personalized support and encouragement [135]. Additionally, gamification—the use of game elements in non-game contexts—is an encouraging modality to promote and change exercise behaviors [136]. Further research is needed to understand how the use of SMS-based BCT and/or gamified interventions can address the unique challenges faced by diverse populations, including individuals of varying ages, socioeconomic backgrounds, and regions, ensuring that interventions are tailored to meet the specific needs and barriers of each group [137].

Human-centered design (HCD), or design thinking, offers another promising approach by focusing on the behaviors, needs, and experiences of individuals, ensuring that interventions are both relevant and sustainable [138]. HCD's iterative process of empathy, prototyping, and testing facilitates the development of tailored solutions that are not only feasible but also resonate with the target population [139]. Applying HCD principles to exercise adherence and adoption enables the creation of strategies that address varying levels of readiness for change, resource access, and personal barriers to physical activity, making the interventions more adaptable and effective for diverse populations [140]. Using HCD principles, interventions can be better tailored to the specific needs and preferences of the target population.

3.3. Motivation and Exercise Adherence

Research has identified several motivational factors that influence exercise adherence [114,141]. Intrinsic motivation, where individuals engage in exercise for the enjoyment, challenge, or personal satisfaction it provides, plays a critical role in long-term adherence [142]. Younger adults, in particular, who find exercise personally fulfilling are more likely to maintain a regular routine [143]. In contrast, extrinsic motivation, driven by external rewards like praise or appearance concerns, can undermine long-term adherence, especially when those rewards are no longer present [144].

The intrinsic motivation to exercise has been objectively quantified in the literature by assessing one's reinforcing value of exercise, a measure of how much an individual wants to work for exercise [145–148], and subjectively, with survey-based measures of wanting or desiring to move and exercise [149]. Research by Flack et al. has demonstrated the reinforcing value of a specific mode of exercise, such as resistance or aerobic training, is a stronger predictor of participation than simply liking the activity [150], while in a subsequent trial, Flack and colleagues found that exercise reinforcement was associated with more frequent physical activity and meeting activity guidelines [151]. These findings demonstrate the reinforcing value of exercise as a primary determinant in the choice to exercise and, thus, underscores the importance of such intrinsic motivation in exercise adherence [152].

Nutrients **2025**, 17, 1997

The aforementioned motivational constructs have typically been considered from a trait perspective, whereas motivation is viewed as relatively stable and difficult to change [153]. Motivation to move may even be a classic drive, similar to hunger or the need for rest. In other words, a lack of movement results in internal tension to ambulate, which is only resolved when the behavior is consummated. This may be altered for those with obesity, such that they have weak urges to move but very strong urges to be sedentary [35,153]. Such a prospect necessitates that motivation also be considered as a construct that changes frequently, just like hunger or appetite (or appetence, which is the fluctuating desire for physical activity). Indeed, attention has turned to the idea of motivational states for physical activity, exercise, and sedentary behaviors, including sleep [154]. In short, motivation for behavior can change quickly, even in just a few minutes. This has been exhibited with changes observed in the desire to move with a variety of activities, including maximal exercise or periods of rest [149], short bursts of activity [155], exercise training sessions [156], or even just talking about exercise [157]. Stronger exercise intensities have a greater impact on motivation state [158]. There is also a circadian effect, whereas for most people, the desire to move peaks after 3 pm [159,160]. Motivation states also vary between apparently healthy and clinical populations [156]. Motivation states have typically been described as weak (desires, wants) to strong (urges, cravings), often with a feeling of tension, which might be positive (groove) or negative (urges to move when unwanted); thus, they have been described as "affectively-charged motivation states" (ACMS).

Importantly, ACMS during exercise has been shown to predict salient exercise behavioral factors, such as stage of change [149] and PA intention [159]. They also predict affect/emotion in subsequent training sessions [161]. This is important as affective responses to exercise predict future exercise engagement [162]. Motivation and affect-based models, such as the affect health behavior framework [163], include ACMS and expand the idea to highlight the role of dread for exercise, ostensibly common for those with obesity who have had poor exercise experiences. Dread and other aversions for exercise, or movement more broadly, have been contrasted against wants/desires/cravings in the WANT model (Wants and Aversions for Neuromuscular Tasks), which blends approach and avoidance motivation for physically active and inactive behaviors [154]. There is limited data linking affectively-charged motivations to actual behavior, with the exception of Crosley-Lyons [160], who found those with higher ACMS in the morning exhibited about 28 extra minutes of moderate-to-vigorous exercise later in the day. Further work is ongoing [164], and there is a need for data in populations with obesity, though data in limited student populations indicates that motivation states are not related to BMI [149].

3.4. Interventions to Increase Exercise Motivation

The reinforcing aspects of exercise are products of the central dopamine reward system, eliciting a dopamine release to promote exercise as a reinforcing behavior [165]. Similar to other behaviors that elicit a dopamine release and are thus considered highly reinforcing (drugs of abuse, alcohol), certain genetic phenotypes are associated with dopamine release to influence exercise reinforcement and behavior [166–168]. This indicates that certain individuals are more prone to realizing exercise as a reinforcing activity and, thus, interventions aimed at increasing the reinforcing value of exercise may only be applicable to individuals with certain genotypes, which complicates research in this area. Increasing the reinforcing value of behavior is accomplished through "incentive sensitization", which occurs when repeated exposures increase the salience of a stimulus within the environment [169]. This results in neuroadaptations that sensitize the dopamine reward system, thus increasing the reinforcing value of the behavior [170,171].

Nutrients 2025, 17, 1997 12 of 22

Several interventions aimed at increasing exercise reinforcement through the process of incentive sensitization have been conducted with mixed results. One trial demonstrated that low levels of exercise exposures (3 days/week for 6 weeks, either 150 or 300 kcal/session) reduced the reinforcing value of sedentary activities but did not significantly increase exercise reinforcement [172]. A follow-up trial demonstrated that exercise reinforcement can be significantly increased when exercise exposures are of greater volume (5 sessions/week, 300 or 600 kcal/session for 12 weeks) [173], which is in line with the dose-response relationship in developing drug abuse reinforcement [174]. This finding was replicated in a similar high-dose intervention but extended, determining increases in exercise reinforcement predicted an increased engagement in habitual physical activity after the structured exercise intervention (via accelerometry) [175]. Taken together, these results indicate that a high-dose exercise intervention can provide the necessary exposures to exercise to sensitize the dopamine reward system to the reinforcing properties of exercise (incentive sensitization). Importantly, this process of incentive sensitization can then, as hypothesized, be an effective way to increase exercise engagement.

Interventions focusing on motivation and affect, specifically, affectively-charged motivation states, are currently being tested and show promise [176]. As one example, environmental cues might prompt a person to exercise, and a person sensitive to this type of stimulus might demonstrate a rise in desire or urge to move. Other environmental factors, such as daylight, temperature, and music, also likely impact ACMS [157]. Also to consider is the timing of exercise in relation to meals, as feeding results in lower motivation to move initially, with a subsequent increase with additional fuel, and then a decline after an hour [159]. Interventions could be tailored to the time of day when motivation states are their highest [159,160]. Increasing the rewarding value of exercise for this population, perhaps by considering individual preferences, theoretically should increase the liking and thus the wanting of movement [154]. Particularly with vigorous exercise, the desire to move reduces, and the desire to be sedentary increases [154,156,158]. With this in mind, it may be ideal to implement exercise that is of moderate intensity to avoid quick movement satiation and maintain exercise appetence. Thus, motivation states may also be an important automatic compensatory response to exercise, which might limit the effectiveness of some exercise interventions [35]. With all of this in mind, tracking motivation states may help to optimize the timing of exercise sessions, taking advantage of motivation when it is high, and intervening in motivation itself when it is low, possibly as part of a just-in-time adaptive intervention [177] which may be a novel strategy to intervene via mobile technology. Recent work by Dunton et al. and Barrows et al. provide additional theoretical and practical applications of modifying motivation states to improve adherence [176,178].

3.5. Addressing Exercise Adherence and Maintenance at the Systems Level

The majority of research on promoting exercise has been focused on the individual level (i.e., a person's motivations, barriers, facilitators). To promote long-term exercise, however, there is a recommendation for interventions to target not just individuals but additional levels of the social-ecological model, including social and built environments [179,180], as well as considering determinants of implementation within these levels [181]. In other words, while the question, "how do we facilitate individuals to exercise?" still needs to be addressed, equally important is the question, "how do we support workplaces, communities, and policies that facilitate individuals to exercise?" The latter question is addressed in the field of implementation science, which studies how to best help people and places implement the intervention, which, in this case, is exercise [182].

