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Abstract: Vitamin A deficiency (VAD) induced TGF-β hyperactivation and reduced expression of cell
adhesion proteins in the lung, suggesting that the disruption of retinoic acid (RA) signaling leads
to epithelial–mesenchymal transition (EMT). To elucidate the role of lung vitamin A status in EMT,
several EMT markers and the expression of the proprotein convertase furin, which activates TGF-β,
were analyzed in two experimental models. Our in vivo model included control rats, VAD rats, and
both control rats and VAD rats, treated with RA. For the in vitro studies, human bronchoalveolar
epithelial cells treated with RA were used. Our data show that EMT and furin are induced in VAD
rats. Furthermore, furin expression continues to increase much more markedly after treatment of
VAD rats with RA. In control rats and cell lines, an acute RA treatment induced a significant increase
in furin expression, concomitant with changes in EMT markers. A ChIP assay demonstrated that
RA directly regulates furin transcription. These results emphasize the importance of maintaining
vitamin A levels within the physiological range since both levels below and above this range can
cause adverse effects that, paradoxically, could be similar. The role of furin in EMT is discussed.

Keywords: vitamin A deficiency; retinol; retinoic acid; lung; pulmonary disease; extracellular matrix;
E-cadherin; N-cadherin; furin; epithelial–mesenchymal transition

1. Introduction

Retinoids are a family of molecules that possess activity relative to vitamin A (all-trans-
retinol) [1]. They exert major effects on numerous physiological processes, such as light
transduction in vision, embryonic development, growth, immunity, cell differentiation
and proliferation, tissue architecture, antioxidant function, redox signaling, and energy
homeostasis [2–8]. Retinoids are also involved in several pathologies such as cardiovascular
diseases, obesity, diabetes mellitus, respiratory diseases, osteoporosis, skin diseases, and
cancer, among others [2,9–11].

The main biologically active retinoid metabolite of vitamin A is retinoic acid (RA), with
all-trans RA being the predominant isomer in vivo. Multiple genes respond to RA signaling
through both transcriptional and non-transcriptional mechanisms. Retinoid intracellular
signaling occurs through two subfamilies of heterodimeric nuclear receptors, RA receptors
(RARs), and retinoid X receptors (RXRs), each with three subtypes (α, β, and γ) and several
isoforms. All-trans RA binds with high affinity to RAR but does not bind to RXR; on the
contrary, the isomer 9-cis RA binds to both RARs and RXRs, although its effect in vivo
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remains elusive, given its low abundance in tissues [12]. To add complexity to retinoid
signal transduction, RXRs form heterodimers with other members of the nuclear receptor
family, including the peroxisome proliferator-activated receptor (PPAR), thyroid hormone,
vitamin D, and orphan nuclear receptors [5,8,12,13].

Vitamin A is an essential fat-soluble micronutrient that must be provided in the
diet, mainly in the form of retinyl esters but also all-trans-retinol, in products of animal
origin, or as provitamin A (carotenoids) from fruits and vegetables. There are more than
50 carotenoids, with β-carotene being the most biologically significant and prevalent
provitamin A. Since all these compounds are liposoluble they can be easily accumulated
within the body. This storage allows for a pool in case of vitamin A deprivation, but it
may also trigger vitamin A toxicity due to excessive accumulation [8,14–16]. Vitamin A is
mainly stored in the liver but also in other organs, including the lung, where it plays an
important role in ensuring retinoid signals for alveolus formation [8,17,18].

Vitamin A deficiency (VAD) is a significant health problem with important implications
for global health policy. In fact, VAD causes impaired vision, reduced growth, and, even in
its asymptomatic subclinical form, increases in the incidence of respiratory tract diseases
and morbidity and mortality from various infections, especially in children. According to
the World Health Organization, VAD constitutes, together with protein malnutrition, the
most common nutritional disorder in the world [19].

Several studies have established that vitamin A is involved in the differentiation and
maturation of the lung during intrauterine development, and it is also required to maintain
alveolar architecture in adults [18,20–22]. Impaired retinoid signaling has been associated
with histopathological changes in the parenchymal lung epithelium, which may predispose
it to severe tissue dysfunction and respiratory disease. In this sense, VAD is associated with
an increased risk of respiratory infections, emphysema, chronic obstructive pulmonary
disease, pulmonary fibrosis, and lung cancer [8,21]. Some of the alterations found in lung
tissue involve changes in the extracellular matrix (ECM) and modifications in proteins
of the basement membrane (BM). It is known that RA regulates the expression of several
components of the ECM such as collagens, laminins, fibronectin, elastin, or proteoglycans,
and VAD may alter the content or distribution of the ECM [8,23].

Epithelial-to-mesenchymal transition (EMT) is a complex process in which polarized
epithelial cells differentiate into contractile mesenchymal cells (more feasible for migration
or invasion of other tissues) and involves modification of the ECM components. This EMT
process takes place in many pulmonary diseases such as chronic obstructive pulmonary
disease, fibrosis, and lung cancer [24,25]. Hallmarks of EMT include loss of E-cadherin
and other cell adhesion proteins, together with an increase in mesenchymal markers,
such as N-cadherin, vimentin, and α-smooth muscle actin (α-SMA), among others [26,27].
This differentiation switch can be promoted by several local stimuli, including the TGF-β
signaling pathway, a powerful inducer of EMT.

