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Abstract: This study investigated the characteristics of Lactobacillus helveticus-derived whey-calcium
chelate (LHWCC) and its effect on the calcium absorption and bone health of rats. Fourier-transform
infrared spectroscopy showed that carboxyl oxygen atoms, amino nitrogen atoms, and phosphate
ions were the major binding sites with calcium in LHWCC, which has a sustained release effect
in simulated in vitro digestion. LHWCC had beneficial effects on serum biochemical parameters,
bone biomechanics, and the morphological indexes of the bones of calcium-deficient rats when
fed at a dose of 40 mg Ca/kg BW for 7 weeks. In contrast to the inorganic calcium supplement,
LHWCC significantly upregulated the gene expression of transient receptor potential cation V5
(TRPV5), TRPV6, PepT1, calcium-binding protein-D9k (Calbindin-D9k), and a calcium pump (plasma
membrane Ca-ATPase, PMCA1b), leading to promotion of the calcium absorption rate, whereas
Ca3(PO4)2 only upregulated the TRPV6 channel in vivo. These findings illustrate the potential of
LHWCC as an organic calcium supplement.

Keywords: whey-calcium chelate; low-calcium diet; calcium absorption; bone health

1. Introduction

Calcium mainly exists in the form of phosphates in bones and teeth, accounting
for approximately 1.5% to 2% of the normal human body [1]. Calcium plays multiple
physiological functions in the body and plays a crucial role in maintaining bone health.
There is a greater demand for calcium in children and adolescents during their rapid
growth period and the accumulation of calcium can achieve optimal peak bone mass
in the early stages of life [2]. Although serum calcium can be maintained within the
normal range through bone resorption, dietary intake of calcium is the only source of
calcium supplementation in the body’s bones, and low calcium intake and bioavailability
may lead to calcium deficiency. Long-term calcium deficiency in the body can lead to
spasms, osteoporosis, and chondropathy. At present, calcium deficiency is a common
global problem, and calcium intake in China is below the WHO’s daily recommended
intake (1000 mg/d) [3], which calls for the attention of academia and the food industry
in China.

In response to the current situation of calcium deficiency, calcium supplements such
as inorganic calcium salts and organic calcium salts have been developed. Among them,
organic calcium chelates such as amino acid-calcium chelates and protein hydrolysate-
calcium chelates are known for their fast absorption rate and low energy consumption [4],
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with diversified sources such as soy protein hydrolysates [5], cucumber seed [6], casein
hydrolysates [7], egg yolk hydrolysates [8], et al. The function of protein hydrolysate-
calcium chelates has also been validated in vivo and in vitro [9]. Hua et al. [10] reported
that after supplementation with Chlorella pyrenoidosa protein hydrolysate-calcium chelate
(CPPH-Ca) to the male SD rats (3 weeks old), fed with the low-calcium diet, the physical
and biomechanical properties of femurs and the gene expressions of transient receptor
potential cation V5 (TRPV5), TRPV6, calcium-binding protein-D9k (Calbinding-D9k), and
a calcium pump (plasma membrane Ca-ATPase, PMCA1b) in calcium-deficient rats were
significantly improved by CPPH-Ca [10].

Lactobacillus helveticus is one of the commonly used lactic acid bacteria in the produc-
tion of fermented dairy products such as yogurt and cheese [11]. It has a strong protein
hydrolytic ability, which endows its fermented dairy products with rich and diverse bioac-
tive peptide profiles with functions in the regulation of blood pressure [12], the immune
system [13], cognition [14], et al. L. helveticus CCFM1263 has been shown to be highly effi-
cient in casein hydrolysis and the generation of bioactive peptides [15]. The dairy protein
hydrolysates of L. helveticus CCFM1263 would be a desirable agent for the development of
functional calcium chelates. Therefore, in the present study, we aimed to investigate the
characteristics of Lactobacillus helveticus-derived whey-calcium chelate (LHWCC) and its
effect on the calcium absorption and bone health of rats fed with low-calcium diets.