Rather than designing, implementing, and refining a new exercise program to combat obesity, which may take up to 17 years to become part of routine practice [183], a more

Nutrients **2025**, 17, 1997

practical approach is to capitalize on an existing evidence-based intervention. In this way, we move from studying effectiveness (i.e., does it work in real-world settings) to implementation (i.e., how do we make it work in real-life settings). The National Institutes of Health have resources that evaluate the scientific rigor of exercise and nutritional interventions and include implementation guides that can facilitate the uptake of these evidence-based interventions across various settings (i.e., work, school, community). By studying these existing, ready-to-implement interventions, we may be able to reduce the 17-year gap between research and practice and have a larger reach and impact on human health.

3.6. Worksite Health Promotion: Employer's Role in Supporting Exercise Adherence

Employers play a key role in promoting exercise adherence by integrating physical activity into workplace health programs and policies [184]. Tailoring exercise prescriptions based on job-related activity levels and providing opportunities for movement, such as flexible schedules and active transportation incentives, can help employees incorporate exercise into their routines [185]. Additionally, offering fitness memberships, physical activity assessments, and referrals to community resources can further support adherence [186]. Notably, the Physical Activity Alliance's CEO Pledge encourages organizational leaders to model healthy behaviors, creating a culture that normalizes physical activity [187]. By adopting these strategies, employers can promote sustained employee health, reduce healthcare costs, and improve long-term exercise adherence [188].

4. Conclusions

The obesity crisis in the U.S. necessitates interventions that overcome adherence barriers and compensatory physiological responses undermining traditional lifestyle approaches. Exercise is vital for weight management and chronic disease prevention, but its effectiveness is constrained by compensatory mechanisms resulting in increased energy intake and/or reduced expenditure, requiring strategic optimization. The present review does not provide concrete answers on how to make exercise more effective for obesity and chronic disease treatment, rather, we present many concepts that may be considered in future trials and interventions that may aim to improve obesity and chronic disease outcomes through exercise. Modifying exercise variables—such as timing (e.g., AM vs. PM sessions), mode (aerobic vs. resistance), and intensity—can enhance fat oxidation while mitigating compensatory behaviors. Understanding motivational processes, including incentive sensitization, basic drive, and motivation states, holds promise in strengthening intrinsic motivation and long-term adherence by leveraging neurobiological reward pathways. Behavioral strategies, including gamification and personalized feedback, are targets for interventions. A socioecological framework is essential, addressing individual motivation, social support, workplace policies, and environmental accessibility to create sustainable physical activity ecosystems. Employers and policymakers play critical roles in scaling solutions through workplace wellness programs, community infrastructure, and culturally relevant campaigns to normalize exercise as a daily priority.

There is currently a great deal of conflicting results and limitations in the research surrounding each of these concepts, thus making it difficult to draw conclusions. For instance, we have ample evidence that fasted exercise training can improve fatty-acid oxidation, although no trials have been undertaken in a clinical population or in patients with obesity at the necessary duration to elicit changes in body weight or disease state. Conflicting results are present when looking at the time of day exercise is performed, where strong evidence obtained from secondary data analysis of large exercise interventions point to morning exercise best-supporting weight loss, while randomized trials manipulating exercise time of day have not shown this. Out of the topics we have covered, it does

Nutrients 2025, 17, 1997 14 of 22

appear resistance training and high-intensity exercise have several advantages when it comes to weight loss, although this type of training may not be suitable for certain clinical populations, and more research is still needed. On the exercise adherence and behavioral side, it does appear that individuals can be sensitized to the reinforcing effects of exercise to increase exercise adherence. Similarly, several trials elucidating the role of ACMS on exercise behavior have demonstrated environmental cues (daylight, temperature, music) and food intake can influence one's motivation to exercise and thus play an important role in adherence.

It is important to note that many of the studies reviewed herein were not carried out in a population with obesity or focused on treating a clinical condition. This limitation further stresses the importance of future research, which must prioritize prospective studies to clarify optimal exercise timing, dosing, and motivational and compensatory mechanisms in this population. Technology must be leveraged for real-time adherence tracking, metabolic feedback, and motivational messaging. A multidisciplinary approach—integrating physiology, psychology, as well as environmental design—is indispensable to transforming exercise from a set of population-wide guidelines into a personalized, evidence-based intervention. Overall, it is apparent that overcoming obesity and improving chronic disease outcomes require systemic, flexibly adaptive strategies that empower individuals through science-driven, context-sensitive solutions to adopt and sustain active lifestyles.

Author Contributions: Conceptualization, K.D.F. and M.A.S.-K.; writing—original draft preparation, K.D.F., M.A.S.-K., R.E.A.III, R.H., S.A.C. and V.A.C.; writing—review and editing, K.D.F., M.A.S.-K., R.E.A.III, R.H., S.A.C. and V.A.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AOMs anti-obesity medications

EI energy intake PA physical activity

TDEE total daily energy expenditure

EE energy expenditure

NEPA non-exercise physical activity

FFA free fatty acids BMI body mass index

MVPA moderate to vigorous physical activity

1-RM 1 rep-maximum

HIFT high-intensity functional training

SCT social cognitive theory
BCTs behavior change techniques
SMS short message service
HCD human-centered design

ACMS affectively-charged motivation states

References

- CDC Media Relations. New CDC Data Show Adult Obesity Prevalence Remains High; Office of Communications, Ed.; CDC Media Relations: Atlanta, GA, USA, 2024.
- 2. Rosenkilde, M.; Rygaard, L.; Nordby, P.; Nielsen, L.B.; Stallknecht, B. Exercise and weight loss effects on cardiovascular risk factors in overweight men. *J. Appl. Physiol.* **2018**, *125*, 901–908. [CrossRef] [PubMed]

Nutrients **2025**, 17, 1997 15 of 22

3. Ho, S.S.; Dhaliwal, S.S.; Hills, A.P.; Pal, S. The effect of 12 weeks of aerobic, resistance or combination exercise training on cardiovascular risk factors in the overweight and obese in a randomized trial. *BMC Public Health* **2012**, 12, 704. [CrossRef] [PubMed]