In a previous work, we suggested that VAD could trigger EMT in lung tissue. In fact,
we have shown that in VAD rats, there are alterations in lung parenchymal architecture,
associated with modifications in the ECM and the BM [23,28]. Collagens I and IV increased
in the lungs of VAD rats, with an ectopic deposition of collagen I fibrils in the alveolar
BM which doubles in thickness. In addition, chronic VAD activates TGF-β signaling, and
there is oxidative stress and leucocyte infiltration in the lung. Furthermore, some cell
adhesion proteins were reduced in VAD lungs [8]. All of these data suggest that disruption
of endogenous RA signaling leads to the EMT process in the lung, and it could be an early
stage common to several respiratory pathologies associated with this deficiency.

To elucidate the role of vitamin A in the EMT process in the lung, we analyzed protein
markers of EMT transition in vivo in control rats, vitamin A-deficient (VAD) rats, and
in control and VAD rats treated with all-trans-RA (C + RA or VAD + RA groups). We
have also analyzed the proprotein convertase furin, which regulates the levels of adhesion
molecules and cleaves activating proproteins (i.e., TGF-β factor) and other cytokines,
matrix metalloproteinases, and also glycoproteins on the cell surface of viral and bacterial
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pathogens that could increase their virulence (i.e., SARS-CoV-2) [29,30]. The effect of RA on
EMT and furin expression was also evaluated in an in vitro model using cultured human
lung cells supplemented with RA at different times.

Our data show that vitamin A status modulates EMT and furin expression in the
lung and that this modulation can be, in part, produced by the direct control exerted by
RA on furin expression. Our results emphasize the importance of tissue vitamin A levels,
since both levels below and above this normal range can cause adverse effects, and these
could, paradoxically, be similar. In the present study, we demonstrate that both vitamin A
deficiency and RA treatment induce EMT and increase furin expression, which is associated
with a variety of infectious and non-infectious diseases and has been proposed as a potential
marker for various neoplasms, including lung cancer [29–31].

2. Materials and Methods
2.1. Antibodies

Primary antibodies against Furin (70393), Vimentin (5741), N-cadherin (14215), and
β-Actin (4970) were purchased from Cell Signalling Technology (Danvers, MA, USA).
Those against β-Catenin (ab32572), hsc70 (ab51052), and GAPDH (ab8245) were from
Abcam (Cambridge, UK). Other primary antibodies used were: E-cadherin (80182) from
BD Biosciences (Bedford, MA, USA) and α-SMA (14-9760-82) from Invitrogen™ (Waltham,
MA, USA). All the HRP-conjugated antibodies were from DAKO (Nowy Sącz, Poland) and
for immunofluorescence detection Alexa Fluor 488 anti-rabbit IgG (Invitrogen™) and Cy3
anti-mouse (Sigma-Aldrich, St. Louis, MO, USA) were used. For the ChIP assay, antibodies
against RARα (sc-515796) and non-specific IgG (sc-2025) were used, both from Santa Cruz
Biotechnology (Dallas, TX, USA).

2.2. Animals and Diets

All animal procedures were carried out in accordance with the NIH Guide for the Care
and Use of Laboratory Animals. The Ethics Committee for Animal Research and Welfare at
the University of Valencia and the GVA approved the protocol (2016/VSC/PEA/00130).
Male-specific pathogen-free Wistar rats were made deficient in vitamin A by feeding a
vitamin A-free diet. Briefly, pregnant rats (Charles River, Barcelona, Spain) were housed
under standard conditions of light (12 h light cycle) and temperature (22 ◦C), and after
delivery, dams with their litters were randomly divided into 2 groups. The control group
(C group) received a complete purified diet (AIN-93G, ICN Biomedicals, Cleveland, OH,
USA), which included vitamin A (all-trans retinyl palmitate 4000 IU/kg) [32]. The second
group was fed the same diet from ICN Biomedicals but devoid of vitamin A (VAD group).

After the lactation period, male pups were weaned to take their dam’s diet (control or
VAD diet) until they were 60 days old (C group, VAD group). A third group of 60-day-old
VAD rats were treated further with 10 daily intraperitoneal injections of 100 µg of all-trans
RA (0.4 mg/Kg of all-trans RA, Sigma-Aldrich) in 100 µL of sunflower seed oil (which
contains less vitamin traces than others), (VAD + RA group), or with an equal amount of
vehicle. To summarize, our in vivo deficient model included:

• Offspring rats from control breeders were fed a control diet (control group, n = 6 males)
until day 60 after delivery;

• Offspring rats from VAD diet-fed breeders were fed a VAD diet (VAD group, n = 18 males)
until day 60 after delivery. At this point, two more groups were treated with RA
or vehicle:

# VAD rats were treated intraperitoneally with 100 µg of all-trans RA daily for
10 days (VAD + RA group, n = 6 males);

# VAD rats were treated with 100 µL vehicle (sunflower oil) daily for 10 days
(VAD + vehicle group, n = 6 males).

On the other hand, to study the effect of an acute RA overdose in control rats, a group
of 60-day-old rats fed with a control diet were treated as follows:
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• Ten daily intraperitoneal injections of 100 µg all-trans RA (0.4 mg/Kg of all-trans RA)
in 100 µL of sunflower seed oil (C + RA group, n = 6 males).

• Ten daily intraperitoneal injections of 100 µL of sunflower seed oil (C + vehicle group,
n = 6 males).