2. Materials and Methods
2.1. Materials

Skim milk powder (lactose > 51.8%, protein > 35.8%) was provided by Bright Dairy
Co., Ltd. (Shanghai, China). Chemicals, enzymes, and bile were purchased from Sigma
Aldrich (Shanghai, China). Pepsin (Sigma P6887) and pancreatin (Sigma, P7545 8 USP)
were of porcine origin, whereas bile (Sigma B8631) was of bovine origin. Lactobacillus
helveticus CCFM1263 was isolated from naturally fermented dairy products in China and
was deposited in the Culture Collection of Food Microorganisms (CCFM) of Jiangnan
University (Wuxi, China). The AIN-93G rodent diet was purchased from Jiangsu Xietong
Biology Co., Ltd. (Nanjing, Jiangsu, China). Nuclease-free water, FastPure cell/tissue
total RNA isolation kit V2, HiScript III RT SuperMix for qPCR (+gDNA wiper), and
ChamQ Universal SYBR qPCR Master Mix were purchased from Vazyme Biotech Co., Ltd.
(Nanjing, Jiangsu, China). The primers for TRPV5, TRPV6, PepT1, Calbindin-D9k, Na+/Ca2+

exchange mechanism (NCX), PMCA1b and β-actin were compounded by the Genewiz
Biotechnology Co., Ltd. (Suzhou, Jiangsu, China).

2.2. Preparation of Whey-Calcium Chelate

The preparation method described by Wang et al. [16] was used with moderate
modifications. The strains were sub-cultured three times in MRS medium and then twice
in sterile reconstituted skim milk (11% w/w) at 37 ◦C prior to use. After two washes in
Tris-HCl (pH 6.5), 2% cultures with an initial concentration of 1–5 × 108 CFU/mL were
inoculated with sterile reconstituted skim milk (11% w/w) and incubated for 48 h at 37 ◦C.
Then, 1 mol/L NaOH was added to adjust the sample to pH 4.6, heated at 95 ◦C for 10 min,
and centrifuged. After centrifugation, the supernatant was filtered with 0.45 µM organic
filter membrane and freeze-dried as lyophilized Lactobacillus helveticus whey (LHW). Then,
LHW was dissolved in deionized water at a concentration of 3 mg/mL and mixed with
CaCl2 at a Ca2+ concentration of 1 mg/mL. The solution was stirred at pH 7.6, 40 ◦C for
120 min [17]. Then, ethanol was added to remove free calcium from the samples. After
centrifugation, the precipitate was freeze-dried to obtain LHWCC (125.85 ± 4.31 mg Ca/g).

2.3. Fourier-Transform Infrared Spectroscopy (FT-IR)

The FT-IR spectrum of LHW and LHWCC was recorded from 4000 to 400 cm−1

using a Nicolet Summit FT-IR spectrometer iS50 (Thermo Fisher Scientific Inc., Waltham,
MA, USA).
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2.4. In Vitro Digestion

In vitro digestion was based on the standardized COST INFOGEST protocol [18].
In the digestion test, samples were taken at the beginning and end of the oral phase, at
0, 15, and 120 min of simulated gastric juice digestion, and at 0, 15, 30, 60, and 120 min of
simulated intestinal juice digestion. Then, the samples were centrifuged at 8000 r/min for
10 min at 4 ◦C, and the calcium concentration of the supernatant was measured.

2.5. Animal Experiments

Male SD rats (n = 48, 3 weeks old, 55 ± 10 g) were purchased from the Vital River
Laboratory Animal Technology Co., Ltd. (Beijing, China). The animal experimental protocol
was approved by the Animal Ethics and Welfare Committee of Jiangnan University (Wuxi,
China), and the IACUC Issue No. was JN.No 20230530S1200730[247]. Animal feeding
conditions met SPF level requirements, and during the entire experimental period, rats
were free to eat commercial food, which was prepared according to the AIN-93 [19] (normal
diet: 5000 mg Ca/kg; low-calcium diet: 1000 mg Ca/kg) [10], and drink freely. At the
beginning of the experiment, the initial body length, body weight, and tail length were
measured. During a 7-week experiment, the length and weight of rats were measured
every week. The rats in the control group were fed the normal diet and the remaining rats
were fed a low-Ca diet. The rats were randomly assigned into six groups, and the details of
the experimental design are shown in Figure 1.
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Figure 1. The flowchart of animal experiment. Note: the rats in the control group were fed the normal
diet (5000 mg Ca/kg), and the remaining rats were fed a low-Ca diet (1000 mg Ca/kg).

