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Abstract: Obesity and its related comorbidities continue to be a primary public health
concern, especially in the United States (US). Such comorbidities include the top two causes
of death in the US: cardiovascular disease and cancer. Obesity is also associated with several
other chronic conditions that affect millions of adults and children, including diabetes,
kidney, and liver disease. Weight loss has long been considered the front-line treatment
and prevention strategy for these conditions. Lifestyle approaches, including dietary
modification and increasing physical activity, are typically recommended for individuals
with obesity, although rates of achieving and maintaining clinically meaningful weight loss
remain low. Understanding the root causes of minimal weight loss and weight regain has
been a prime focus among many researchers over the past several decades. The present
review addresses several advantages of prioritizing exercise as an obesity and chronic
disease treatment. We discuss current challenges when exercise is the primary treatment
strategy, including physiological parameters that may influence the efficacy of exercise in
addition to behavioral and environmental factors that play a role in exercise adherence and
adoption. We also explore strategies and principles that, although not commonly utilized in
an obesity/chronic disease treatment setting, may be applied and adapted to fit this model.

Keywords: obesity; weight loss; exercise; adoption; chronic diseases

1. Introduction
1.1. Lifestyle Obesity Treatments: Potential Advantages of Exercise

Obesity prevalence in the U.S. continues to be a growing concern. Most recent Center
for Disease Control (CDC) data demonstrates 23 states have obesity rates exceeding 35%,
while no states reached a 35% prevalence in 2013 [1]. Although new anti-obesity medica-
tions (AOMs) are demonstrating promise, AOMs are not accessible for all individuals due
to issues with cost, insurance coverage, side effects, contraindications, and the need for long-
term therapy. Thus, lifestyle obesity interventions are still considered first-line treatments.
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Such lifestyle approaches to obesity treatment are centered on reducing energy intake (EI)
and increasing physical activity (PA), typically producing modest (5-10%) weight loss
over 3—6 months [2—4]. Energy-restricted diets have been employed for decades, with
some individuals seeing great weight loss success; however, adherence to energy-restricted
diets can be difficult to sustain beyond 1-4 months, and as a result, some individuals
are unable to achieve clinically meaningful weight loss with this approach [5-7]. There
are several reasons some individuals struggle with adherence to energy-restricted diets,
including environmental determinants (lack of access to healthy foods or an abundance
of non-healthy foods, social cues/expectations), or individual factors (stress, emotions,
cravings, or general preferences) [7-10]. For some individuals, chronic food restriction
may produce psychological consequences such as eating binges once food is available,
dysphoria, and distractibility, all of which limit weight loss [11]. Even when weight loss is
achieved, one-third to two-thirds of weight lost by energy restriction is typically regained in
1 year, and almost all lost weight is typically regained in 5 years for up to 90% of adults [12].
Such weight cycling can produce metabolic issues, including glucose and insulin dysreg-
ulation, and cardiac dysrhythmias [13-15]. These negative effects and difficulties are not
universal, and strategies have been developed to promote healthy diet-induced weight loss,
including counseling with a registered dietitian, support groups, individually tailored meal
plans, and additional behavioral training [16]. However, for some people, these additional
strategies may not be available or preferable, and thus, focusing on exercise as the primary
treatment for obesity and related comorbidities may be more appealing. In fact, 63% of U.S.
adults who attempt weight loss report engaging in exercise as their primary strategy [17].
An additional benefit of exercise-focused weight loss interventions is that almost all of
the weight that is lost is fat mass, whereas 15-30% of weight loss from energy restriction
interventions can be lean mass [18]. Thus, an equivalent weight loss produced by exercise
could have greater health benefits than that produced by diet alone. However, the response
variability to exercise is wide, and special considerations are needed when employing
exercise as a weight loss and chronic disease prevention strategy.

1.2. Energy Compensation Limits Weight Loss in Response to Exercise

The notion that exercise is a health-promoting activity is well recognized across pro-
fessional organizations, with numerous consensus statements focusing on the benefits of
exercise for obesity treatment [19] and related comorbidities such as cancer [20], Type II
diabetes [21], cardiovascular disease [22,23], chronic pain [24], and fatty liver disease [25].
Although improvements in these diseases can be obtained through exercise independent
from weight loss, such benefits are substantially improved when clinically meaningful
(>5-10%) weight loss is also achieved [2]. Despite the universal recommendations for
exercise in obesity and its comorbidities, exercise rarely results in the amount of weight
loss expected based on the energy expended in the exercise program [26,27]. Well-designed
and tightly controlled longitudinal trials have consistently demonstrated that weight loss
from exercise alone is only 30-40% of that predicted based on the measured energy ex-
penditure of exercise sessions [28-33]. The discrepancy between the amount of weight
loss predicted from exercise-associated energy expenditure and the observed weight loss
has been termed “energy compensation”, driven by various “compensatory mechanisms”
that function to maintain energy homeostasis by either promoting greater EI or conserving
energy (reducing total daily energy expenditure, TDEE) [34,35]. Such mechanisms are
considered evolutionarily conserved, once serving as a desirable trait to conserve energy for
vital bodily functions, such as reproduction, during times of food shortage [26,27,34]. These
traits, however, are a detriment in today’s environment, resisting intended weight loss and
weight loss maintenance. Mechanisms contributing to these compensatory increases in
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EI or reductions in TDEE are complex and vary among individuals, contributing to the
response heterogeneity observed with exercise-induced weight loss [30,36]. Disagreement
also exists among scientists, with some proposing that energy compensation can be negated
by large doses of exercise (3000 kcal /week) [33], while others point to greater exercise doses
resulting in larger compensatory responses [28]. Other large trials have reached contrasting
conclusions regarding the compensatory responses elicited from aerobic exercise. For
instance, the Midwest Exercise Trial 2 (MET-2) demonstrated that “compensators” (indi-
viduals with <5% weight loss) decreased non-exercise physical activity (NEPA), whereas
“non-compensators” (individuals with >5% weight loss) increased NEPA across a 10-month
aerobic exercise intervention [37]. This is in contrast to the more recent EEMECHANIC
trial where changes in EI (measured via doubly labeled water) increased 865 kcal /week
when exercising to expend ~1760 kcal/week. At the same time, resting energy expenditure
only slightly (non-significantly) increased by 135 kcal/week with virtually no changes
in NEPA [38]. It is thus apparent that more research into the compensatory responses to
exercise, mechanisms controlling these responses, sources of individual variability, and
strategies to ameliorate energy compensation are needed if we are to understand how to
optimize and personalize exercise for the treatment of obesity and chronic diseases.