All the groups were pair-fed. Since the results obtained with the vehicle-treated
groups did not differ from the corresponding VAD or C group, for simplicity, they are not
shown. The sample sizes were determined using the G*Power 3.1 software. The calculation
parameters were: (1) effect size = 0.8; (2) α = 0.05; (3) power = 0.85; (4) number of groups = 4;
(5) numerator df = 3; and (6) denominator df = 20.

2.3. Sampling Procedure

Experiments were performed between 10:00 and 12:00 h. Rats were anesthetized with
pentothal (50 mg/kg body weight, intraperitoneally), and blood samples and lung tissue
were promptly harvested and stored at −80 ◦C until further use.

2.4. Determination of Retinoids

Plasma retinol and lung retinoids were extracted as described [28], dissolved in
methanol/ethanol (1:1, v/v), and measured by the isocratic HPLC method of Arnaud et al. [33].
A Novapak C-18 column (3.9 × 150 mm, Waters Technologies, Drinagh, Ireland) and a
mixture of acetonitrile/dichloromethane/methanol (70:20:10), as eluent, were used.

2.5. Protein Extraction and Immunoblotting

Total protein was extracted in RIPA buffer (1.8 mM NaH2PO4, 8.4 mM Na2HPO4,
0.1% (w/v) SDS, 1.0% (v/v) TritonX 100, 0.1 M NaCl, 0.5% sodium deoxycholate, 1 mM
PMSF) supplemented with protease and phosphatase inhibitors. Equal amounts of protein
measured by a BCA protein assay kit were separated by SDS-PAGE gel electrophoresis
and transferred onto nitrocellulose membranes (Amersham Protran®, Cytiva, Freiburg
im Breisgau, Germany). Blots were developed by enhanced chemiluminescence reaction
(ECLTM Western blotting Detection reagents, Cytiva). Equal loading was confirmed by
reprobing blots with β-actin, GAPDH, or hsc70 antibodies. To avoid membrane striping
whenever possible, blots were cut and each strip was incubated with different antibodies
to detect several proteins in the same membrane. Proteins from at least three different
animals per experimental group were isolated and analyzed by Western blot. For protein
quantification, Image J software 1.54 was used; each blot was normalized against β-actin,
GAPDH, or hsc70, and plotted as fold change compared to controls.

2.6. RNA Isolation and Real-Time RT-qPCR Analysis

An RNAeasy Mini Kit (Qiagen, Hilden, Germany) was used to extract total RNA from
lung tissue (3–5 rats per condition), followed by 10 min DNase I treatment (RNase-Free
DNase set, Qiagen). At least 3–5 rats per condition were used. A bioanalyzer was used to
assess RNA purity and integrity. RNA (385 ng) was reverse-transcribed to cDNA using
the Transcriptor High Fidelity cDNA Synthesis kit (Roche, Basel, Switzerland) with a
Random Hexamer Primer. cDNA products were amplified by qPCR using the LightCycler®

480 SYBR Green I Master (Roche). All reactions were carried out in duplicate. Quantitative
real-time PCR was run in the LightCycler® 480 Instrument II (Roche). The genes that were
analyzed were E-cadherin, N-cadherin, β-catenin, and furin, and β2-microglobulin (B2M)
was the housekeeping gene selected for data normalization. The sequences for all primers
used for cDNA amplifications are listed in Table 1.
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Table 1. Primers Sequences.

Sequence Name Sequence Forward Sequence Reverse

Furin ACTGCCCACCCTATCAAATC CCAAACCCAGTCCCAAGATAA
Cdh1 (E-cadherin) GGGTTGTCTCAGCCAATGTT CACCAACACACCCAGCATAG
Cdh2 (N-cadherin) GAGAGGAAGACCAGGACTATGA TCTCGTCTAGCCGTCTGATT
β-catenin CATATGCGGCTGCTGTTCTA CCGAAAGCCGTTTCTTGTAG
B2M CGAGACGATGTATATGCTTGC GTCCAGATGATCAGAGCTCCA

To quantify gene expression, an analysis based on Ct values was carried out; for each
sample and condition, the average of the duplicates was normalized with the average of
the B2M housekeeping gene. Fold-change data were obtained using the delta–delta Ct
method (2−∆∆CT) where:

∆Ct = Ct (target) − Ct (housekeeping gene)

∆∆Ct = ∆Ct (sample) − ∆Ct (control)

2.7. Chromatin Immunoprecipitation Assay (ChIP Assay)

The ChIP procedure was performed as described previously [34]. In brief, lungs were
surgically removed and fixed with 1% formaldehyde in PBS for 10 min. Samples were
washed and homogenized in the presence of protease inhibitors (Sigma), filtered through
a 500 mm pore nylon membrane, and centrifuged at 1500× g for 5 min. The pellet was
resuspended cell lysis buffer (10 mM NaCl, 3 mM MgCl2, 30 mM sucrose, 10 mM EDTA,
0.5% Nonidet P-40, 10 mM Tris-HCl, pH 7), and incubated on ice for 15 min. Then, it was
centrifuged at 3500× g for 5 min and the nuclear pellet was resuspended in nuclei lysis
buffer (10 mM EDTA, 1% SDS, 50 mM Tris-HCl, pH 8.1) and stored at −80 ◦C.