2.6. Analysis of Serum Biochemical Indexes

The serum levels of calcium and ALP in different groups of rats were analyzed with
analytical reagent kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China).

2.7. Analysis of Femur Length, Diameter, and Weight

The femurs that were cleaned of soft tissue were placed in a constant weight box
and dried thoroughly in the drying oven for 10 h until reaching constant weight (under
the condition that the lid is opened at 80 ◦C for 6 h and then closed at 115 ◦C for 4 h).
Then, the dry weight of the femur was weighed and the length of the femur was measured.
The diameter from the descending third rotor to the junction of the femoral shaft was
determined as the femoral diameter.

2.8. Analysis of Calcium Content in Femur

After being dried, a 100 mg femur was dissolved in 7 mL of 16 mol/L HNO3 to
determine calcium content by flame atomic absorption spectrometry (AA-240, Varian
Medical Systems, Palo Alto, CA, USA). The atomic absorbance was monitored at 422.7 nm,
and the Ca content in the femur was expressed on a mg/g dry basis [20].
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2.9. BMD and Bone Mass Measurements

The BMD of the femur was measured using a micro-CT (PerkinElmer Quantum GX,
Waltham, MA, USA). Bone and trabecular-related indexes of the proximal femoral were
obtained using the built-in software of the micro-CT. The operation parameters were as
follows: 90 kV tube potential, 88 µA tube current, 86 mm FOV, high-resolution scan mode,
4 min scanning time, and 0.1 mm Cu X-ray filter according to the method of Chen et al. [21].
Calculations included bone volume (BV), bone surface (BS), bone volume/tissue volume
(BV/TV), bone surface/tissue volume (BS/TV), trabecular separation (Tb.Sp), trabecular
thickness (Tb·Th), and connectivity density (Conn.D).

2.10. Bone Biomechanical Strength Measurements

A three-point bending mechanical test was performed on the left femur diaphysis
using a TA-XT plus texture analyzer (Stable Micro Systems, Godalming, Surrey, UK). The
maximum fracture force, i.e., the maximum bone load, was measured using a three-point
bending test at a test speed of 1 mm/s. The test was performed with a fulcrum span of
16 mm according to the method of Ye et al. [22] with slight modification.

2.11. Analysis of Calcium-Apparent Absorption and Retention Rate

The calcium intake and fecal and urinary calcium content were determined by AAS
during the last 3 days of treatment. The calcium metabolism was calculated according to
Wang et al. [23] with the following formula:

Apparent calcium absorption rate (ACAR) (%) = (Calcium Intake −
Fecal Calcium)/Calcium Intake × 100%.

(1)

Calcium accumulation rate (CAR) (%) = (Calcium Intake − Fecal Calcium −
Urinary Calcium)/Calcium Intake × 100%.

(2)

2.12. RNA Extraction and Real-Time RT-PCR

The intestinal tissue was ground and the RNA was obtained according to the in-
structions of the total RNA extraction kit. The nucleic acid purity (OD260/280 = 1.8–2.2,
OD260/230 ≥ 2.0) and concentration were tested. The samples were reverse transcribed
into cDNA according to the instructions of the reverse transcription kit. The primer ref-
erence was Li et al. [6], and the gene primer sequence was shown in Table 1. β-Actin
was selected as the housekeeping gene. Relative gene expressions were calculated by the
comparative 2−∆∆Ct method.

Table 1. Primers used in the measurement of mRNA expression.