1.3. Enhancing Effectiveness of Exercise in the Treatment of Obesity and Chronic Diseases

Exercise is commonly defined as “activity requiring physical effort, carried out to
sustain or improve health and fitness.” In this way, not all activities requiring physical
effort are considered “exercise,” but if the purpose is to improve/sustain health and fitness,
the possibilities of what could be considered exercise are extensive [39]. Exercise scientists
can thus modify many variables such as intensity (measured via heart rate or % of max
effort), mode (aerobic to resistance exercise), frequency (sessions per week), duration of
exercise sessions or duration of an intervention, or timing of exercise. The numerous
combinations of these parameters and others give us the ability to create a wide variety
of exercise treatments that produce substantially different physiological adaptations and
require different considerations in terms of implementation into practice guidelines [40].
The purpose of this narrative review is not to outline how exercise is beneficial for obesity
and related comorbidities, rather, we will delve into how exercise can be structured and
implemented to improve its utility among individuals with obesity and chronic diseases.
In this way, we can divide the “how to make exercise more effective” question into two
aspects: (1) what physiological variables related to the exercise prescription can be targeted
to make it a more effective weight loss treatment? and (2) How can we make exercise
recommendations more translatable into practice, i.e., improve exercise adherence and
adoption? In the sections that follow, we review several studies that may be applied to
an obesity and chronic disease treatment perspective. Many of these trials and concepts
reviewed have not been applied to these disease states; thus, an important future research
focus should be testing these targets and concepts through clinical trials utilizing specifically
participants with obesity or these certain conditions.

2. Physiological Targets to Improve Efficacy of Exercise in Promoting
Improvements in Obesity and Associate Chronic Disease Outcomes
2.1. Considering the Physiological State in Which Exercise Is Performed: Post-Absorbative
vs. Post-Prandial

The post-absorbative state (most commonly referred to as the fasted state) presents
6-12 h after a meal and is characterized by low levels of available carbohydrates (blood
glucose, muscle glycogen) and insulin [41]. This is in contrast to the post-prandial state
(most commonly referred to as the fed state), which is the hours immediately after eating.
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The lack of available carbohydrates promotes a shift in metabolic processes to more readily
oxidize free fatty acids (FFAs) for energy, while low levels of blood insulin further enable
lipolysis to ensue [42]. The presence and activity of many hormones are also very different
in these opposing states, including cortisol, catecholamines, leptin, and ghrelin, issuing very
different metabolic responses to environmental stimuli [43]. With the greater propensity
to oxidize FFA in the fasted state, there has been considerable attention on fasted exercise
training to promote FFA oxidation and improve oxidative capacity [44,45]. This has been
demonstrated in acute exercise, where FFA oxidation was upregulated during and after
fasted exercise compared to post-prandial (aka, fed state) exercise, leading to many theoriz-
ing that fasted exercise training would be more beneficial for weight management [46-50].
A recent review has even concluded that acute fasted exercise can create a larger acute
energy deficit and thus could be a powerful weight loss intervention [51].

Although acute studies are helpful in understanding the underlying physiology and
formulating hypotheses, longitudinal trials are needed to evaluate the utility of fast exercise
training in promoting weight loss and improving chronic conditions associated with obesity.
To our knowledge, only four short-term trials (4-6 weeks) have evaluated the efficacy of
fasted exercise compared to exercise in the post-prandial state in a longitudinal nature,
with three of them demonstrating significant improvements in a variety of FFA oxidative
markers [47-50] (Table 1). Importantly, only one of these studies employed a dose of
exercise aligned with current guidelines for weight management, and all of the studies
were too short in duration to demonstrate clinically significant changes in weight loss or
other markers of chronic disease. An additional study included in Table 1 aimed to quantify
El and EE for two days after an acute bout of exercise (75-min run) performed either in the
fasted or post-prandial state [52]. This trial, similar to the 4-6 week interventions, did not
detect a difference in EI or TDEE in the days after fasted exercise compared to fed exercise.
Longer term trials (6+ months) are thus needed to determine if greater fat loss can ensue
from fasted exercise training. If a significantly greater fat mass loss when exercising in the
fasted state compared to an identical exercise prescription performed in the fed state can
be demonstrated, this would represent an innovative method that may be employed to
improve the weight loss response to exercise.

Table 1. Trials comparing fasted vs. fed exercise training on weight change and muscle biochemistry.

Study

Intervention

Weight Loss

Fat/Carbohydrate
Oxidation Markers

Schoenfeld, et al. 2014 [47]

Aerobic exercise, 60 min,
3x /week plus
dietary restriction.

No difference between fasted
and fed groups.