Cross-linked chromatin was sonicated (3 cycles of 5 min sonication (30 s on, 30 s off) in
a Bioruptor Plus instrument (Diagenode, Seraing, Belgium) and centrifuged at 14,000× g
for 10 min. Supernatants were diluted 10-fold (165 mM NaCl, 0.01% SDS, 1.1% Triton
X-100, 1.2 mM EDTA, 16.7 mM Tris–HCl, pH 8.0, supplemented with protease inhibitor
cocktail (Sigma)). Aliquots from the diluted supernatants (equivalent to 50 µg DNA) were
incubated under rotation for 2 h at 4 ◦C with Dynabeads Protein G (Invitrogen) and 2 µg
of RARα or non-specific IgG antibodies. The chromatin fragment/antibody/protein G-
Dynabead immune complexes were recovered and washed with low-salt buffer (140 mM
NaCl, 1% Triton X-100, 0.1% sodium deoxycholate, 1 mM EDTA, 50 mM Tris-HCl, pH 8.0),
high-salt buffer (500 mM NaCl, 1% Triton X-100, 0.1% sodium deoxycholate, 1 mM EDTA,
Tris-HCl 50 mM, pH 8.0), LiCl buffer (250 mM LiCl, 0.5% NP-40, 0.5% sodium deoxycholate,
1 mM EDTA, Tris–HCl 10 mM, pH 8.0), and finally with TE buffer. The immunoselected
chromatin was eluted by adding 50 µL of elution buffer (EDTA 10 mM, SDS 1%, 50 mM
Tris–HCl), vortexing, and incubating for 10 min at 65 ◦C.

The resulting 100 µL fraction (IP fraction) was incubated at 65 ◦C overnight to reverse
formaldehyde cross-links in the presence of RNAase 40 µg/mL, and then proteins were
digested by proteinase K (0.4 mg/mL). An aliquot of the cross-linked chromatin was treated
as above, but in the absence of antibody (NA fraction), and the first supernatant was saved
as the Input fraction. The DNA (from IP, NA, and Input samples) was purified with a PCR
purification kit (Qiagen) and used for qPCR analysis to determine the binding of RARα
at the promoter region of the furin gene using primers, as shown in Table 2. The MMP-9
gene was used as a positive control since we had previously described that RARα binds to
the MMP-9 promoter upon RA treatment [35]. The entire experiment was performed with
lung samples from three different rats per condition.
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Table 2. Primers used for ChIP analysis by qPCR.

Target Region Primers

Forward Reverse

Furin promoter

CTCF1 TGTCCATCATCACCAGAGCT CCCTCTTCTGGTGTGTCTGT

CTCF2 ACTGGAAAGTTACCGCCTGA ACGTCACCATCTAGCTCCAG

ENHANCER GCTTGGCTTGTGACTAGTCG ACCAAGGTGAGGCTGAATCA

MMP-9 promoter GTGAACACGGTGGCTGAAA CAGGCTCTTTGAAGCAGGATT

2.8. Cell Culture and Treatments

Two human cell lines were used in this study. BEAs non-tumoral bronchoepithelial
cells were a generous gift from Dr. Julio Cortijo’s lab and were cultured at 37 ◦C in a CO2
incubator in RPMI Medium (Gibco, Thermo Fisher, Waltham, MA, USA) supplemented
with 10% FBS (Biowest, Nuaillé, France), 1% penicillin/streptomycin (Gibco), and L-
glutamine (G7513, Sigma-Aldrich) under standard conditions. On the other hand, A549
cells were purchased from American Type Culture Collection (ATCC) including certificate
of analysis and mutation sequencing data. These are malignant cells from basal alveolar
epithelia and are cultured under the same conditions but with DMEM (Gibco) as the
culture media.

For experiments, cells were plated at a density of 8 × 105 cells/well and maintained
in asynchronous culture under standard conditions. When cells reached confluency, RA
(Sigma-Aldrich, R2625) was added at a final concentration of 5 µM for 24 h or 48 h. Since
bovine serum contains retinoids, cells were starved in a serum-free medium prior to the
experiments. Only low-passage cells (8–12 passages) were used for the studies and after
RA treatment cell viability was assessed prior to collecting the samples. All experiments
shown were performed in triplicate.

2.9. Immunofluorescence Analysis

Cells were cultured onto 13 mm Ø borosilicate Cover Glass (631-0149, VWR, Radnor,
PA, USA) fixed in PFA 4% for 15 min, permeabilized with Triton TX-100 0.1% in TBS,
blocked in 2% BSA, and incubated with the indicated primary antibodies overnight at 4 ◦C.
The proper secondary antibody was used for detection. Nuclei were counterstained with
DAPI (InvitrogenTM). Pictures were acquired on a Leica TCS-SP 2 confocal microscope.

2.10. Statistical Analysis

The results are represented in the figures and tables as the mean ± SD of at least
three independent experiments. Statistical analyses were performed using the GraphPad
Prism software (v. 10.2.2). For each experiment, an outlier test was performed, and
statistical outliers were removed from the raw data. Finally, differences between groups
were determined by a student’s t-test followed by a post hoc Bonferroni test. Significant
differences are indicated on each figure legend, being * p ≤ 0.05; ** p ≤ 0.01 *** p ≤ 0.001, or
**** p ≤ 0.0001.