Gene Primer Sequence

TRPV6
forward 5′-CACCCAGTGGACGTATGGAC-3′

reverse 5′-CTCGTGCGGTTATTGGTCCT-3′

TRPV5
forward 5′-ACGTATGGACCCCTGACCTC-3′

reverse 5′-GAATTTGGCGAGCCTCTCGT-3′

Calbindin-D9K
forward 5′-GGCAACCAGACACCAGAATGA-3′

reverse 5′-TGACAACTGGTCTGGATCACC-3′

NCX-1
forward 5′-TTGAGATTGGAGAACCCCGT-3′

reverse 5′-ATGTGAAGCCACCAAGCTCA-3′

PMCA1b
forward 5′-AGTGATTGTTGCTTTTACGGGC-3′

reverse 5′-AGAGACTCAGTGGGTGGTTCCG-3′

PepT1 forward 5′-ATCTACCATACGTTTGTTGC-3′

reverse 5′-CTGGGGCTGAAACTTCTT-3′

β-Actin
forward 5′-CACCCAGCACAATGAAGATCAAGAT-3′

reverse 5′-CCAGTTTTTAAATCCTGAGTCAAGC-3′
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2.13. Statistical Analysis

Data for each group were expressed as mean ± SD (n = 8). For data analysis, one-way
analysis of variance (ANOVA) was conducted using IBM SPSS Statistics 26 software (SPSS
Inc, Chicago, IL, USA). Graphing and data processing were performed using GraphPad
Prism 9.0.

3. Results
3.1. Fourier Transform-Infrared Spectroscopy of LHWCC

The infrared spectra of LHW and LHWCC in the wavelength range of 400–4000 cm−1

are shown in Figure 2, and the infrared spectrum of the calcium chelate showed signif-
icant changes. LHWCC had obvious fluctuations at 3410 cm−1, 2104 cm−1, 1591 cm−1,
1422 cm−1, and 1072 cm−1. The characteristic peaks of amide A and amide B bands in
the sample at 3388 cm−1 are significantly weakened and shifted, which was caused by
the inductive effect or the dipole field effect, indicating the binding of calcium ions with
N-H [24]. The absorption peak of LHW at 2170 cm−1 corresponding to the phosphate
group O=P-O-H disappeared after chelation, indicating that H in the phosphate group was
replaced by calcium ions. The absorption peak of LHWCC weakened at 1600 cm−1 and
1400 cm−1, indicating that -COOH participated in the formation of chelates in the form of
covalent bonds [25] with calcium ions to form -COO-Ca. The absorption peak of LHWCC
shifted at 1072 cm−1, which might be due to the formation of C-O-Ca by the combination of
-CO bond and calcium [26]. The changes in absorption peaks in the range of 800–500 cm−1

could be attributed to the effect of chelation on the vibration of C-H and N-H bonds in
carboxyl oxygen atoms, amino nitrogen atoms, and phosphate ions in compounds such as
peptides in LHWCC.
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3.2. Soluble Calcium Content of LHWCC In Vitro Digestion

As shown in Figure 3, there were significant differences in the dissolution characteris-
tics of different calcium agents during the simulated oral digestion stage. Ca3(PO4)2 was
almost insoluble in the simulated saliva, and the solubility of LHWCC was around 30%.
In the simulated gastric digestion stage, the solubility of both calcium agents significantly
increased as an acidic environment (pH 3.0) increased calcium solubility [9]. Ca3(PO4)2
was almost completely dissolved when entering the simulated gastric juice and subse-
quently maintained a solubility of over 90%. The solubility of LHWCC during gastric
digestion increased with time, from the initial 70% to 100%, which was consistent with
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grape seed polypeptide calcium chelate [27]. This indicated that LHWCC has a certain
sustained-release effect, which can reduce the rapid release of calcium ions in the stomach.
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and LHWCC during in vitro digestion.