None.

Van Proeyen, et al. 2010 [48]

Aerobic exercise, 30-60 min,
4x week, 6 weeks plus
hyper-energetic diet.

Fasted exercise attenuated
weight gain.

Fasted exercise increased FFA
oxidative markers (AMPK,
CD36, CPT1).

Van Proeyen, et al. 2011 [50]

Aerobic exercise, 60-90 min,
4x /week, 6 weeks plus
isoenergetic diets.

None.

Fasted exercise increased lipid
breakdown, maximal fat
oxidation, increased FFA
oxidative markers

(CS, B-HAD).

Gillen, et al. 2013 [49]

Interval training aerobic
exercise, 20 min, 3 x /week,
6 weeks.

No difference between fasted
and fed groups.

Fasted exercise increased FFA
oxidative markers
(CS, B-HAD).

Blannin, et al. 2024 [52]

75-min run, energy intake and
expenditure assessed for
2 days after.

No difference in energy intake
or expenditure between fasted
and fed groups.

No difference in interstitial
glucose between fasted and
fed groups.
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2.2. Considering the Time-of-Day Exercise Is Performed

The time of day that exercise is performed may impact weight loss and energy balance
regulation [53]. Two observational studies have found preliminary evidence that morn-
ing physical activity is associated with lower body weight and lower body mass index
(BMI) [54,55]. Similarly, Creasy et al. found that successful weight loss maintainers (i.e.,
individuals maintaining a weight loss of >30 lbs. for >1 year) engaged in 2-to-3 fold more
moderate-to-vigorous physical activity (MVPA) in the morning (within 3 h of waking)
compared to controls with and without obesity [56]. In a secondary analysis of the Midwest
Exercise Trial 2, Willis et al. examined the effect of time of day of exercise on weight loss and
energy balance [57]. Participants were categorized based on the time of day in which they
completed the majority of their exercise sessions as follows: morning exercisers: >50% of
sessions completed between 7:00 and 11:59 am; (n = 21, 70% of exercise sessions completed
in the morning) and evening exercisers: >50% of sessions completed between 3:00 and
7:00 p.m.; (n = 25, 66% of exercise sessions completed in the evening). Morning exercis-
ers lost significantly more weight than evening exercisers at 10 months (7.2 £ 1.2% vs.
—2.1 & 1.0%). Interestingly, there were no differences between morning and evening
exercisers in baseline characteristics, exercise adherence, or exercise energy expenditure
(528 £ 105 vs. 490 +£ 103 kcal/session, respectively). The differences in weight loss ap-
peared to result from differential changes in EI and non-exercise expenditure (i.e., TDEE
not associated with exercise training). Morning exercisers exhibited slight decreases in EI,
while evening exercisers increased EI (—63 & 444 vs. 121 + 484 kcal/d, non-significant). In
addition, morning exercisers exhibited slight increases in non-exercise expenditure com-
pared to evening exercisers (28 £ 446 vs. —105 £ 510 kcal/d, non-significant). However,
these results could have been affected by confounders as participants self-selected exercise
times. In addition, that study only included young adults (18-30 years), which limits the
generalizability of the study.

Only a few short-term (<12 week) prospective studies have examined the effects
of exercise timing on changes in body weight or fat mass in adults with overweight or
obesity. Alizadeh et al. randomized women to 6 weeks of supervised morning or after-
noon aerobic exercise [58]. The exercise dose was modest (90 min/wk). In a completers’
analysis, body weight significantly decreased in morning exercisers compared to after-
noon exercisers (—1.6 vs. —0.3 kg). This difference in weight loss appeared to be due to
changes in El as self-reported EI tended to decrease more in morning exercisers compared
to afternoon exercisers. Arciero et al. also found that women who completed 12 weeks of
exercise in the morning lost more fat mass (—1.0 &£ 0.2 kg) compared evening exercisers
(—0.3 £ 0.2 kg) [59]. However, no differences in fat mass loss were observed for men.
In a pilot and feasibility study, Creasy et al. found that individuals randomized to
2000 kcal/wk of morning aerobic exercise training lost —0.9 &£ 2.8 kg, and evening exercis-
ers lost —1.4 & 2.3 kg with no significant differences between groups [60]. Two additional
recent trials also found that 12 weeks of morning and evening exercise resulted in no
significant differences in weight loss [61,62]. In contrast, Di Blasio et al. found that post-
menopausal women participating in a 12-week walking program lost more fat mass if they
exercised in the evening compared to the morning (—1.7 kg vs. —0.2 kg) [63]. Mancilla et al.
also found that evening exercise led to greater reductions in fat mass compared to morning
exercise after 12 weeks of training [64]. Thus, these short-term studies focused on the effect
of exercise time of day on weight and fat mass have mixed results.

The lack of consistent findings may be due, in part, to the limitations of these prior
studies and different exercise training variables between studies. For example, these
studies have recruited heterogeneous populations, and it is possible that age, body size,
sex, and other participant characteristics influence the effect of exercise time of day
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on weight loss. In addition, the duration of the exercise interventions (<12 weeks)
may have been too short to produce clinically meaningful weight loss for the dose
employed [29,30]. Further, objective measures of compensatory mechanisms that affect
energy balance regulation were not measured; thus, the effect of morning versus evening
exercise on compensatory mechanisms remains unknown. Finally, some of these studies
used exercise prescriptions that do not align with current exercise guidelines for weight
loss [65]. Given the methodological limitations of these prior studies, there is a need for
fully powered, randomized trials of longer durations and with an adequate dose of exercise
to determine the effect of exercise timing on body composition [53].