3. Results
3.1. Retinoid Levels in Plasma and Lung Tissue

Prior to investigating the effects of vitamin A deprivation in lung tissue, retinoid
levels were measured in the plasma and lung of control rats (Control), VAD rats (VAD),
and deficient rats treated with an acute dose of RA (VAD + RA) (Table 3). As already
reported, those rats fed a vitamin A-free diet from birth (through the dam’s milk) (VAD
group) had plasma retinol concentrations that were less than 5% of the concentration found
in 60-day-old controls (C) and this value did not increase with the all-trans RA treatment
(VAD + RA). All-trans retinyl esters were not detectable in the plasma in any group [28].
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Table 3. Concentrations of retinol and retinyl esters in plasma and lungs of control, VAD, and VAD +
RA rats.

Control VAD VAD + RA

Plasma (µM)

All-trans retinol 1.46 ± 0.26 0.06 ± 0.01 **** 0.05 ± 0.01 ****

All-trans retinyl esters ND ND ND

Lung (nmol/g of tissue)

All-trans retinol 1.40 ± 0.25 0.04 ± 0.01 **** 0.05 ± 0.01 ****

All-trans retinyl esters 2.66 ± 0.35 0.007 ± 0.02 **** 0.05 ± 0.03 ****
Values are expressed as mean ± S.D (n = 6); **** p < 0.0001 vs. control group.

In parallel, retinoid levels were also measured in the lung tissue; the amount of retinol
dropped more than 95% in both VAD and VAD + RA lungs compared to control tissues.
Furthermore, the levels of retinyl esters, the main retinoids found in the lung, were also
significantly lower in VAD and VAD + RA animals than those in the control group. The
results obtained in the VAD group treated with vehicle instead of RA did not differ from
the VAD group. Our model of chronic vitamin A deficiency completely depleted retinol in
the plasma and induced long-time vitamin A reduction in lung tissue.

3.2. Vitamin A Status and EMT Markers

EMT is characterized by the loss of epithelial markers (E-cadherin and β-catenin)
concomitant with an induction of mesenchymal markers (N-cadherin and vimentin). In
our vitamin A-deficient model, there was a significant change in the expression of cdh1
(E-cadherin) and cdh2 (N-cadherin), both EMT markers (Figure 1A). Indeed, there was an
EMT switch: Cdh1 decreased in the lungs after vitamin A deficiency (VAD) whilst Cdh2
levels increased statistically. On the other hand, β-catenin mRNA levels did not change
in VAD lungs, but its expression significantly increased after RA treatment (VAD + RA)
(Figure 1A). β-catenin is a transcriptional coactivator known to be upregulated in TGF-β-
induced EMT [36].
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Figure 1. Vitamin A status and EMT markers in the lung. (A) RT-qPCR was performed to analyze the
mRNA expression of EMT markers Cdh1, Cdh2, and β-catenin in control rats, vitamin A-deficient
rats (VAD), and vitamin A-deficient rats treated with retinoic acid (RA). The data used in the statistical
analyses and histograms are the mean ± SD (n = 4–5 for each group). (B) Protein levels of different
EMT markers (E-Cadherin, N-Cadherin, and β-catenin) were studied by Western blot in lungs from
control (C), vitamin A-deficient (VAD), and vitamin A-deficient rats treated with RA (VAD + RA).
(C) Graphs showing the Western blot quantification. Data (n ≥ 3) were quantified, normalized with
β-actin, and plotted as mean fold ± SD vs. control. (A,C) significant results are shown * p ≤ 0.05;
** p ≤ 0.01 *** p ≤ 0.001 or **** p ≤ 0.0001.
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At the protein levels, we found similar results (Figure 1B); the expression of E-cadherin
decreased in VAD lungs compared to controls, whereas the expression of N-cadherin
increased in VAD (Figure 1B,C for quantification). Treatment of deficient rats with RA
(VAD + RA) increased E-cadherin and β-catenin protein levels compared to the VAD group.

3.3. Furin Expression in Lungs

Furin is a proprotein convertase that acts through limited proteolysis and converts
target proproteins into bioactive proteins and peptides. Furin has been involved in the
activation of molecules that promote cell proliferation, vascularization, or tissue migration
and invasion [29,31]. In the EMT context, it has been described that furin can activate
TGF-β acting as an EMT inducer [37]. Based on previous, unpublished results, we wanted
to explore the relationship between EMT produced by vitamin A deficiency and furin.
First of all, furin mRNA levels were analyzed in our experimental groups (Control, VAD,
and VAD + RA). As shown in Figure 2A, the expression of furin increased in VAD lungs,
but unexpectedly, RA treatment did not restore furin expression to the control values, as
it continued to increase in VAD rats treated with RA. Western blot analysis (Figure 2B)
showed that furin protein levels have a similar pattern to that found in the qPCR analysis.
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bronchial epithelial immortalized cells. As observed in Figure 3A, there was a decrease in 
the epithelial marker E-cadherin in both cell lines after the addition of 5 µM RA. Moreover, 
there was also an increase in mesenchymal markers such as α-SMA and N-cadherin in 
A549 and BEAs cells, respectively. These results showed once more that vitamin A levels 
have a profound effect on EMT markers. The changes in protein levels were time-depend-
ent in both cell lines, as RA incubation for 48 h showed changes that were more evident 

Figure 2. Vitamin A status and furin expression in the lung. (A) RT-qPCR showing mRNA levels
of proconvertase furin in control rats, vitamin A-deficient rats, or vitamin A-deficient rats treated
with retinoic acid (RA) (n = 4–5 per group). (B) Western blot analysis of furin in lungs from control
(C), vitamin A-deficient (VAD), and vitamin A-deficient rats treated with RA (VAD + RA) (n = 3).
GAPDH was used for normalization and the graph on the right represents quantification of the blots
of three independent cultures. For both panels, histograms represent the mean ± SD, and results that
were significantly different were * p ≤ 0.05; ** p ≤ 0.01.