- 4. Church, T.S.; Blair, S.N.; Cocreham, S.; Johannsen, N.; Johnson, W.; Kramer, K.; Mikus, C.R.; Myers, V.; Nauta, M.; Rodarte, R.Q.; et al. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: A randomized controlled trial. *JAMA* 2010, 304, 2253–2262. [CrossRef] [PubMed]
- 5. Dansinger, M.L.; Gleason, J.; Griffith, J.; Selker, H.; Schaefer, E. Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: A randomized trial. *JAMA* 2005, 293, 43–53. [CrossRef]
- 6. Makris, A.; Foster, G.D. Dietary approaches to the treatment of obesity. Psychiatr. Clin. N. Am. 2011, 34, 813–827. [CrossRef]
- 7. Aulbach, M.B.; van Alebeek, H.; Jones, C.M.; Blechert, J. Why we don't eat as intended: Moderators of the short-term intention-behaviour relation in food intake. *Br. J. Health Psychol.* **2024**, *29*, 576–588. [CrossRef]
- 8. Reichenberger, J.; Smyth, J.M.; Kuppens, P.; Blechert, J. I will fast . . . tomorrow: Intentions to restrict eating and actual restriction in daily life and their person-level predictors. *Appetite* **2019**, *140*, 10–18. [CrossRef]
- 9. Sinha, R.; Stults-Kolehmainen, M.A. The effects of stress on physical activity and exercise. Sports Med. 2014, 44, 81–121.
- 10. Baillot, A.; Chenail, S.; Polita, N.B.; Simoneau, M.; Libourel, M.; Nazon, E.; Riesco, E.; Bond, D.S.; Romain, A.J.; Kumar, S. Physical activity motives, barriers, and preferences in people with obesity: A systematic review. *PLoS ONE* **2021**, *16*, e0253114. [CrossRef]
- 11. Polivy, J. Psychological consequences of food restriction. J. Am. Diet. Assoc. 1996, 96, 589–592, quiz 593. [CrossRef]
- 12. Dulloo, A.G.; Montani, J.P. Pathways from dieting to weight regain, to obesity and to the metabolic syndrome: An overview. *Obes. Rev.* **2015**, *16* (Suppl. 1), 1–6. [CrossRef] [PubMed]
- 13. Daee, A.; Robinson, P.; Lawson, M.; Turpin, J.A.; Gregory, B.; Tobias, J.D. Psychologic and physiologic effects of dieting in adolescents. *South. Med. J.* **2002**, *95*, 1032–1041. [CrossRef] [PubMed]
- 14. Schutz, Y.; Dulloo, A.G.; Montani, J. Dieting and weight cycling as risk factors for cardiometabolic diseases: Who is really at risk? *Obes. Rev.* **2015**, *16* (Suppl. 1), 7–18.
- Dulloo, A.G.; Jacquet, J.; Montani, J.; Schutz, Y. How dieting makes the lean fatter: From a perspective of body composition autoregulation through adipostats and proteinstats awaiting discovery. Obes. Rev. 2015, 16 (Suppl. 1), 25–35. [CrossRef]
- 16. Ramage, S.; Farmer, A.; Eccles, K.A.; McCargar, L. Healthy strategies for successful weight loss and weight maintenance: A systematic review. *Appl. Physiol. Nutr. Metab.* **2014**, *39*, 1–20. [CrossRef]
- 17. Yeat, N.C.; Cava, E.; Mittendorfer, B. Preserving Healthy Muscle during Weight Loss. Adv. Nutr. 2017, 8, 511–519.
- 18. Santos, I.; Sniehotta, F.F.; Marques, M.M.; Carraça, E.V.; Teixeira, P.J. Prevalence of personal weight control attempts in adults: A systematic review and meta-analysis. *Obes. Rev.* **2017**, *18*, 32–50. [CrossRef]
- 19. Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; et al. Waist circumference as a vital sign in clinical practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. *Nat. Rev. Endocrinol.* **2020**, *16*, 177–189. [CrossRef]
- 20. Campbell, K.L.; Winters-Stone, K.M.; Wiskemann, J.; May, A.M.; Schwartz, A.L.; Courneya, K.S.; Zucker, D.S.; Matthews, C.E.; Ligibel, J.A.; Gerber, L.H.; et al. Exercise Guidelines for Cancer Survivors: Consensus Statement from International Multidisciplinary Roundtable. *Med. Sci. Sports Exerc.* 2019, *51*, 2375–2390. [CrossRef]
- 21. Kanaley, J.A.; Colberg, S.R.; Corcoran, M.H.; Malin, S.K.; Rodriguez, N.R.; Crespo, C.J.; Kirwan, J.P.; Zierath, J.R. Exercise/Physical Activity in Individuals with Type 2 Diabetes: A Consensus Statement from the American College of Sports Medicine. *Med. Sci. Sports Exerc.* 2022, *54*, 353–368. [CrossRef]
- 22. Hansen, D.; Niebauer, J.; Cornelissen, V.; Barna, O.; Neunhäuserer, D.; Stettler, C.; Tonoli, C.; Greco, E.; Fagard, R.; Coninx, K.; et al. Exercise Prescription in Patients with Different Combinations of Cardiovascular Disease Risk Factors: A Consensus Statement from the EXPERT Working Group. *Sports Med.* **2018**, *48*, 1781–1797. [CrossRef] [PubMed]
- 23. Guazzi, M.; Wilhelm, M.; Halle, M.; Van Craenenbroeck, E.; Kemps, H.; de Boer, R.A.; Coats, A.J.; Lund, L.; Mancini, D.; Borlaug, B.; et al. Exercise testing in heart failure with preserved ejection fraction: An appraisal through diagnosis, pathophysiology and therapy—A clinical consensus statement of the Heart Failure Association and European Association of Preventive Cardiology of the European Society of Cardiology. Eur. J. Heart Fail. 2022, 24, 1327–1345. [PubMed]
- 24. Zhang, Y.H.; Hu, H.-Y.; Xiong, Y.-C.; Peng, C.; Hu, L.; Kong, Y.-Z.; Wang, Y.-L.; Guo, J.-B.; Bi, S.; Li, T.-S.; et al. Exercise for Neuropathic Pain: A Systematic Review and Expert Consensus. *Front. Med.* **2021**, *8*, 756940. [CrossRef] [PubMed]
- Keating, S.E.; Sabag, A.; Hallsworth, K.; Hickman, I.J.; Macdonald, G.A.; Stine, J.G.; George, J.; Johnson, N.A. Exercise in the Management of Metabolic-Associated Fatty Liver Disease (MAFLD) in Adults: A Position Statement from Exercise and Sport Science Australia. Sports Med. 2023, 53, 2347–2371. [CrossRef]
- Thomas, D.M.; Bouchard, C.; Church, T.; Slentz, C.; Kraus, W.E.; Redman, L.M.; Martin, C.K.; Silva, A.M.; Vossen, M.; Westerterp, K.; et al. Why do individuals not lose more weight from an exercise intervention at a defined dose? An energy balance analysis. Obes. Rev. 2012, 13, 835–847.

Nutrients 2025, 17, 1997 16 of 22

27. Kyle, T.K.; Thomas, D.M.; Stanford, F.C. The gap between expectations and reality of exercise-induced weight loss is associated with discouragement. *Prev. Med.* **2015**, *81*, 357–360. [CrossRef]

- 28. Rosenkilde, M.; Auerbach, P.; Reichkendler, M.H.; Ploug, T.; Stallknecht, B.M.; Sjödin, A. Body fat loss and compensatory mechanisms in response to different doses of aerobic exercise--a randomized controlled trial in overweight sedentary males. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* **2012**, 303, R571–R579. [CrossRef]
- 29. Church, T.S.; Martin, C.K.; Thompson, A.M.; Earnest, C.P.; Mikus, C.R.; Blair, S.N.; Sorensen, T.I.A. Changes in weight, waist circumference and compensatory responses with different doses of exercise among sedentary, overweight postmenopausal women. *PLoS ONE* **2009**, *4*, e4515. [CrossRef]
- 30. King, N.A.; Hopkins, M.; Caudwell, P.; Stubbs, R.J.; Blundell, J.E. Individual variability following 12 weeks of supervised exercise: Identification and characterization of compensation for exercise-induced weight loss. *Int. J. Obes.* **2008**, *32*, 177–184. [CrossRef]
- 31. Tremblay, A.; Blundell, J.E.; King, N.A. Effects of exercise on appetite control: Implications for energy balance. *Med. Sci. Sports Exerc.* **1997**, 29, 1076–1089.
- 32. Flack, K.D.; Hays, H.M.; Moreland, J.; Long, D.E. Exercise for Weight Loss: Further Evaluating Energy Compensation with Exercise. *Med. Sci. Sports Exerc.* **2020**, 52, 2466–2475. [CrossRef] [PubMed]
- 33. Flack, K.D.; Ufholz, K.E.; Johnson, L.K.; Fitzgerald, J.S.; Roemmich, J.N. Energy Compensation in Response to Aerobic Exercise Training in Overweight Adults. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* **2018**, 315, R619–R626. [CrossRef] [PubMed]
- 34. King, N.A.; Caudwell, P.; Hopkins, M.; Byrne, N.M.; Colley, R.; Hills, A.P.; Stubbs, J.R.; Blundell, J.E. Metabolic and behavioral compensatory responses to exercise interventions: Barriers to weight loss. *Obesity* **2007**, *15*, 1373–1383. [CrossRef] [PubMed]
- Flack, K.D.; Stults-Kolehmainen, M.A.; Creasy, S.A.; Khullar, S.; Boullosa, D.; Catenacci, V.A.; King, N. Altered motivation states for physical activity and 'appetite' for movement as compensatory mechanisms limiting the efficacy of exercise training for weight loss. Front. Psychol. 2023, 14, 1098394. [CrossRef]
- 36. King, N.A.; Horner, K.; Hills, A.P.; Byrne, N.M.; Wood, R.E.; Bryant, E.; Caudwell, P.; Finlayson, G.; Gibbons, C.; Hopkins, M.; et al. Exercise, appetite and weight management: Understanding the compensatory responses in eating behaviour and how they contribute to variability in exercise-induced weight loss. *Br. J. Sports Med.* 2012, 46, 315–322. [CrossRef]
- 37. Herrmann, S.D.; Willis, E.A.; Honas, J.J.; Lee, J.; Washburn, R.A.; Donnelly, J.E. Energy intake, nonexercise physical activity, and weight loss in responders and nonresponders: The Midwest Exercise Trial 2. *Obesity* **2015**, *23*, 1539–1549. [CrossRef]
- 38. Martin, C.K.; Johnson, W.D.; A Myers, C.; Apolzan, J.W.; Earnest, C.P.; Thomas, D.M.; Rood, J.C.; Johannsen, N.M.; Tudor-Locke, C.; Harris, M.; et al. Effect of different doses of supervised exercise on food intake, metabolism, and non-exercise physical activity: The E-MECHANIC randomized controlled trial. *Am. J. Clin. Nutr.* **2019**, *110*, 583–592. [CrossRef]
- 39. Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. *Public Health Rep.* **1985**, *100*, 126–131.
- 40. Børsheim, E.; Bahr, R. Effect of exercise intensity, duration and mode on post-exercise oxygen consumption. *Sports Med.* **2003**, *33*, 1037–1060. [CrossRef]
- 41. Harris, R.C.; Sahlin, K. Control of lipid oxidation during exercise: Role of energy state and mitochondrial factors. *Acta Physiol.* **2008**, *194*, 283–291.
- 42. Jeukendrup, A. Modulation of carbohydrate and fat utilization by diet, exercise and environment. *Biochem. Soc. Trans.* **2003**, *31*, 1270–1273. [CrossRef] [PubMed]
- 43. Vieira, A.F.; Costa, R.R.; Macedo, R.C.O.; Coconcelli, L.; Kruel, L.F.M. Effects of aerobic exercise performed in fasted v. fed state on fat and carbohydrate metabolism in adults: A systematic review and meta-analysis. *Br. J. Nutr.* **2016**, *116*, 1153–1164. [PubMed]
- 44. Burke, L.M. Fueling strategies to optimize performance: Training high or training low? *Scand. J. Med. Sci. Sports* **2010**, 20 (Suppl. 2), 48–58. [CrossRef] [PubMed]
- 45. Hulston, C.J.; Venables, M.C.; Mann, C.H.; Martin, C.; Philp, A.; Baar, K.; Jeukendrup, A.E. Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. *Med. Sci. Sports Exerc.* **2010**, 42, 2046–2055. [CrossRef]
- 46. Gill, J.M.R.; Farah, N.M.F. Effects of exercise before or after meal ingestion on fat balance and postprandial metabolism in overweight men. *Br. J. Nutr.* **2013**, *109*, 2297–2307.
- 47. Schoenfeld, B.J.; Aragon, A.A.; Wilborn, C.D.; Krieger, J.W.; Sonmez, G.T. Body composition changes associated with fasted versus non-fasted aerobic exercise. *J. Int. Soc. Sports Nutr.* **2014**, *11*, 54. [CrossRef]
- 48. Van Proeyen, K.; Szlufcik, K.; Nielens, H.; Pelgrim, K.; Deldicque, L.; Hesselink, M.; Van Veldhoven, P.P.; Hespel, P. Training in the fasted state improves glucose tolerance during fat-rich diet. *J. Physiol.* **2010**, *588 Pt 21*, 4289–4302. [CrossRef]
- 49. Gillen, J.B.; Percival, M.E.; Ludzki, A.; Tarnopolsky, M.A.; Gibala, M.J. Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women. *Obesity* **2013**, *21*, 2249–2255. [CrossRef]
- 50. Van Proeyen, K.; Szlufcik, K.; Nielens, H.; Ramaekers, M.; Hespel, P. Beneficial metabolic adaptations due to endurance exercise training in the fasted state. *J. Appl. Physiol.* **2011**, *110*, 236–245. [CrossRef]