2.3. Considering When to Initiate Exercise: Before or After Energy-Restricted Weight Loss

Most behavioral weight loss programs recommend concurrently decreasing EI and
increasing physical activity /exercise. However, many individuals with overweight or
obesity are unable to achieve and sustain high levels of exercise with this simultaneous
approach [66-69]. An alternative strategy, which has not been widely considered, is
to deliver diet and exercise interventions sequentially. Delaying the start of an exercise
intervention until after an initial period of diet-induced weight loss could result in enhanced
exercise adherence and improved long-term weight loss because (1) perceived enjoyment of
exercise may be greater at a lower body weight [70], (2) risk of exercise-related injuries may
be reduced after weight loss [71]. (3) Joint pain may be reduced, and thus exercise tolerance
may be greater after weight loss [72], and (4) focusing on one behavioral change at a time
may lead to greater long-term adherence to both diet and exercise behaviors [73,74].

However, two studies have suggested that the timing of exercise initiation does not
impact weight loss. A trial by Goodpaster et al. enrolled 130 adults with class II obesity or
higher (BMI > 35 kg/m?) in a 1-year intensive lifestyle intervention consisting of diet and
physical activity. Participants were randomized to either initial physical activity (diet and
physical activity for the entire 12 months) or delayed physical activity (identical dietary
intervention but with physical activity delayed for 6 months). Both groups achieved
significant weight loss at 12 months (initial: 12.1 kg (95% CI, 10.0-14.2) vs. delayed:
9.9 kg (95% (I, 8.0-11.7), and there were no significant differences between groups in
weight loss, waist circumference, blood pressure or insulin resistance [75]. Similarly, a study
by Catenacci et al. enrolled 170 adults with overweight or obesity (BMI 27-42 kg/m?) into
an 18-month behavioral weight loss program consisting of a reduced-energy diet, exercise,
and group-based support [76]. Participants were randomized to either a standard group
which received a supervised exercise program (progressing to 300 min/wk of moderate-
intensity aerobic exercise) during months 0 to 6, or a sequential group, which was asked to
refrain from changing exercise during months 0 to 6 and received the supervised exercise
program during months 7 to 12. On completion of supervised exercise, both groups were
instructed to continue 300 min/wk of moderate-intensity exercise for the study duration. At
18 months, both groups lost weight (standard: —6.9 + 1.2 kg; sequential: —7.9 & 1.2 kg),
and there were no differences between groups in changes in weight, fat mass, lean mass,
physical activity, or attrition. Combined, these studies suggest that both immediate and
delayed exercise initiation within a behavioral weight loss program resulted in clinically
meaningful weight loss and improvements in health across a range of BMI; thus, the timing
of exercise initiation can be personalized based on patient preference.

2.4. Considering Mode of Exercise

Aerobic exercise is characterized by its extended and continuous duration (e.g.,
10—40 min) at a low to moderate intensity with large muscle groups that challenge the
delivery of oxygen to the active muscles [77]. This type of exercise has been at the forefront
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of clinical recommendations since Dr. Kenneth Cooper’s 1968 book “Aerobics,” which
set the stage for exercise physiology research and integration into clinical practice as a
health-promoting activity [78]. Since this early work, aerobic exercise has consistently
demonstrated profound effects on various markers of chronic disease [79-82]. Chronic
physiological adaptations to aerobic exercise include greater blood and stroke volume,
greater cardiac output and perfusion, lower resting heart rate, improved ejection fraction,
improved fatty-acid oxidative capacities, greater metabolic efficiency, and many others [83].
Common aerobic exercises, such as brisk walking, running, and cycling, are relatively sim-
ple to implement and require little specialized knowledge, helping make aerobic exercise
the most common form of exercise both in terms of public health engagement and clinical
recommendations. Also, walking is the most preferred mode of exercise for people with
obesity [10].

Recent years have seen an increase in research focusing on strength /weight training ex-
ercises (also referred to as resistance training) involving the use of high-resistance machines
or other external weights with specific movements limited to a few repetitions (generally
less than 20) to reach or approach muscular exhaustion [83]. If considering a continuum
where physical activities are either highly oxidative (low intensity, long duration) or highly
glycolytic (short bursts, high intensity), resistance and aerobic exercise would occupy the
opposite ends of this spectrum. Thus, the metabolic and physiological adaptations to
resistance training have the potential to vary greatly from those of aerobic exercise. Despite
this, more literature is demonstrating resistance training can have similar improvements
in areas such as lowering blood pressure, improving insulin sensitivity and blood lipid
profiles, decreasing the cardiovascular demands to exercise, and improving functional
capacity [84]. Resistance training has demonstrated promising effects on health benefits for
treating diseases such as cardiovascular disease [85,86], cancer [87], diabetes [88], and liver
disease [89]. Resistance training may be a more appropriate exercise mode for individuals
with factors such as obesity, arthritis, low back pain, and physical disabilities that make
continuous aerobic activity difficult. By using machines that provide external resistance
with controlled movements, even those confined to a wheelchair or a walker can perform
some types of resistance training [88]. However, certain barriers present with resistance
exercise training, such as the specialized knowledge and equipment compared to aerobic
exercise training that may dissuade some individuals from resistance training. Supervision
by a qualified professional and proper program design has been deemed the key elements
of an effective resistance training program [84,90]. If these barriers can be overcome, resis-
tance exercise can serve as an effective treatment for chronic diseases and weight loss for
some individuals.