3.4. Retinoic Acid Addition In Vitro in Human Lung Cells

To further analyze these previous results, we moved to an in vitro model and treated
two human cell lines with RA: the A549 lung adenocarcinoma cells and BEAs, which are
bronchial epithelial immortalized cells. As observed in Figure 3A, there was a decrease in
the epithelial marker E-cadherin in both cell lines after the addition of 5 µM RA. Moreover,
there was also an increase in mesenchymal markers such as α-SMA and N-cadherin in A549
and BEAs cells, respectively. These results showed once more that vitamin A levels have a
profound effect on EMT markers. The changes in protein levels were time-dependent in
both cell lines, as RA incubation for 48 h showed changes that were more evident than those
observed at 24 h. The effect of RA addition was also studied using immunofluorescence.
Consistent with an EMT effect, E-cadherin was internalized after RA addition, both in A549
and BEAS cell lines (Figure 3B).
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Figure 3. Effect of RA addition in vitro in human lung cell lines. (A) Western blot analysis showed
the expression of different EMT markers and furin in two cell lines (A549 and BEAs) after incubation
with 5 µM RA at 24 h and 48 h. Hsc70 was used as a loading control. A representative image is shown
(n = 3 independent cultures). (B) Localization of E-cadherin (green), detected by immunofluorescence
staining in A549 and BEA cells after 5 µM RA treatment for 24 h. Zoom has been made around the
dotted lines and magnified images are shown on the right side. (C) Representative IF analysis of
furin (green) in lung cell lines (A549 and BEAs) after 24 h of RA incubation (5 µM). In both (B,C),
nuclei were stained with DAPI and F-actin with phalloidin (cyan blue). Scale bars 20 µM and 60 µM
for zoom images in (B).

These changes observed in the protein levels of different EMT markers after RA
treatment were also dose-dependent. Indeed, A549 cells were treated with increasing
concentrations of RA (0.1–10 µM) for 48 h, and changes in α-SMA were observed with 5 µM
RA, whilst N-cadherin protein levels increased with 2.5 µM RA (Supplementary Figure S1).

We next studied changes in furin levels after RA addition. As shown by Western blot
(Figure 3A) and by confocal microscopy (Figure 3C), 5 µM RA treatment increased levels of
furin in a time-dependent manner. It can be concluded that the in vitro addition of RA to
lung cell lines produces changes in EMT markers accompanied by a clear increase in furin
protein levels. In agreement with our in vivo results, a relationship between EMT, vitamin
A, and furin levels has also been observed in vitro.

3.5. Retinoic Acid Addition In Vivo to Control Rats

We also analyzed the effect of RA addition in vivo in control rats. As happened with
lung cell lines, the addition of RA to control rats also produced changes in EMT markers
in lung tissue, decreasing the protein levels of E-cadherin and β-catenin and increasing
the levels of N-cadherin and vimentin (Figure 4A,B). As expected, furin followed the same
pattern as EMT markers, as RA addition also increased the levels of this proconvertase
(Figure 4C).
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Figure 4. Effect of RA addition in vivo on EMT markers. (A) Western blot analysis to study the
levels of different EMT markers in vivo in control rats after RA treatment (+RA group). GAPDH
was used as a loading control. (B) Quantification of the Western blots is shown in panel (A). Data
(n ≥ 3 different animals) were quantified, normalized with GAPDH, and plotted as mean fold ± SD
vs. control. (C) Western blot analysis of furin in control rats after RA treatment (+RA group) (n = 3);
GAPDH was used for normalization and quantification (mean fold ± S.D. vs. control). For all
quantifications, asterisks indicate significant differences: * p ≤ 0.05; ** p ≤ 0.01, or *** p ≤ 0.001.

3.6. Chromatin Immunoprecipitation Assay

To elucidate the relationship between vitamin A status and furin, we analyzed whether
retinoic acid could directly regulate furin transcription by binding to the corresponding
gene promoter. To confirm this hypothesis, a ChIP assay was performed. The ENSEM-
BLE database (https://www.ensembl.org, accessed on 6 July 2022) was used to search for
regulatory regions in the furin gene promoter. In the available human data, up to three re-
gions, named CTCF1, CTCF2, and Enhancer (ENH), are potential regulatory regions, where
transcription factors would bind to modulate gene transcription (Figure 5A). Furthermore,
analysis of the human and rat furin promoters in the EPD Eukaryotic Promoter Database
(https://epd.epfl.ch/, accessed on 6 July 2022) indicates the presence of potential binding
sites for two nuclear receptors, retinoid X receptor (RXR) and retinoid acid receptor (RAR),
in these regions of the gene.