Nutrients **2025**, 17, 1997 17 of 22

51. Frampton, J.; Edinburgh, R.M.; Ogden, H.B.; Gonzalez, J.T.; Chambers, E.S. The acute effect of fasted exercise on energy intake, energy expenditure, subjective hunger and gastrointestinal hormone release compared to fed exercise in healthy individuals: A systematic review and network meta-analysis. *Int. J. Obes.* 2022, 46, 255–268. [CrossRef]

- 52. Blannin, A.; Wallis, G.; Podestá, D. Effects of overnight-fasted versus fed-state exercise on the components of energy balance and interstitial glucose across four days in healthy adults. *Appetite* **2024**, 203, 107716.
- 53. Blankenship, J.M.; Rosenberg, R.C.; Rynders, C.A.; Melanson, E.L.; Catenacci, V.A.; Creasy, S.A. Examining the Role of Exercise Timing in Weight Management: A Review. *Int. J. Sports Med.* **2021**, 42, 967–978. [CrossRef] [PubMed]
- 54. Lee, I.-M.; Shiroma, E.J.; Chomistek, A.K. The Relationship Between Time of Day of Physical Activity and Obesity in Older Women. *J. Phys. Act. Health* **2016**, *13*, 416–418.
- 55. Ma, T.; Bennett, T.; Lee, C.; Wicklow, M. The diurnal pattern of moderate-to-vigorous physical activity and obesity: A cross-sectional analysis. *Obesity* **2023**, *31*, 2638–2647. [CrossRef]
- 56. Creasy, S.A.; Hibbing, P.R.; Cotton, E.; Lyden, K.; Ostendorf, D.M.; Willis, E.A.; Pan, Z.; Melanson, E.L.; Catenacci, V.A. Temporal patterns of physical activity in successful weight loss maintainers. *Int. J. Obes.* **2021**, *45*, 2074–2082. [CrossRef]
- 57. Willis, E.A.; Creasy, S.A.; Honas, J.J.; Melanson, E.L.; Donnelly, J.E. The effects of exercise session timing on weight loss and components of energy balance: Midwest exercise trial 2. *Int. J. Obes.* **2020**, *44*, 114–124. [CrossRef]
- 58. Alizadeh, Z.; Younespour, S.; Tabesh, M.R.; Haghravan, S. Comparison between the effect of 6 weeks of morning or evening aerobic exercise on appetite and anthropometric indices: A randomized controlled trial. *Clin. Obes.* **2017**, *7*, 157–165. [CrossRef]
- 59. Arciero, P.J.; Ives, S.J.; Mohr, A.E.; Robinson, N.; Escudero, D.; Robinson, J.; Rose, K.; Minicucci, O.; O'bRien, G.; Curran, K.; et al. Morning Exercise Reduces Abdominal Fat and Blood Pressure in Women; Evening Exercise Increases Muscular Performance in Women and Lowers Blood Pressure in Men. *Front. Physiol.* **2022**, *13*, 893783. [CrossRef]
- 60. Creasy, S.A.; Wayland, L.; Panter, S.L.; Purcell, S.A.; Rosenberg, R.; Willis, E.A.; Shiferaw, B.; Grau, L.; Breit, M.J.; Bessesen, D.H.; et al. Effect of Morning and Evening Exercise on Energy Balance: A Pilot Study. *Nutrients* **2022**, *14*, 816. [CrossRef]
- 61. Teo, S.Y.M.; Kanaley, J.A.; Guelfi, K.J.; Dimmock, J.A.; Jackson, B.; Fairchild, T.J. Effects of diurnal exercise timing on appetite, energy intake and body composition: A parallel randomized trial. *Appetite* **2021**, *167*, 105600. [CrossRef]
- 62. Brooker, P.G.; Gomersall, S.R.; King, N.A.; Leveritt, M.D. The efficacy of morning versus evening exercise for weight loss: A randomized controlled trial. *Obesity* **2022**, *31*, 83–95. [CrossRef] [PubMed]
- 63. Di Blasio, A.; Di Donato, F.; Mastrodicasa, M.; Fabrizio, N.; Di Renzo, D.; Napolitano, G.; Petrella, V.; Gallina, S.; Ripari, P. Effects of the time of day of walking on dietary behaviour, body composition and aerobic fitness in post-menopausal women. *J. Sports. Med. Phys. Fitness* **2010**, *50*, 196–201. [PubMed]
- 64. Mancilla, R.; Brouwers, B.; Schrauwen-Hinderling, V.B.; Hesselink, M.K.C.; Hoeks, J.; Schrauwen, P. Exercise training elicits superior metabolic effects when performed in the afternoon compared to morning in metabolically compromised humans. *Physiol. Rep.* **2020**, *8*, e14669. [CrossRef] [PubMed]
- 65. Jakicic, J.M.; Clark, K.; Coleman, E.; Donnelly, J.E.; Foreyt, J.; Melanson, E.; Volek, J.; Volpe, S.L. Appropriate Intervention Strategies for Weight Loss and Prevention of Weight Regain for Adults. *Med. Sci. Sports Exerc.* **2001**, *33*, 2145–2156. [CrossRef]
- 66. Tate, D.F.; Jeffery, R.W.; E Sherwood, N.; Wing, R.R. Long-term weight losses associated with prescription of higher physical activity goals. Are higher levels of physical activity protective against weight regain? *Am. J. Clin. Nutr.* **2007**, *85*, 954–959. [CrossRef]
- 67. Jakicic, J.M.; Marcus, B.H.; Lang, W.; Janney, C. Effect of exercise on 24-month weight loss maintenance in overweight women. *Arch Intern Med.* **2008**, *168*, 1550–1559; discussion 1559–1560. [CrossRef]
- 68. Jakicic, J.M.; Winters, C.; Lang, W.; Wing, R.R. Effects of intermittent exercise and use of home exercise equipment on adherence, weight loss, and fitness in overweight women: A randomized trial. *JAMA* 1999, 282, 1554–1560. [CrossRef]
- 69. Colley, R.C.; Hills, A.P.; O'Moore-Sullivan, T.M.; Hickman, I.J.; Prins, J.B.; Byrne, N.M. Variability in adherence to an unsupervised exercise prescription in obese women. *Int. J. Obes.* **2008**, *32*, 837–844. [CrossRef]
- 70. Vuorinen, A.L.; Strahilevitz, M.A.; Wansink, B.; Safer, D.L. Shifts in the Enjoyment of Healthy and Unhealthy Behaviors Affect Short- and Long-Term Postbariatric Weight Loss. *Bariatr. Surg. Pract Patient Care* **2017**, 12, 35–42. [CrossRef]
- 71. Jakicic, J.M.; Janney, C. The influence of exercise and BMI on injuries and illnesses in overweight and obese adults: A randomized control trial. *Int. J. Behav. Nutr. Phys. Act.* **2010**, *7*, 1.
- 72. Alrayes, M.S.; Altawili, M.A.; Alsuabie, S.M.; Sindi, A.W.; Alharbi, K.M.; Alsalhi, K.M.; Al Alawi, R.M.; Ali, I.D.; Nasser, A.N.; Alabdulrahim, J.M.; et al. Surgical Interventions for the Management of Obesity-Related Joint Pain: A Narrative Review. *Cureus* 2024, 16, e59082. [CrossRef] [PubMed]
- 73. De Bourdeaudhuij, I.; Brug, J.; Vandelanotte, C. Two-year follow-up of sequential and simultaneous interactive computer-tailored interventions for increasing physical activity and decreasing fat intake. *Ann. Behav. Med.* **2007**, *33*, 213–219.
- 74. Spring, B.; Pellegrini, C.; McFadden, H.G.; Pfammatter, A.F.; Stump, T.K.; Siddique, J.; King, A.C.; Hedeker, D. Multicomponent mHealth Intervention for Large, Sustained Change in Multiple Diet and Activity Risk Behaviors: The Make Better Choices 2 Randomized Controlled Trial. *J. Med. Internet Res.* 2018, 20, e10528. [CrossRef] [PubMed]