2.5. Considering the Intensity of Exercise Sessions

Exercise intensity can broadly be defined as the level of difficulty or exertion during
exercise. Exercise intensity can be quantified (e.g., % heart rate max, % maximal oxygen
uptake, % l-repetition max, rating of perceived exertion) and qualified (e.g., light, moderate,
vigorous) in dozens of ways, often dependent on the mode of exercise (e.g., aerobic or
resistance). For aerobic exercise, the American College of Sports Medicine provides the
following intensity categories based on percent of maximum heart rate (%HRmax): very
light < 57%, light 57-63%, moderate 64-76%, vigorous 77-95% and maximal > 96% [91].
Traditionally, moderate-intensity aerobic exercise has been the most studied, but the last
20 years have seen a shift to studying higher-intensity exercise. This is likely because, in
general, exercising at a greater intensity is associated with greater health benefits [92]. In
terms of comparing moderate to high intensity, multiple meta-analyses have found high
intensity to be superior in terms of improving fat mass loss and body composition [93,94]
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and cardiorespiratory fitness [93-95]. Even in analyses that show comparable health effects,
high-intensity exercise may take up to 40% less time [96]. This is vital, as time is often
reported as a major barrier to exercise in those with obesity [10]. While potentially superior
for certain outcomes, moderate-intensity aerobic exercise is still a viable option to improve
waist circumference and body fat, especially when performed at least 150 min per week [97].
Therefore, the choice of whether to perform moderate or high-intensity exercise should
likely be person-dependent and consider contextual factors such as time, motivation,
resources, and preference.

A great deal of attention has been spent on studying the health benefits of moderate-
to-high-intensity exercise, but perhaps equally important is light-intensity physical activity.
During waking hours, the majority of time is not spent performing moderate-to-high
intensity exercise rather, it is performing daily activities or engaging in sedentary behavior.
While attaining physical activity recommendations should continue to be emphasized,
we must acknowledge that despite efforts over the past three decades, the proportion of
adults meeting physical activity guidelines remains low (24.2% of U.S. adults in 2020) [98].
Performing higher volumes of physical activity is associated with reduced mortality risk,
regardless of intensity [99]. Thus, incorporating more movement and reducing sedentary
time should be a public health focus. An example of this may be the inclusion of “exercise
snacks” or short bouts of purposeful exercise (e.g., stair climbing) interspersed throughout
the day [100]. A scoping review in adults and older adults found that exercise snacks
were feasible and may be associated with reduced all-cause mortality and reduced risk of
major cardiovascular events [101]. While research on exercise snacks is in its infancy, they
may serve as a viable alternative to exercise occurring in a more formal setting such as a
fitness center.

For resistance exercise, intensity is measured by load or the amount of weight used
in an exercise, typically in relation to a person’s one repetition maximum (1-RM) [102].
The intensity of resistance exercise is dependent on whether the goal is to increase muscle
strength, hypertrophy, power, and/or endurance. For example, if maximizing muscle
strength is the goal, resistance exercises should be performed at >60% 1-RM in individuals
unaccustomed to resistance exercise and >80% 1-RM for those with experience [102,103].
While resistance training alone benefits body composition, a recent meta-analysis compared
seven types of exercise (including aerobic only, resistance only) at various intensities and
found that for improving lean body mass and decreasing abdominal fat, combining high-
intensity aerobic (i.e., >75% heart rate max) with high-intensity resistance (>75% 1-RM)
training was best [104]. While this multi-modal training does not always lead to outcomes
that are superior to a single modality [105], they may be more time-efficient in terms of
meeting physical activity guidelines, which have both an aerobic and strength component.

High-intensity functional training (HIFT) is a form of exercise that combines aerobic
and resistance exercises, with an emphasis on movements that replicate real-life task de-
mands such as carrying groceries or climbing stairs [106]. HIFT has been shown to improve
strength, power, speed, endurance, and agility in healthy males [107] and, when compared
to traditional circuit training, improve body composition in females [108]. Compared to a
combined aerobic plus resistance training program performed at a moderate intensity, HIFT
participants spent less time exercising but reported similar levels of enjoyment and greater
intentions to continue to exercise [109]. HIFT may be even more effective at improving body
composition when combined with time-restricted eating. In a three-armed study comparing
time-restricted eating, HIFT, and a combined HIFT plus time-restricted eating, those in the
combined group observed greater decreases in fat mass compared to the other groups [110].
Given the range of benefits following HIFT participation, it’s not surprising that as of 2023,
HIFT was the sixth most popular fitness trend in the U.S. With the time-efficient nature of
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combining aerobic and resistance exercise, HIFT is another option to combat the common
barrier of lack of time to exercise.

3. Adoption of Exercise-Translating from Structured Interventions to
Real-World Behavior Change

3.1. Applying the Socioecological Model

An overarching premise to consider is that an exercise intervention that cannot be
maintained will not be a very effective treatment for overweight/obesity and chronic
diseases. Thus, it is important to understand factors that can promote adherence to an
exercise intervention. The socioecological model provides a comprehensive framework for
understanding how various levels of influence—from individual factors to broader envi-
ronmental and policy-related factors—affect health behaviors like exercise adherence [111].
This framework emphasizes that behavior is shaped not only by personal choices but also
by the social, community, and environmental contexts in which individuals live. Applying
the Socioecological Model to exercise adherence is increasingly recommended for promot-
ing long-term weight loss and improving chronic disease outcomes, as it recognizes that
interventions must target multiple levels of influence to be effective. However, improv-
ing exercise adherence across all levels of the socioecological model presents unique and
multifaceted challenges, requiring a focus on both individual factors and environmental
determinants [112].