The results of ChIP assays showed that the nuclear factor RARα can bind to all three
regions in the furin gene promoter, where potential RAR/RXR binding sites are located
(https://epd.expasy.org/epd/, accessed on 6 July 2022). In control rats, the ChIP signal was
2.0, 1.6, and 2.2 for the CTCF1, CTCF2, and ENH regions, respectively (Figure 5B, left panel,
CONTROL RA−). When this group was injected intraperitoneally with RA (RA+), the
ChIP signal was significantly increased compared with untreated controls (RA−). Indeed,
these increases were 3.7-fold for CTCF1, 8.3-fold for CTCF2, and 4.7-fold for ENH binding
sites compared to the untreated control group (Figure 5B, left panel, CONTROL RA+). In
ChIP assays using a non-specific IgG as a negative control, the corresponding signal was
virtually undetectable. In contrast, in the ChIP assay of the MMP-9 gene, a positive control
in which we had previously analyzed the binding of RARα to its promoter [35], the ChIP
signal increased from 2.9 to 15.7 in RA-treated rats versus untreated controls (Figure 5B,

https://www.ensembl.org
https://epd.epfl.ch/
https://epd.expasy.org/epd/
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left panel, MMP-9 gene). This result demonstrates that RA can modulate furin expression
by binding to its gene promoter.
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Figure 5. RARα ChIP assay on furin promoter. (A) Potential binding sites for RAR and/or RXR
nuclear receptors in the furine promoter region. CTF1, CTF2, and Enhancer (ENH) indicate 3 regions
where most transcriptional factor binding sites that modulate gene transcription are concentrated.
(B) ChIP data analysis of RARα binding to furin and MMP-9 genes in control rats (RA−) and control
rats injected intraperitoneally with retinoic acid (RA+) (left panel, CONTROL group). The same
analysis was carried out in vitamin A-deficient rats (RA−) and vitamin A-deficient rats injected
intraperitoneally with retinoic acid (RA+) (Right panel, VAD). Chromatin was immunoprecipitated
with an anti-RARα antibody (black bars) or a nonrelated antibody anti-IgG as a negative control (grey
bars). Data are the result of three independent experiments and bars represent mean ± SD.

Considering that vitamin deficiency may therefore modulate furin expression (Figure 2),
we sought to elucidate the interaction of RARα with the furin promoter in our chronic
vitamin A deprivation (VAD) model. As shown in Figure 5B, in ChIP assays with the VAD
group (right panel, RA−), the ChIP signal was approximately 5-fold lower for the CTCF1,
CTCF2, and ENH binding sites (VAD, RA−) compared to control rats fed a complete diet
(CONTROL, RA−). On the other hand, when VAD rats were injected intraperitoneally
with RA, the ChIP signal increased 4.1-fold, 4.8-fold, and 2.9-fold, for the CTCF1, CTCF2,
and ENH binding sites, respectively (VAD, RA+), relative to untreated deficient rats (VAD,
RA−) (Figure 5B, right panel); however, the ChIP signal remained significantly lower in the
VAD group compared to control rats. Finally, the negative control with non-specific IgG
gives undetectable signals. In contrast, the positive control used, the MMP-9 gene, gives a
significant increase in VAD rats when treated with RA, although this is much more limited
than in control rats.

Taken together, these data indicate that the furin gene is regulated by the binding of
the retinoic acid receptor to its promoter and that its activation is dependent on the relative
concentration of RA in the rats.

4. Discussion

Several studies have shown the important role played by retinoids in pulmonary
physiology, function, and pathophysiology [8,17–22]. Previously, we had already found
that VAD in vivo is associated with reduced protein levels of E-cadherin and β-catenin and
increased levels of N-cadherin, together with increased expression of collagens I and IV
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and altered activities of matrix metalloproteinases [8,23,28,38]. All of these are changes in
key markers of EMT. This process, in which differentiated epithelial cells acquire mesenchy-
mal capabilities, is accompanied by ECM changes, rendering a migratory and invasive
phenotype. In fact, EMT is an early-stage common factor in several respiratory pathologies
associated with pulmonary fibrosis development and lung cancer [24,26,36,39–41]. In the
present work, we have evaluated, in vivo and in vitro, the role of pulmonary vitamin A
status on EMT markers and on furin expression, a protein proconvertase that regulates the
levels of adhesion molecules and activates proteolytically matrix metalloproteinases, TGF-β
factor, and other cytokines and receptors [29,31]. In agreement with all these functions,
several studies suggest that furin promotes EMT in different cell types [42,43].

Data from Western blotting and qPCR confirmed that in our VAD model, there was
a switch from E-cadherin to N-cadherin, compatible with an EMT in lung tissue from
deficient rats. In other tissues it has been demonstrated that vitamin A plays a role in the
inhibition of EMT [44]; surprisingly, in our model, treatment with all-trans-RA to these
deficient animals did not completely restore gene expression levels to control values. These
results are in agreement with previously published data in which components from the
basement membrane or extracellular matrix were affected by vitamin A deficiency and
were not completely recuperated after RA treatment [23,28]. In this sense, it is important to
highlight that VAD rats are under oxidative stress, and in VAD + RA-treated rats, oxidative
stress remains elevated [28], which could explain the results observed in our model. On
the other hand, although the information provided in the literature on the effect of RA
on TGF-β1 is controversial, in previous studies we have shown that VAD lungs showed
increased active TGF-β1 [28], which is an EMT-inducer [26,39,40,45].