Nutrients **2025**, 17, 1997 18 of 22

75. Goodpaster, B.H.; DeLany, J.P.; Otto, A.D.; Kuller, L.; Vockley, J.; South-Paul, J.E.; Thomas, S.B.; Brown, J.; McTigue, K.; Hames, K.C.; et al. Effects of Diet and Physical Activity Interventions on Weight Loss and Cardiometabolic Risk Factors in Severely Obese Adults. *JAMA* 2010, 304, 1795–1802. [CrossRef]

- Catenacci, V.A.; Ostendorf, D.M.; Pan, Z.; Bing, K.; Wayland, L.T.; Seyoum, E.; Stauffer, B.L.; Phelan, S.; Creasy, S.A.; Caldwell, A.E.; et al. The Impact of Timing of Exercise Initiation on Weight Loss: An 18-Month Randomized Clinical Trial. Obesity 2019, 27, 1828–1838. [CrossRef]
- 77. Knuttgen, H.G. Strength Training and Aerobic Exercise: Comparison and Contrast. *J. Strength Cond. Res.* **2007**, 21, 973–978. [CrossRef]
- 78. Cooper, K. Aerobics; Bantam Books: New York, NY, USA, 1968.
- 79. Moreau, K.L.; Nagy, E.E.; Seals, D.R. Aerobic exercise training and vascular function with ageing in healthy men and women. *J. Physiol.* **2019**, 597, 4901–4914.
- 80. Tavassoli, H.; Mousavi, S.M.; Heidarianpour, A. Aerobic Exercise Training Effects on Omentin-1, Insulin Resistance, and Lipid Profile Among Male Smokers. *Res. Q. Exerc. Sport* **2023**, *94*, 880–885.
- 81. Montero, D.; Roberts, C.K.; Vinet, A. Effect of aerobic exercise training on arterial stiffness in obese populations: A systematic review and meta-analysis. *Sports Med.* **2014**, *44*, 833–843. [CrossRef]
- 82. Bliss, E.S.; Biki, S.M.; Wong, R.H.X.; Howe, P.R.C.; Mills, D.E. The benefits of regular aerobic exercise training on cerebrovascular function and cognition in older adults. *Eur. J. Appl. Physiol.* **2023**, 123, 1323–1342. [CrossRef]
- 83. Hellsten, Y.; Nyberg, M. Cardiovascular Adaptations to Exercise Training. Compr. Physiol. 2016, 6, 1–32. [CrossRef]
- 84. French, D.N.; Ratamess, N.A.; Kraemer, W.J. Resistance Training for Health and Performance. Optom. Vis. Sci. 2002, 1, 165–171.
- 85. Dimitriadis, N.; Panagiotakos, D. Aerobic or Resistance Exercise for maximum Cardiovascular Disease Protection? An Appraisal of the Current Level of Evidence. *J. Prev. Med. Hyg.* **2024**, *65*, E323–E329. [PubMed]
- 86. Nazir, A.; Heryaman, H.; Juli, C.; Ugusman, A.; Martha, J.W.; Moeliono, M.A.; Atik, N. Resistance Training in Cardiovascular Diseases: A Review on Its Effectiveness in Controlling Risk Factors. *Integr. Blood Press. Control.* **2024**, *17*, 21. [CrossRef]
- 87. National Cancer Institute. Feasibility of the NEXT Steps Weight Loss Intervention ± Resistance Training for Endometrial Cancer Survivors: Effect on Lean Mass and Biomarkers; M.D. Anderson Cancer Center: Houston, TX, USA, 2024.
- 88. Flack, K.D.; Davy, K.P.; Hulver, M.W.; Winett, R.A.; Frisard, M.I.; Davy, B.M. Aging, resistance training, and diabetes prevention. *J. Aging Res.* **2010**, 2011, 127315. [CrossRef]
- 89. Hashida, R.; Kawaguchi, T.; Bekki, M.; Omoto, M.; Matsuse, H.; Nago, T.; Takano, Y.; Ueno, T.; Koga, H.; George, J.; et al. Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: A systematic review. *J. Hepatol.* **2017**, *66*, 142–152. [CrossRef]
- 90. Stults-Kolehmainen, M.A.; Bond, D.S.; Richardson, L.A.; Herring, L.Y.; Mulone, B.; Garber, C.E.; Morton, J.; Ghiassi, S.; Duffy, A.J.; Balk, E.; et al. Role of the exercise professional in metabolic and bariatric surgery. *Surg. Obes. Relat. Dis.* **2023**, *20*, 98–108. [CrossRef]
- 91. Thompson, P.D.; Arena, R.; Riebe, D.; Pescatello, L.S. ACSM's new preparticipation health screening recommendations from ACSM's guidelines for exercise testing and prescription, ninth edition. *Curr. Sports Med. Rep.* **2013**, *12*, 215–217. [CrossRef]
- 92. Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; LaMonte, M.J.; Lee, I.-M.; Nieman, D.C.; Swain, D.P.; American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. *Med. Sci. Sports Exerc.* 2011, 43, 1334–1359. [CrossRef]
- 93. Guo, Z.; Li, M.; Cai, J.; Gong, W.; Liu, Y.; Liu, Z. Effect of High-Intensity Interval Training vs. Moderate-Intensity Continuous Training on Fat Loss and Cardiorespiratory Fitness in the Young and Middle-Aged a Systematic Review and Meta-Analysis. *Int. J. Environ. Res. Public Health* **2023**, 20, 4741. [CrossRef]
- 94. Turk, Y.; Theel, W.; Kasteleyn, M.J.; Franssen, F.M.E.; Hiemstra, P.S.; Rudolphus, A.; Taube, C.; Braunstahl, G.J. High intensity training in obesity: A Meta-analysis. *Obes. Sci. Pract.* **2017**, *3*, 258–271. [CrossRef] [PubMed]
- 95. Hannan, A.L.; Hing, W.; Simas, V.; Climstein, M.; Coombes, J.S.; Jayasinghe, R.; Byrnes, J.; Furness, J. High-intensity interval training versus moderate-intensity continuous training within cardiac rehabilitation: A systematic review and meta-analysis. *Open Access J. Sports Med.* **2018**, *9*, 1–17. [CrossRef] [PubMed]
- 96. Wewege, M.; Van Den Berg, R.; Ward, R.E.; Keech, A. The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: A systematic review and meta-analysis. *Obes. Rev.* 2017, 18, 635–646. [CrossRef] [PubMed]
- 97. Jayedi, A.; Soltani, S.; Emadi, A.; Zargar, M.-S.; Najafi, A. Aerobic Exercise and Weight Loss in Adults: A Systematic Review and Dose-Response Meta-Analysis. *JAMA Netw. Open* **2024**, *7*, e2452185. [CrossRef]
- 98. Elgaddal, N.; Reuben, C. Physical Activity among Adults Aged 18 and Over. In *NCHS Data Brief*; National Center for Health Statistics, Ed.; U.S. Department of Health and Human Services: Hyattsville, MD, USA, 2022.