Key personal characteristics, such as motivation, self-efficacy, exercise history, so-
cial support, and stage of change/habit, are critical determinants of exercise engage-
ment [10,113,114]. Research indicates that women are often motivated by social factors,
while men are typically driven by perceived health benefits [112,115]. Despite these differ-
ences, exercise initiation and adoption are often cyclical, with engagement fluctuating in
response to varying motivational inputs [116]. Social support is a key social determinant of
exercise adherence and can significantly influence activity levels, with family, coworkers,
and community support all playing potentially meaningful roles in improving exercise
engagement [112,117]. The relationship between exercise and social support is dynamic,
evolving over time as individuals progress through different stages of health behavior
change [115]. Time constraints, a common barrier to regular exercise, can be mitigated by
establishing a “time hierarchy” that prioritizes exercise despite stressful and competing life
demands [118]. While interventions that target social support and time management have
shown promise, further research is needed to understand their impact on behavior change
in specific populations, particularly those in rural and food-insecure communities, where
barriers to both time and access to exercise facilities may be more pronounced [119-121].
This underscores the need for interventions that address both personal and environmen-
tal factors to foster long-term engagement and develop effective strategies that support
exercise adherence in underserved populations [122].

3.2. Theory, Targeting, and Tailoring Behavioral Interventions

Interventions based on theoretical frameworks and practical strategies have effec-
tively increased exercise adherence [123]. One such framework is social cognitive the-
ory (SCT), which promotes self-management behaviors, such as adopting a healthy
lifestyle, through self-regulating cognitive processes [124]. Evidence supports the ap-
plication of SCT in PA interventions, showing small-to-moderate effect sizes for PA
improvements [125,126]. Key SCT domains—social support, self-efficacy, self-regulation,
and outcome expectations—have been identified as significant mechanisms of action for
increasing PA, particularly among rural populations [127,128]. Interventions that incor-
porate community engagement strategies have been shown to improve health behavior
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outcomes, including social support and self-efficacy, in underserved populations [129].
These findings highlight the importance of addressing both individual and environmental
determinants to foster long-term exercise adherence. More advanced models combine SCT
with dual-process theories, which incorporate constructs like environmental cues, affective
evaluations, and automatic behavioral impulses [130,131].

Building on the need for targeted theoretical frameworks, the selection and combina-
tion of effective behavior change techniques (BCTs) are crucial for enhancing the efficacy of
interventions aimed at improving exercise adherence [132]. Michie et al. emphasize that
BCTs, when strategically chosen and tailored to the specific needs of the target population,
can significantly improve health-related behaviors, including exercise [133]. Through tai-
loring and taking into account personal preferences, needs, and environmental context,
interventions can increase the likelihood of successfully increasing exercise adherence [134].
Short message service (SMS) or text messaging has increasingly demonstrated promise as
a delivery vehicle for improving exercise behaviors by providing personalized support and
encouragement [135]. Additionally, gamification—the use of game elements in non-game
contexts—is an encouraging modality to promote and change exercise behaviors [136].
Further research is needed to understand how the use of SMS-based BCT and/or gamified
interventions can address the unique challenges faced by diverse populations, includ-
ing individuals of varying ages, socioeconomic backgrounds, and regions, ensuring that
interventions are tailored to meet the specific needs and barriers of each group [137].

Human-centered design (HCD), or design thinking, offers another promising ap-
proach by focusing on the behaviors, needs, and experiences of individuals, ensuring that
interventions are both relevant and sustainable [138]. HCD's iterative process of empathy,
prototyping, and testing facilitates the development of tailored solutions that are not only
feasible but also resonate with the target population [139]. Applying HCD principles to
exercise adherence and adoption enables the creation of strategies that address varying
levels of readiness for change, resource access, and personal barriers to physical activity,
making the interventions more adaptable and effective for diverse populations [140]. Using
HCD principles, interventions can be better tailored to the specific needs and preferences
of the target population.

3.3. Motivation and Exercise Adherence

Research has identified several motivational factors that influence exercise adher-
ence [114,141]. Intrinsic motivation, where individuals engage in exercise for the enjoy-
ment, challenge, or personal satisfaction it provides, plays a critical role in long-term
adherence [142]. Younger adults, in particular, who find exercise personally fulfilling are
more likely to maintain a regular routine [143]. In contrast, extrinsic motivation, driven by
external rewards like praise or appearance concerns, can undermine long-term adherence,
especially when those rewards are no longer present [144].

The intrinsic motivation to exercise has been objectively quantified in the literature
by assessing one’s reinforcing value of exercise, a measure of how much an individual
wants to work for exercise [145-148], and subjectively, with survey-based measures of
wanting or desiring to move and exercise [149]. Research by Flack et al. has demonstrated
the reinforcing value of a specific mode of exercise, such as resistance or aerobic training,
is a stronger predictor of participation than simply liking the activity [150], while in a
subsequent trial, Flack and colleagues found that exercise reinforcement was associated
with more frequent physical activity and meeting activity guidelines [151]. These findings
demonstrate the reinforcing value of exercise as a primary determinant in the choice to
exercise and, thus, underscores the importance of such intrinsic motivation in exercise
adherence [152].
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The aforementioned motivational constructs have typically been considered from
a trait perspective, whereas motivation is viewed as relatively stable and difficult to
change [153]. Motivation to move may even be a classic drive, similar to hunger or the
need for rest. In other words, a lack of movement results in internal tension to ambulate,
which is only resolved when the behavior is consummated. This may be altered for those
with obesity, such that they have weak urges to move but very strong urges to be seden-
tary [35,153]. Such a prospect necessitates that motivation also be considered as a construct
that changes frequently, just like hunger or appetite (or appetence, which is the fluctuating
desire for physical activity). Indeed, attention has turned to the idea of motivational states
for physical activity, exercise, and sedentary behaviors, including sleep [154]. In short,
motivation for behavior can change quickly, even in just a few minutes. This has been
exhibited with changes observed in the desire to move with a variety of activities, including
maximal exercise or periods of rest [149], short bursts of activity [155], exercise training
sessions [156], or even just talking about exercise [157]. Stronger exercise intensities have
a greater impact on motivation state [158]. There is also a circadian effect, whereas for
most people, the desire to move peaks after 3 pm [159,160]. Motivation states also vary
between apparently healthy and clinical populations [156]. Motivation states have typically
been described as weak (desires, wants) to strong (urges, cravings), often with a feeling of
tension, which might be positive (groove) or negative (urges to move when unwanted);
thus, they have been described as “affectively-charged motivation states” (ACMS).