After entering the intestinal buffer, the solubility of Ca3(PO4)2 rapidly decreased to
20% and gradually decreased to 3% with time. On the other hand, the solubility of LHWCC
slightly decreased to 70% when entering the alkaline environment of the intestine and
remained stable afterward.

3.3. Effect of LHWCC on Weight, Body Length, and Tail Length Gain

Figure S1 shows the weight changes in rats during the experiment. The weight of rats
in different treatment groups showed steady growth, and there was no significant difference
among the groups in body weight and length (p > 0.05). The low calcium treatment resulted
in slow tail growth. The treatments with LHW, co-administration of Ca3(PO4)2 with LHW
(LHWC), and LHWCC significantly increased the tail length of rats, whereas Ca3(PO4)2
had no significant effect on tail length compared to the model group.

3.4. Effect of LHWCC on Femoral and Serum Indicators

Figure 4A–F summarizes the changes in femoral and serum biochemical parameters.
A low-calcium diet led to a significant decrease in bone length (p < 0.001), bone diameter
(p < 0.01), bone weight (p < 0.005), and bone and serum calcium content (p < 0.005), with a
significant increase in ALP activity (p < 0.005). Treatments with Ca3(PO4)2 and LHWCC
significantly increased bone length, as well as bone and serum calcium content, with no
significant difference in most indicators among the groups fed with Ca3(PO4)2, LHWC,
and LHWCC (p > 0.05). Ca3(PO4)2, LHWC, and LHWCC treatment resulted in significantly
lower ALP activity compared to the model group (p < 0.001), with a stronger effect of
LHWC and LHWCC on ALP activity than that of the Ca3(PO4)2 (p < 0.001). LHW had no
effect on serum ALP activity in rats and the weight of the femur (p < 0.05), whereas the
intake of LHW had an impact on both femur and serum calcium content. These results
indicated that supplementation of LHW was beneficial for restoring femoral morphology
and calcification in the state of low calcium, whereas LHWCC was as effective in the
improvement of the serum and femoral indicators as Ca3(PO4)2, and even more effective in
the improvement of ALP activity in calcium-deficient rats.
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3.5. Bone Biomechanical Parameters and Histomorphometry

The three-dimensional (3D) reconstruction of micro-CT images of the left femoral
trabecular bone is shown in Figure 5. Compared with the control group, the bone tra-
beculae of low-calcium rats were sparse, with large gaps and obvious damage in their
morphology and network connectivity structure. Supplementation with Ca3(PO4)2, LHWC,
and LHWCC all resulted in a significant effect on the bone trabeculae and an increase in
thickness and connectivity, with LHWCC as the improvement of the microstructure of bone
trabeculae and enhancing bone quality. On the other hand, LHW only showed a weak
influence on the morphology of bone trabeculae.

The results of bone mass are shown in Figure 6. Low calcium treatment resulted in
a significant decrease in femoral bone density (p < 0.001), BS/TV (p < 0.001), and BV/TV
(p < 0.005) in rats (Figure 6A–C). After treatment, femoral BMD improved significantly
in all groups, and the BMD of rats in LHWCC group was the highest. Bone mass was
remarkably recovered with the intervention of Ca3(PO4)2, LHW and LHWC, and LHWCC,
with LHWCC showing a stronger regulating effect on bone loss than Ca3(PO4)2 (p < 0.05).

Low calcium treatment significantly reduced the thickness and the connectivity density
(p < 0.001) and increased the separation of bone trabeculae (p < 0.05) (Figure 6D–F) as
indicated by indexes such as Th.Tb (an indicator of the thickness of the trabecular bone),
Th.Sp (an indicator of the bone trabecular separation), and Conn.D (an indicator of the
degree of trabecular bone separation). Both Ca3(PO4)2 and LHWCC showed significant
effects on promoting bone trabeculae. The coadministration of LHW and Ca3(PO4)2 had
a significant effect on restoring Th.Tb (p < 0.05) and Conn.D (p < 0.005), with no effect on
Th.Sp, whereas no influence on bone trabeculae was recorded by LHW treatment.
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3.6. Effects on Bone Biomechanical Strength