Nutrients 2025, 17, 1997 19 of 22

99. Ekelund, U.; Tarp, J.; Steene-Johannessen, J.; Hansen, B.H.; Jefferis, B.; Fagerland, M.W.; Whincup, P.; Diaz, K.M.; Hooker, S.P.; Chernofsky, A.; et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: Systematic review and harmonised meta-analysis. *BMJ* **2019**, *366*, 14570. [CrossRef]

- 100. Weston, K.L.; Little, J.P.; Weston, M.; McCreary, S.; Kitchin, V.; Gill, A.; Niven, A.; McNarry, M.A.; Mackintosh, K.A. Application of Exercise Snacks across Youth, Adult and Clinical Populations: A Scoping Review. *Sports Med.-Open* **2025**, *11*, 27. [CrossRef]
- 101. Jones, M.D.; Clifford, B.K.; Stamatakis, E.; Gibbs, M.T. Exercise Snacks and Other Forms of Intermittent Physical Activity for Improving Health in Adults and Older Adults: A Scoping Review of Epidemiological, Experimental and Qualitative Studies. *Sports Med.* 2024, 54, 813–835. [CrossRef]
- 102. Rhea, M.R.; Alvar, B.A.; Peterson, M.D. Applications of the Dose-Response for Muscular Strength Development: A Review of Meta-Analytic Efficacy and Reliability for Designing Training Prescription. *J. Strength Cond. Res.* **2005**, *19*, 950–958.
- 103. Rhea, M.R.; Alvar, B.A.; Burkett, L.N.; Ball, S.D. A Meta-analysis to Determine the Dose Response for Strength Development. *Med. Sci. Sports Exerc.* **2003**, *35*, 456–464. [CrossRef]
- 104. O'Donoghue, G.; Blake, C.; Cunningham, C.; Lennon, O.; Perrotta, C. What exercise prescription is optimal to improve body composition and cardiorespiratory fitness in adults living with obesity? A network meta-analysis. *Obes. Rev.* 2020, 22, e13137. [CrossRef]
- 105. Lee, D.C.; Brellenthin, A.G.; Lanningham-Foster, L.M.; Kohut, M.L.; Li, Y. Aerobic, resistance, or combined exercise training and cardiovascular risk profile in overweight or obese adults: The CardioRACE trial. *Eur. Hear. J.* 2024, 45, 1127–1142. [CrossRef] [PubMed]
- 106. Feito, Y.; Heinrich, K.M.; Butcher, S.J.; Poston, W.S.C. High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. *Sports* **2018**, *6*, 76. [CrossRef] [PubMed]
- 107. Wang, X.; Soh, K.G.; Zhang, L.; Liu, X.; Ma, S.; Zhao, Y.; Sun, C. Effects of high-intensity functional training on physical fitness in healthy individuals: A systematic review with meta-analysis. *BMC Public Health* **2025**, 25, 1. [CrossRef] [PubMed]
- 108. Sobrero, G.; Arnett, S.; Schafer, M.; Stone, W.; Tolbert, T.A.; Salyer-Funk, A.; Crandall, J.; Farley, L.B.; Brown, J.; Lyons, S.; et al. A Comparison of High Intensity Functional Training and Circuit Training on Health and Performance Variables in Women: A Pilot Study. Women Sport Phys. Act. J. 2017, 25, 1–10. [CrossRef]
- 109. Heinrich, K.M.; Patel, P.M.; O'Neal, J.L.; Heinrich, B.S. High-intensity compared to moderate-intensity training for exercise initiation, enjoyment, adherence, and intentions: An intervention study. *BMC Public Health* **2014**, *14*, 1–6. [CrossRef]
- 110. Ameur, R.; Maaloul, R.; Tagougui, S.; Neffati, F.; Kacem, F.H.; Najjar, M.F.; Ammar, A.; Hammouda, O.; Wedderkopp, N. Unlocking the power of synergy: High-intensity functional training and early time-restricted eating for transformative changes in body composition and cardiometabolic health in inactive women with obesity. *PLOS ONE* **2024**, *19*, e0301369. [CrossRef]
- 111. Glanz, K. *Theory at a Glance: A Guide for Health Promotion Practice*; U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health: Bethesda, MD, USA, 1997.
- 112. Clark, M.A.; Seefeldt, V.; Malina, R.M. Factors Affecting Levels of Physical Activity in Adults. Sports Med. 2002, 32, 143-168.
- 113. Williams, S.L.; French, D.P. What are the most effective intervention techniques for changing physical activity self-efficacy and physical activity behaviour—and are they the same? *Health Educ. Res.* **2011**, *26*, 308–322. [CrossRef]
- 114. Gerber, M.; Cheval, B.; Cody, R.; Colledge, F.; Hohberg, V.; Klimentidis, Y.C.; Lang, C.; Looser, V.N.; Ludyga, S.; Stults-Kolehmainen, M.; et al. Psycho-physiological foundations of human physical activity behavior and motivation: Theories, systems, mechanisms, evolution, and genetics. *Physiol. Rev.* 2025, 105, 1213–1290. [CrossRef]
- 115. Young, D.R.; King, A.C.; Oka, R.K. Sources of social support as predictors of exercise adherence in women and men ages 50 to 65 years. *Women's Health* **1995**, *1*, 161–175.
- 116. Frederick-Recascino, C.M. Self-determination theory and participation motivation research in the sport and exercise domain. In *Handbook of Self-Determination Research*; Deci, E.L., Ryan, R.M., Eds.; University of Rochester Press: Rochester, NY, USA, 2002; pp. 277–294.
- 117. Hagberg, L.A.; Lindahl, B.; Nyberg, L.; Hellénius, M. Importance of enjoyment when promoting physical exercise. *Scand. J. Med. Sci. Sports* **2009**, *19*, 740–747. [CrossRef] [PubMed]
- 118. Koh, Y.S.; Asharani, P.V.; Devi, F.; Roystonn, K.; Wang, P.; Vaingankar, J.A.; Abdin, E.; Sum, C.F.; Lee, E.S.; Müller-Riemenschneider, F.; et al. A cross-sectional study on the perceived barriers to physical activity and their associations with domain-specific physical activity and sedentary behaviour. *BMC Public Health* **2022**, 22, 1–11. [CrossRef] [PubMed]
- 119. Kärmeniemi, M.; Lankila, T.; Ikäheimo, T.; Koivumaa-Honkanen, H.; Korpelainen, R. The Built Environment as a Determinant of Physical Activity: A Systematic Review of Longitudinal Studies and Natural Experiments. *Ann. Behav. Med.* **2018**, *52*, 239–251. [CrossRef] [PubMed]
- 120. Michie, S.; Richardson, M.; Johnston, M.; Abraham, C.; Francis, J.; Hardeman, W.; Eccles, M.P.; Cane, J.; Wood, C.E. The Behavior Change Technique Taxonomy (v1) of 93 Hierarchically Clustered Techniques: Building an International Consensus for the Reporting of Behavior Change Interventions. *Ann. Behav. Med.* 2013, 46, 81–95. [CrossRef]

Nutrients **2025**, 17, 1997 20 of 22

121. Sallis, J.F.; Hovell, M.F.; Hofstetter, C.R.; Elder, J.P.; Hackley, M.; Caspersen, C.J.; Powell, K.E. Distance between homes and exercise facilities related to frequency of exercise among San Diego residents. *Public Health Rep.* 1990, 105, 179–185.