To further unveil the molecular mechanisms through which RA exerts its effects on
lung tissue, we also analyzed the proconvertase furin in our VAD model. Furin is a ubiqui-
tously expressed calcium-dependent endoprotease, which cleaves activating proproteins
at their paired basic residues. Its mammalian substrates are a broad variety of precur-
sor proteins including TGF-β, receptors, adhesion molecules, matrix metalloproteinases
which could alter ECM, and cell surface glycoproteins of numerous viral and bacterial
pathogens. A growing amount of evidence has suggested that altered furin expression and
abnormal cleavage of its substrates may have a crucial role in several pathophysiological
processes such as inflammation, neurodegeneration, cancer, or even viral infections [29–31].
Moreover, it has been recently published that furin could be modulated by the profibrotic
cytokine TGF-β in differentiated human bronchial epithelial cells [46]. Other reports sug-
gest that there is a positive feedback loop between furin and TGF-β1, resulting in an
amplified TGF-β response [29,47,48]. In our model, the expression of the proconvertase
furin increased in VAD lungs, and RA treatment did not restore furin expression to control
values, as it was more markedly increased in VAD rats treated with RA (Figure 2). All
together, these results pinpoint that RA treatment was not enough to avoid EMT or even to
completely rescue those changes observed within the ECM in deficient lungs [23]. It seems
that several factors still induced in VAD + RA rats, such as the remaining TGF-β signaling,
increased furin levels, or oxidative stress, could be responsible for not having a complete
recovery under RA treatment.

In order to point out the effect of RA in EMT and furin expression, we used two
different models in which RA was added in vivo and in vitro. On the one hand, control
rats in vivo were injected with an acute overdose of RA, while the in vitro model consisted
of the addition of RA to human cell lines for 24–48 h. Both approaches showed that the
excess of RA also induces EMT markers (Figures 3 and 4). In this sense, in vivo treatment of
control rats with RA significantly decreased E-cadherin and β-catenin, whereas N-cadherin
and vimentin protein levels were clearly increased. In vitro, incubation with 5 µM of
RA decreased the epithelial marker E-cadherin and increased the levels of α-SMA and
N-cadherin, consistent with the EMT process, and these changes were time- and dose-
dependent. Regarding furin, the protein levels were increased in both experimental models,
accompanying the EMT processes observed when an excess of RA was used.
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All in all, the results presented herein have shown that furin levels increase in a
model of chronic VAD, but also under RA treatment. So, we wondered whether RA
could somehow be modulating furin expression. To elucidate this possibility, a ChIP
assay was performed. Our results clearly showed that in vivo injection of RA to control or
deficient rats induced a significant increase in the binding of RARα to the furin promoter
(Figure 5). Accordingly, furin expression and protein levels increased in both control and
VAD rats treated with RA (Figures 2 and 4C). The performed ChIP assay suggests that
this modulation can be produced by the direct control exerted by RA on furin expression.
However, the increased expression of furin in deficient rats (VAD) with altered RA signaling
cannot be explained by the binding of RARα to the promoter. One could hypothesize that
furin levels could be modulated by other signaling factors or other molecules different to
RA. Interestingly, TGFβ, which is elevated in VAD rats [28], increases the expression and
activity of furin, thus establishing a feedback loop that could justify the increase of this
protein in retinoid deficiency [29,46–48].

In conclusion, our study shows that vitamin A status modulates EMT as well as furin
expression in the lung. Furin levels seem to follow the same pattern as the EMT markers
analyzed in this article, i.e., furin levels increase with vitamin A deficiency in vivo, but
also with RA addition in vivo and in vitro. This is in accordance with the role of furin in
proteolytic activation of TFG-β, a key regulator of EMT [39,40,42,45]. The performed ChIP
assay suggests that this modulation can be, in part, produced by the direct control exerted
by RA on furin expression (Figure 6).
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Figure 6. Vitamin A modulates Furin expression and EMT in the lung. Schematic representation of
RA signaling via the RAR–RXR pathway when RA is added. This induces a transcriptional change
within the nucleus, increasing furin expression that proteolyzes target proteins, triggering EMT.
CRAPB: cellular retinoic acid binding protein.

As previously mentioned, vitamin A is involved in the proliferation and maintenance
of epithelial cells and it is well known that the lack of vitamin A has serious consequences
in lungs [8,17,18,20–22]. Indeed, several findings have suggested that higher intakes
of vitamin A may beneficially influence lung growth and hence optimal lung function
attainment [49]. Nevertheless, this relationship between dietary vitamin A and respiratory
outcomes is not clear, with some trials showing the benefits of supplementation while
others point to the toxicity of this molecule. Our results are another clear and relevant
example that may demonstrate, at least in part, the adverse effects and conflicting results in
lung studies in patients with vitamin A supplementation. In this context, several references
have shown that vitamin A intake enhances TNF-α and is also associated with oxidative
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stress and increased proinflammatory cytokines in lung tissue; thus, a retinoid overdose
may have a negative impact on maintaining tissue integrity [50–54]. In addition, there are
conflicting results that correlate vitamin A with increased carcinogenic risk [55–57].

5. Conclusions

Our results emphasize the importance of maintaining vitamin A tissue levels within
a normal range since both levels below and above this range can cause adverse effects,
and these could paradoxically be similar [50,58]. In the present study, we demonstrate
that both vitamin A deficiency and RA treatment induce EMT and increase expression of
furin proconvertase, which is associated with a variety of infectious and non-infectious
diseases and has been proposed as a potential marker for various neoplasms, including
lung cancer [31]. Therefore, the preventive and therapeutic values of vitamin A and
its derivatives in different processes, especially in certain types of cancers, should be
carefully reviewed.
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