From Figure 7, it can be seen that low calcium intake resulted in significant decreases
in the maximum bone load (p < 0.005) and maximum deflection. Supplementation with
Ca3(PO4)2, LHWC, and LHWCC significantly improved bone biomechanics (p < 0.001)
in rats, whereas LHW showed no effect. There was no significant difference between the
regulating effect of Ca3(PO4)2 and LHWCC on hardness, whereas LHWCC performed
better than Ca3(PO4)2 in fracturability.
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3.7. Effect of LHWCC on Calcium Balance

From Figure 8, it can be seen that the apparent calcium absorption rate (ACAR) and
calcium accumulation rate (CAR) of the model group were significantly increased compared
to the control group (p < 0.001), which might be due to pathological compensation formed
to maintain calcium concentration in the body in a calcium-deficient state [5]. Ca3(PO4)2
treatment significantly decreased both ACAR and CAR. Although LHW treatment did not
result in changes in calcium balance, the combination of Ca3(PO4)2 with LHW showed
higher calcium absorption rates than that of Ca3(PO4)2 alone (p < 0.001), indicating that
LHW could promote the absorption and accumulation of inorganic calcium in rats. When
LHW was chelated with calcium, its apparent absorption rate increased to 80%, indicating
that the chelation had a beneficial effect on calcium absorption and retention in calcium-
deficient rats compared to inorganic calcium in the body [28], which is consistent with the
pattern of calcium release of Ca3(PO4)2 and LHWCC during in vitro digestion.
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3.8. Gene Expression of Corresponding Receptors in the Intestines of Rats

The expression of calcium absorption-related genes in the small intestine of rats is
shown in Figure 9, and the inorganic calcium salt and organic chelates varied in the
regulation of the related gene expression. The expression levels of TRPV5, TRPV6, PepT1,
and Calbindin-D9k significantly increased by LHWC and LHWCC treatments, whereas
Ca3(PO4)2 showed notable elevation of the expression of TRPV6 and PMCA1b. In addition,
compared to the control, LHWCC showed increased expression levels of TRPV5/6, PepT1,
and Calbindin D9k. Among all the treatments, LHWCC showed the strongest regulating
effect. On the other hand, LHW only significantly increased the expression of PepT1.
However, none of the treatments had an impact on the expression of NCX-1.
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4. Discussion

The FT-IR spectra were used to provide more information on the binding of metal
ions with organic ligand groups of LHW, showing that the main binding sites of LHWCC
included carboxyl oxygen atoms, amino nitrogen atoms, and phosphate ions, which was
similar to CPPH-Ca [10].

Calcium in food can be dissolved into ionic form through gastric acid digestion but it
is prone to precipitate in the relatively alkaline environments of the small intestine, leading
to a decrease in bioavailability [29]. In vitro models must be created to investigate the
calcium release patterns of different calcium supplements [30]. Compared to Ca3(PO4)2,
LHWCC was less affected by pH, which was similar to the in vitro digestion results of
CPP-Ca [31]. Jiang et al. [27] found that most peptide calcium chelates were soluble after
digestion, but the dialysis rate was significantly lower than the solubility. Therefore, it is
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speculated that calcium ions remained in a binding state to macromolecules during in vitro
digestion. The pattern of sustained release of calcium and high solubility of LHWCC during
simulated intestinal digestion might be partially attributed to the presence of peptides
in LHW [15,32] as supported by the upregulation of PepT1 in vivo. Anyway, previous
research found that during the simulated in vitro digestion process of the intestine, the
solubility of CaCO3 was between 60 and 80% [9], whereas that of Ca3(PO4)2 was below
20%, with significant differences in solubility. The low solubility constant of Ca3(PO4)2
led to its low calcium solubility during simulated intestinal digestion. However, in vivo
experiments showed that the apparent absorption rate in rats of CaCO3 was about 40% [33],
which is close to Ca3(PO4)2 (45%) in the present study. Our results also indicated that
among the calcium absorption-related genes analyzed in the present study, Ca3(PO4)2
only upregulated the expression of the TRPV6 channel, similar to the previous study on
CaCO3 [34,35]. Therefore, although the two inorganic calcium salts Ca3(PO4)2 and CaCO3
had significant differences in solubility in vitro, they shared similarities in both the effect
and mechanism of the regulation of calcium absorption in vivo.