Importantly, ACMS during exercise has been shown to predict salient exercise be-
havioral factors, such as stage of change [149] and PA intention [159]. They also predict
affect/emotion in subsequent training sessions [161]. This is important as affective re-
sponses to exercise predict future exercise engagement [162]. Motivation and affect-based
models, such as the affect health behavior framework [163], include ACMS and expand
the idea to highlight the role of dread for exercise, ostensibly common for those with
obesity who have had poor exercise experiences. Dread and other aversions for exercise,
or movement more broadly, have been contrasted against wants/desires/cravings in the
WANT model (Wants and Aversions for Neuromuscular Tasks), which blends approach
and avoidance motivation for physically active and inactive behaviors [154]. There is
limited data linking affectively-charged motivations to actual behavior, with the exception
of Crosley-Lyons [160], who found those with higher ACMS in the morning exhibited
about 28 extra minutes of moderate-to-vigorous exercise later in the day. Further work
is ongoing [164], and there is a need for data in populations with obesity, though data in
limited student populations indicates that motivation states are not related to BMI [149].

3.4. Interventions to Increase Exercise Motivation

The reinforcing aspects of exercise are products of the central dopamine reward system,
eliciting a dopamine release to promote exercise as a reinforcing behavior [165]. Similar to
other behaviors that elicit a dopamine release and are thus considered highly reinforcing
(drugs of abuse, alcohol), certain genetic phenotypes are associated with dopamine release
to influence exercise reinforcement and behavior [166-168]. This indicates that certain indi-
viduals are more prone to realizing exercise as a reinforcing activity and, thus, interventions
aimed at increasing the reinforcing value of exercise may only be applicable to individuals
with certain genotypes, which complicates research in this area. Increasing the reinforcing
value of behavior is accomplished through “incentive sensitization”, which occurs when
repeated exposures increase the salience of a stimulus within the environment [169]. This
results in neuroadaptations that sensitize the dopamine reward system, thus increasing the
reinforcing value of the behavior [170,171].
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Several interventions aimed at increasing exercise reinforcement through the process
of incentive sensitization have been conducted with mixed results. One trial demon-
strated that low levels of exercise exposures (3 days/week for 6 weeks, either 150 or
300 kcal/session) reduced the reinforcing value of sedentary activities but did not signifi-
cantly increase exercise reinforcement [172]. A follow-up trial demonstrated that exercise
reinforcement can be significantly increased when exercise exposures are of greater volume
(5 sessions/week, 300 or 600 kcal/session for 12 weeks) [173], which is in line with the
dose-response relationship in developing drug abuse reinforcement [174]. This finding
was replicated in a similar high-dose intervention but extended, determining increases in
exercise reinforcement predicted an increased engagement in habitual physical activity
after the structured exercise intervention (via accelerometry) [175]. Taken together, these
results indicate that a high-dose exercise intervention can provide the necessary exposures
to exercise to sensitize the dopamine reward system to the reinforcing properties of exercise
(incentive sensitization). Importantly, this process of incentive sensitization can then, as
hypothesized, be an effective way to increase exercise engagement.

Interventions focusing on motivation and affect, specifically, affectively-charged mo-
tivation states, are currently being tested and show promise [176]. As one example, envi-
ronmental cues might prompt a person to exercise, and a person sensitive to this type of
stimulus might demonstrate a rise in desire or urge to move. Other environmental factors,
such as daylight, temperature, and music, also likely impact ACMS [157]. Also to consider
is the timing of exercise in relation to meals, as feeding results in lower motivation to
move initially, with a subsequent increase with additional fuel, and then a decline after
an hour [159]. Interventions could be tailored to the time of day when motivation states
are their highest [159,160]. Increasing the rewarding value of exercise for this population,
perhaps by considering individual preferences, theoretically should increase the liking and
thus the wanting of movement [154]. Particularly with vigorous exercise, the desire to
move reduces, and the desire to be sedentary increases [154,156,158]. With this in mind, it
may be ideal to implement exercise that is of moderate intensity to avoid quick movement
satiation and maintain exercise appetence. Thus, motivation states may also be an impor-
tant automatic compensatory response to exercise, which might limit the effectiveness of
some exercise interventions [35]. With all of this in mind, tracking motivation states may
help to optimize the timing of exercise sessions, taking advantage of motivation when it is
high, and intervening in motivation itself when it is low, possibly as part of a just-in-time
adaptive intervention [177] which may be a novel strategy to intervene via mobile technol-
ogy. Recent work by Dunton et al. and Barrows et al. provide additional theoretical and
practical applications of modifying motivation states to improve adherence [176,178].