- 122. Emmons, K.M.; Marcus, B.; Linnan, L.; Rossi, J.; Abrams, D. Mechanisms in Multiple Risk Factor Interventions: Smoking, Physical-Activity, and Dietary-Fat Intake Among Manufacturing Workers. *Prev. Med.* **1994**, 23, 481–489. [CrossRef]
- 123. Davis, R.; Campbell, R.; Hildon, Z.; Hobbs, L.; Michie, S. Theories of behaviour and behaviour change across the social and behavioural sciences: A scoping review. *Health Psychol. Rev.* **2014**, *9*, 323–344. [CrossRef]
- 124. Bandura, A. Social Foundations of Thought and Action: A Social Cognitive; Prentice-Hall: Englewoods Cliffs, NJ, USA, 1986.
- 125. Rodrigues, F.; Figueiredo, N.; Jacinto, M.; Monteiro, D.; Morouço, P. Social-Cognitive Theories to Explain Physical Activity. *Educ. Sci.* **2023**, 13, 122. [CrossRef]
- 126. Rhodes, R.E.; Boudreau, P.; Josefsson, K.W.; Ivarsson, A. Mediators of physical activity behaviour change interventions among adults: A systematic review and meta-analysis. *Health Psychol. Rev.* **2020**, *15*, 272–286. [CrossRef]
- 127. Shamizadeh, T.; Jahangiry, L.; Sarbakhsh, P.; Ponnet, K. Social cognitive theory-based intervention to promote physical activity among prediabetic rural people: A cluster randomized controlled trial. *Trials* **2019**, *20*, 1–10. [CrossRef]
- 128. Sebastian, A.T.; Rajkumar, E.; Tejaswini, P.; Lakshmi, R.; Romate, J. Applying social cognitive theory to predict physical activity and dietary behavior among patients with type-2 diabetes. *Health Psychol. Res.* **2021**, *9*, 24510. [CrossRef] [PubMed]
- 129. O'Mara-Eves, A.; Brunton, G.; Oliver, S.; Kavanagh, J.; Jamal, F.; Thomas, J. The effectiveness of community engagement in public health interventions for disadvantaged groups: A meta-analysis. *BMC Public Health* **2015**, *15*, 1–23. [CrossRef] [PubMed]
- 130. Rhodes, R.E.; Beauchamp, M.R. Development of the social dimensions of health behaviour framework. *Health Psychol. Rev.* **2024**, *18*, 750–766. [CrossRef] [PubMed]
- 131. Berry, T.R.; Conroy, D.E. Automatic Affective Evaluations of Physical Activity. Exerc. Sport Sci. Rev. 2017, 45, 230-237.
- 132. Lin, H.; Xu, D.; Yang, M.; Ma, X.; Yan, N.; Chen, H.; He, S.; Deng, N. Behaviour change techniques that constitute effective planning interventions to improve physical activity and diet behaviour for people with chronic conditions: A systematic review. *BMJ Open* **2022**, *12*, e058229. [CrossRef]
- 133. Michie, S.; West, R.; Sheals, K.; A Godinho, C. Evaluating the effectiveness of behavior change techniques in health-related behavior: A scoping review of methods used. *Transl. Behav. Med.* **2018**, *8*, 212–224. [CrossRef]
- 134. Ma, J.K.; Floegel, T.A.; Li, L.C.; Leese, J.; De Vera, M.A.; Beauchamp, M.R.; Taunton, J.; Liu-Ambrose, T.; Allen, K.D. Tailored physical activity behavior change interventions: Challenges and opportunities. *Transl. Behav. Med.* **2021**, *11*, 2174–2181. [CrossRef]
- 135. Avila-Garcia, P.; Hernandez-Ramos, R.; Nouri, S.S.; Cemballi, A.; Sarkar, U.; Lyles, C.R.; Aguilera, A. Engaging users in the design of an mHealth, text message-based intervention to increase physical activity at a safety-net health care system. *JAMIA Open* **2019**, 2, 489–497. [CrossRef]
- 136. Mazeas, A.; Duclos, M.; Pereira, B.; Chalabaev, A. Evaluating the Effectiveness of Gamification on Physical Activity: Systematic Review and Meta-analysis of Randomized Controlled Trials. *J. Med. Internet Res.* **2022**, 24, e26779. [CrossRef]
- 137. Beck, A.M.; Eyler, A.A.; Hipp, J.A.; King, A.C.; Tabak, R.G.; Yan, Y.; Reis, R.S.; Duncan, D.D.; Gilbert, A.S.; Serrano, N.H.; et al. A multilevel approach for promoting physical activity in rural communities: A cluster randomized controlled trial. *BMC Public Health* 2019, 19, 126. [CrossRef]
- 138. Oertelt-Prigione, S.; Göttgens, I. The Application of Human-Centered Design Approaches in Health Research and Innovation: A Narrative Review of Current Practices. *JMIR mHealth uHealth* 2021, 9, e28102.
- 139. Chen, E.; Leos, C.; Kowitt, S.D.; Moracco, K.E. Enhancing Community-Based Participatory Research Through Human-Centered Design Strategies. *Health Promot. Pr.* **2020**, *21*, 37–48. [CrossRef] [PubMed]
- 140. Pathak, L.E.; Aguilera, A.; Williams, J.J.; Lyles, C.R.; Hernandez-Ramos, R.; Miramontes, J.; Cemballi, A.G.; Figueroa, C.A. Developing Messaging Content for a Physical Activity Smartphone App Tailored to Low-Income Patients: User-Centered Design and Crowdsourcing Approach. *JMIR mHealth uHealth* 2021, 9, e21177. [CrossRef] [PubMed]
- 141. Collado-Mateo, D.; Lavín-Pérez, A.; Peñacoba, C.; Del Coso, J.; Leyton-Román, M.; Luque-Casado, A.; Gasque, P.; Fernández-Del-Olmo, M.; Amado-Alonso, D. Key Factors Associated with Adherence to Physical Exercise in Patients with Chronic Diseases and Older Adults: An Umbrella Review. *Int. J. Environ. Res. Public Health* **2021**, *18*, 2023. [CrossRef]
- 142. Teixeira, P.J.; Carraça, E.V.; Markland, D.; Silva, M.N.; Ryan, R.M. Exercise, physical activity, and self-determination theory: A systematic review. *Int. J. Behav. Nutr. Phys. Act.* **2012**, *9*, 78. [CrossRef]
- 143. Aaltonen, S.; Rottensteiner, M.; Kaprio, J.; Kujala, U.M. Motives for physical activity among active and inactive persons in their mid-30s. *Scand. J. Med. Sci. Sports* **2013**, 24, 727–735. [CrossRef]
- 144. Underhill, K. When extrinsic incentives displace intrinsic motivation: Designing legal carrots and sticks to confront the challenge of motivational crowding-out. *Yale J. Reg.* **2016**, *33*, 213.
- 145. Cohen, S.L.; Chelland, S.; Ball, K.T.; LeMura, L.M. Effects of fixed ratio schedules of reinforcement on exercise by college students. *Percept. Mot. Skills* **2002**, *94 Pt* 2, 1177–1186. [CrossRef]
- 146. Epstein, L.H.; O'DOnnell, S.; Biondolillo, M.J.; Hostler, D.; Roemmich, J.N. Comparing the reinforcing value of high intensity interval training versus moderate intensity aerobic exercise in sedentary adults. *Physiol. Behav.* **2021**, 238, 113468. [CrossRef]

Nutrients 2025, 17, 1997 21 of 22

147. Coleman, K.J.; Gonzalez, E.C.; Cooley, T. An objective measure of reinforcement and its implications for exercise promotion in sedentary Hispanic and Anglo women. *Ann. Behav. Med.* **2000**, 22, 229–236. [CrossRef]