3.5. Addressing Exercise Adherence and Maintenance at the Systems Level

The majority of research on promoting exercise has been focused on the individ-
ual level (i.e., a person’s motivations, barriers, facilitators). To promote long-term exer-
cise, however, there is a recommendation for interventions to target not just individuals
but additional levels of the social-ecological model, including social and built environ-
ments [179,180], as well as considering determinants of implementation within these
levels [181]. In other words, while the question, “how do we facilitate individuals to exer-
cise?” still needs to be addressed, equally important is the question, “how do we support
workplaces, communities, and policies that facilitate individuals to exercise?” The latter
question is addressed in the field of implementation science, which studies how to best
help people and places implement the intervention, which, in this case, is exercise [182].

Rather than designing, implementing, and refining a new exercise program to combat
obesity, which may take up to 17 years to become part of routine practice [183], a more
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practical approach is to capitalize on an existing evidence-based intervention. In this way,
we move from studying effectiveness (i.e., does it work in real-world settings) to implemen-
tation (i.e., how do we make it work in real-life settings). The National Institutes of Health
have resources that evaluate the scientific rigor of exercise and nutritional interventions
and include implementation guides that can facilitate the uptake of these evidence-based
interventions across various settings (i.e., work, school, community). By studying these
existing, ready-to-implement interventions, we may be able to reduce the 17-year gap
between research and practice and have a larger reach and impact on human health.

3.6. Worksite Health Promotion: Employer’s Role in Supporting Exercise Adherence

Employers play a key role in promoting exercise adherence by integrating physical
activity into workplace health programs and policies [184]. Tailoring exercise prescriptions
based on job-related activity levels and providing opportunities for movement, such as
flexible schedules and active transportation incentives, can help employees incorporate ex-
ercise into their routines [185]. Additionally, offering fitness memberships, physical activity
assessments, and referrals to community resources can further support adherence [186].
Notably, the Physical Activity Alliance’s CEO Pledge encourages organizational leaders
to model healthy behaviors, creating a culture that normalizes physical activity [187].
By adopting these strategies, employers can promote sustained employee health, reduce
healthcare costs, and improve long-term exercise adherence [188].

4. Conclusions

The obesity crisis in the U.S. necessitates interventions that overcome adherence
barriers and compensatory physiological responses undermining traditional lifestyle ap-
proaches. Exercise is vital for weight management and chronic disease prevention, but its
effectiveness is constrained by compensatory mechanisms resulting in increased energy
intake and/or reduced expenditure, requiring strategic optimization. The present review
does not provide concrete answers on how to make exercise more effective for obesity
and chronic disease treatment, rather, we present many concepts that may be considered
in future trials and interventions that may aim to improve obesity and chronic disease
outcomes through exercise. Modifying exercise variables—such as timing (e.g., AM vs. PM
sessions), mode (aerobic vs. resistance), and intensity—can enhance fat oxidation while
mitigating compensatory behaviors. Understanding motivational processes, including
incentive sensitization, basic drive, and motivation states, holds promise in strengthen-
ing intrinsic motivation and long-term adherence by leveraging neurobiological reward
pathways. Behavioral strategies, including gamification and personalized feedback, are
targets for interventions. A socioecological framework is essential, addressing individual
motivation, social support, workplace policies, and environmental accessibility to create
sustainable physical activity ecosystems. Employers and policymakers play critical roles in
scaling solutions through workplace wellness programs, community infrastructure, and
culturally relevant campaigns to normalize exercise as a daily priority.

There is currently a great deal of conflicting results and limitations in the research
surrounding each of these concepts, thus making it difficult to draw conclusions. For
instance, we have ample evidence that fasted exercise training can improve fatty-acid
oxidation, although no trials have been undertaken in a clinical population or in patients
with obesity at the necessary duration to elicit changes in body weight or disease state.
Conflicting results are present when looking at the time of day exercise is performed, where
strong evidence obtained from secondary data analysis of large exercise interventions point
to morning exercise best-supporting weight loss, while randomized trials manipulating
exercise time of day have not shown this. Out of the topics we have covered, it does
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appear resistance training and high-intensity exercise have several advantages when it
comes to weight loss, although this type of training may not be suitable for certain clinical
populations, and more research is still needed. On the exercise adherence and behavioral
side, it does appear that individuals can be sensitized to the reinforcing effects of exercise
to increase exercise adherence. Similarly, several trials elucidating the role of ACMS on
exercise behavior have demonstrated environmental cues (daylight, temperature, music)
and food intake can influence one’s motivation to exercise and thus play an important role
in adherence.

It is important to note that many of the studies reviewed herein were not carried out in
a population with obesity or focused on treating a clinical condition. This limitation further
stresses the importance of future research, which must prioritize prospective studies to
clarify optimal exercise timing, dosing, and motivational and compensatory mechanisms in
this population. Technology must be leveraged for real-time adherence tracking, metabolic
feedback, and motivational messaging. A multidisciplinary approach—integrating phys-
iology, psychology, as well as environmental design—is indispensable to transforming
exercise from a set of population-wide guidelines into a personalized, evidence-based
intervention. Overall, it is apparent that overcoming obesity and improving chronic disease
outcomes require systemic, flexibly adaptive strategies that empower individuals through
science-driven, context-sensitive solutions to adopt and sustain active lifestyles.
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AOMs  anti-obesity medications

EI energy intake

PA physical activity

TDEE total daily energy expenditure

EE energy expenditure

NEPA  non-exercise physical activity

FFA free fatty acids

BMI body mass index

MVPA  moderate to vigorous physical activity
1-RM 1 rep-maximum

HIFT  high-intensity functional training
SCT social cognitive theory

BCTs behavior change techniques

SMS short message service

HCD  human-centered design

ACMS  affectively-charged motivation states
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