- 148. Vara, L.S.; Epstein, L.H. Laboratory Assessment of Choice between Exercise or Sedentary Behaviors. *Res. Q. Exerc. Sport* 1993, 64, 356–360. [CrossRef] [PubMed]
- 149. Stults-Kolehmainen, M.A.; Blacutt, M.; Fogelman, N.; Gilson, T.A.; Stanforth, P.R.; Divin, A.L.; Bartholomew, J.B.; Filgueiras, A.; McKee, P.C.; Ash, G.I.; et al. Measurement of Motivation States for Physical Activity and Sedentary Behavior: Development and Validation of the CRAVE Scale. *Front. Psychol.* **2021**, *12*, 568286. [CrossRef] [PubMed]
- 150. Johnson, L.; Roemmich, J.N.; Flack, K.D. The reinforcing value and liking of resistance training and aerobic exercise as predictors of adult's physical activity. *Physiol. Behav.* **2017**, *179*, 284–289.
- 151. Johnson, L.; Roemmich, J.N.; Flack, K.D. Aerobic and resistance exercise reinforcement and discomfort tolerance predict meeting activity guidelines. *Physiol. Behav.* **2017**, *170*, 32–36.
- 152. Roemmich, J.N.; Epstein, L.H. Reducing Sedentary Behavior: Role in Modifying Physical Activity. *Exerc. Sport Sci. Rev.* **2001**, 29, 103–108.
- 153. Stults-Kolehmainen, M.A. Humans have a basic physical and psychological need to move the body: Physical activity as a primary drive. *Front. Psychol.* **2023**, *14*, 1134049. [CrossRef]
- 154. Stults-Kolehmainen, M.A.; Blacutt, M.; Bartholomew, J.B.; Gilson, T.A.; Ash, G.I.; McKee, P.C.; Sinha, R. Motivation States for Physical Activity and Sedentary Behavior: Desire, Urge, Wanting, and Craving. *Front. Psychol.* **2020**, *11*, 568390. [CrossRef]
- 155. Filgueiras, A.; Stults-Kolehmainen, M.A.; Boullosa, D.; Sinha, R.; Bartholomew, J.B.; McKee, P.; Gilson, T.A.; Keegan, R.; Viana, A.; Bueno, F.A.; et al. The CRAVE and ARGE scales for motivation states for physical activity and sedentarism: Brazilian Portuguese translation and single-item versions. *Front. Psychol.* **2023**, *14*, 1106571. [CrossRef]
- 156. Cheng, Z.; Taylor, A.; Stults-Kolehmainen, M.A.; Gerber, M.; Herold, F.; Ross, M.; Ash, G.; Kramer, A.F.; Zhao, M. Validation of the CRAVE-C scale in Chinese adults: A four-study examination of competing motivations for physical activity versus rest. *Front. Psychol.* **2024**, *15*, 1467949. [CrossRef]
- 157. Stults-Kolehmainen, M.A.; Gilson, T.A.; SantaBarbara, N.; McKee, P.C.; Sinha, R.; Bartholomew, J.B.; Boullosa, D.; Budnick, C.J.; Bueno, F.A.; Haughton, A.; et al. Qualitative and quantitative evidence of motivation states for physical activity, exercise and being sedentary from university student focus groups. *Front. Sports Act. Living* **2023**, *5*, 1033619. [CrossRef]
- 158. Stults-Kolehmainen, M.A.; Kilpatrick, M.W.; Barrows, A.H.; Granholm, K.M.; Shoenberger, V.E.; Parbhoo, K.J. Motivation To Move And Rest During Aerobic Exercise: Impacts of Exercise Intensity. *Med. Sci. Sports Exerc.* 2023, 55, 788.
- 159. Budnick, C.J.; Stults-Kolehmainen, M.; Dadina, C.; Bartholomew, J.B.; Boullosa, D.; Ash, G.I.; Sinha, R.; Blacutt, M.; Haughton, A.; Lu, T. Motivation states to move, be physically active and sedentary vary like circadian rhythms and are associated with affect and arousal. *Front. Sports Act. Living* **2023**, *5*, 1094288. [CrossRef] [PubMed]
- 160. Crosley-Lyons, R.; Do, B.; Hewus, M.; Dunton, G.F. An ecological momentary assessment study of affectively-charged motivational states and physical activity. *Psychol. Sport Exerc.* **2023**, *67*, 102423. [CrossRef] [PubMed]
- 161. Do, B.; Rhodes, R.E.; Kanning, M.; Hewus, M.; Dunton, G.F. Examining whether affectively-charged motivations predict subsequent affective response during physical activity: An ecological momentary assessment study. *Front. Sports Act. Living* **2022**, *4*, 1029144. [CrossRef]
- 162. Williams, D.M.; Dunsiger, S.; Ciccolo, J.T.; Lewis, B.A.; Albrecht, A.E.; Marcus, B.H. Acute affective response to a moderate-intensity exercise stimulus predicts physical activity participation 6 and 12 months later. *Psychol. Sport Exerc.* **2008**, *9*, 231–245. [CrossRef]
- 163. Rhodes, R.E.; Conner, M.T.; Williams, D.M. Conceptualizing and intervening on affective determinants of health behaviour. *Psychol. Health* **2019**, 34, 1267–1281.
- 164. Ponnada, A.; Wang, S.; Chu, D.; Do, B.; Dunton, G.; Intille, S. Intensive Longitudinal Data Collection Using Microinteraction Ecological Momentary Assessment: Pilot and Preliminary Results. *JMIR Form. Res.* **2022**, *6*, e32772. [CrossRef]
- 165. Arias-Carrion, O.; Caraza-Santiago, X.; Salgado-Licona, S.; Salama, M.; Machado, S.; Nardi, A.; Menéndez-González, M.; Murillo-Rodríguez, E. Orquestic regulation of neurotransmitters on reward-seeking behavior. *Int. Arch. Med.* **2014**, 7, 29. [CrossRef]
- 166. Flack, K.; Pankey, C.; Ufholz, K.; Roemmich, J.; Johnson, L. Genetic Variations in the Dopaminergic Reward System Are Associated with Exercise Reinforcement (P16-013-19). *Curr. Dev. Nutr.* **2019**, *3*, nzz050.P16-013. [CrossRef]
- 167. Huppertz, C.; Bartels, M.; Groen-Blokhuis, M.M.; Dolan, C.V.; de Moor, M.H.M.; Abdellaoui, A.; van Beijsterveldt, C.E.M.; Ehli, E.A.; Hottenga, J.-J.; Willemsen, G.; et al. The Dopaminergic Reward System and Leisure Time Exercise Behavior: A Candidate Allele Study. *BioMed Res. Int.* **2014**, 2014, 591717. [CrossRef]
- 168. Denise, J.V.D.M.; Fedko, I.O.; Hottenga, J.-J.; Ehli, E.A.; VAN DER Zee, M.D.; Ligthart, L.; VAN Beijsterveldt, T.C.E.M.; Davies, G.E.; Bartels, M.; Landers, J.G.; et al. Dopaminergic Genetic Variants and Voluntary Externally Paced Exercise Behavior. *Med. Sci. Sports Exerc.* 2018, 50, 700–708.

Nutrients 2025, 17, 1997 22 of 22

169. Robinson, T.; Berridge, K.C. The neural basis of drug craving: An incentive-sensitization theory of addiction. *Brain Res. Rev.* **1993**, *18*, 247–291. [CrossRef] [PubMed]

- 170. Robinson, T.; Berridge, K.C. The incentive sensitization theory of addiction: Some current issues. *Philos. Trans. R. Soc. B Biol. Sci.* **2008**, 363, 3137–3146. [CrossRef] [PubMed]
- 171. Robinson, T.E.; Berridge, K.C. Liking, wanting, and the incentive-sensitization theory of addiction. Am. Psychol. 2016, 71, 670–679.
- 172. Flack, K.D.; Ufholz, K.E.; Johnson, L.; Roemmich, J.N.; Buchowski, M.S. Inducing incentive sensitization of exercise reinforcement among adults who do not regularly exercise—A randomized controlled trial. *PLoS ONE* **2019**, *14*, e0216355. [CrossRef]
- 173. Flack, K.D.; Ufholz, K.; Johnson, L.; Roemmich, J.N. Increasing the Reinforcing Value of Exercise in Overweight Adults. *Front. Behav. Neurosci.* **2019**, *13*, 265. [CrossRef]
- 174. Morgan, D.; Liu, Y.; Roberts, D.C.S. Sensitization of the reinforcing effects of self-administered cocaine in rats: Effects of dose and intravenous injection speed. *Eur. J. Neurosci.* **2005**, 22, 195–200.
- 175. Moreland, J.; Flack, K.D.; Hays, H.M. Incentive sensitization for exercise reinforcement to increase exercise behaviors. *J. Health Psychol.* **2020**, *26*, 2487–2504.
- 176. Rhodes, R.E.; Dunton, G.F.; Crosley-Lyons, R. Affective Response During Real-World Physical Activity as an Intervention Mediator. *Exerc. Sport Sci. Rev.* **2023**, *51*, 140–149.
- 177. Houghton, J.; Jones, A.; Lane, K.; Hardeman, W.; Naughton, F. A systematic review of just-in-time adaptive interventions (JITAIs) to promote physical activity. *Int. J. Behav. Nutr. Phys. Act.* **2019**, *16*, 1–21.
- 178. Barrows, A.; Cosme Ramos Prado, R.; Ferrara, A.; Kilpatrick, M. State-Based Motivation and Exercise: Practitioner Guidance for Increasing Exercise Engagement. *ACSM Health Fit. J.* 2025, *in press*.
- 179. Sallis, J.F.; Cervero, R.B.; Ascher, W.; Henderson, K.A.; Kraft, M.K.; Kerr, J. An ecological approach to creating active living communities. *Annu. Rev. Public Health* **2006**, 27, 297–322. [CrossRef] [PubMed]
- 180. Sallis, J.F.; Floyd, M.F.; Rodríguez, D.A.; Saelens, B.E. Role of Built Environments in Physical Activity, Obesity, and Cardiovascular Disease. *Circulation* **2012**, *125*, 729–737. [CrossRef] [PubMed]
- 181. Koorts, H.; Eakin, E.; Estabrooks, P.; Timperio, A.; Salmon, J.; Bauman, A. Implementation and scale up of population physical activity interventions for clinical and community settings: The PRACTIS guide. *Int. J. Behav. Nutr. Phys. Act.* **2018**, *15*, 1–11. [CrossRef]
- 182. Curran, G.M. Implementation science made too simple: A teaching tool. Implement. Sci. Commun. 2020, 1, 27. [CrossRef]
- 183. Rubin, R. It Takes an Average of 17 Years for Evidence to Change Practice—The Burgeoning Field of Implementation Science Seeks to Speed Things Up. *JAMA* 2023, 329, 1333–1336. [CrossRef]
- 184. World Health Organization. *Healthy Workplaces: A Model for Action: For Employers, Workers, Policy-Makers and Practitioners;* World Health Organization: Geneva, Switzerland, 2010.
- 185. Cuddihy, T.F.; Tomson, L.M.; Barwais, F. Physical activity, sedentary behavior and total wellness changes among sedentary adults: A 4-week randomized controlled trial. *Health Qual. Life Outcomes* **2013**, *11*, 183.
- 186. Suggs, L.S.; Blake, H.; Malik, S.H. A systematic review of workplace health promotion interventions for increasing physical activity. *Br. J. Health Psychol.* **2013**, *19*, 149–180.
- 187. Whitsel, L.P.; Ablah, E.; Pronk, N.P.; Anderson, R.E.; Imboden, M.T.; Hosking, M. Physical Activity and Brain Health: Integrating the Evidence Base into Workplace Health Promotion. *Am. J. Health Promot.* **2024**, *38*, 586–589. [CrossRef]
- 188. Pronk, N.P.; Whitsel, L.P.; Ablah, E.; Anderson, R.E.; Imboden, M. Building a culture of healthy living in the workplace. *Prog. Cardiovasc. Dis.* 2025, *in press.* [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.