Low-calcium diets may cause microarchitectural deterioration of bone tissue, leading
to increased bone fragility and risk of fracture [36]. The present study found that Ca3(PO4)2,
LHWC, and LHWCC significantly restored serum biochemical parameters, bone morphol-
ogy, and the bone biomechanical property of low-calcium-fed rats, whereas LHW only
upregulated the PepT1 expression level to improve serum and bone calcium content in rats.
Chelates such as LHWCC showed a stronger influence on trabecular microstructure and
calcium absorption than Ca3(PO4)2 and the co-administration of LHW and Ca3(PO4)2. Bone
microstructure, especially trabecular microstructure, plays an important role in monitoring
calcium deposition in bone and characterizing bone growth and development levels [37,38].
Bone trabeculae have a certain shape and distance in the bone marrow cavity, cross-linking
with each other to form a network structure, and are mainly responsible for maintaining
bone strength, bearing loads, and hematopoietic functions [39]. Compared with Ca3(PO4)2
and LHWC, LHWCC increased bone mass by promoting the number and thickness of
bone trabeculae and making the cross-linking of bone trabeculae denser, highlighting the
improvement of efficiency of promotion of bone health through the conversion of inorganic
calcium supplements to organic agents, as previously reported [33,40,41].

The small intestine is the main organ responsible for calcium absorption, responsible
for over 90% of calcium absorption in the human body [29]. The process of calcium
absorption in intestinal cells can be roughly divided into three steps: calcium ions enter
the cells through TRPV5/6; calcium binds to Calbindin-D9k for intracellular transport;
it is pumped into the bloodstream by NCX-1 and PMCA1b. The main rate-limiting step
of the above process is to absorb calcium into cells, which means that the efficiency of
active calcium transport is mainly related to channel proteins such as TRPV5/6 [7]. As
shown in Figure 10, both LHWCC and CPPH-Ca exerted promotive effects on calcium
absorption via regulation of the gene expression of TRPV5, TRPV6, Calbinding-D9k, and
PMCA1b. In addition, it is reported that peptide calcium chelates can resist gastric digestion
as short peptides enter the intestine. The main pathways currently known to transport
peptides through the intestinal cells are the PepT1 pathway and the cell-penetrating peptide
pathway, both of which are transcellular pathways. The PepT1 pathway is a widely specific
peptide transporter protein that can transport almost all dipeptides and tripeptides [4]. The
results have shown that LHWCC also regulated the higher expression level of PepT1 than
Ca3(PO4)2 and LHWC, which would facilitate the transition of peptides into the intestine
and contribute to the enhancement of calcium absorption indirectly due to the increased
proportion of oligopeptides in protein hydrolysates after chelating with calcium [42].
Therefore, among the various calcium chelates, protein hydrolysate-calcium chelates are
unique as they could upregulate not only the pathway of calcium absorption such as
TRPV5, TRPV6, and Calbinding-D9k, but also an indirect pathway potentially beneficial
for bone health via PepT1.
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On the other hand, LHWCC significantly increased calcium absorption in vivo com-
pared to Ca3(PO4)2, which may be due to LHWCC significantly upregulating the gene
expression of TRPV5 and TRPV6, whereas calcium phosphate can only significantly up-
regulate the TRPV6 pathway. The expression level of Calbindin-D9k was also higher in
LHWCC. TRPV5 and TRPV6 have 75% homology and their main differences are in the N
and C terminal tails. Both channels permeate calcium ions, and TRPV5 exhibits stronger ion
selectivity. TPPV6 can be regulated by vitamin D3, as well as Calbindin-D9k and PMCA1b,
which may be regulated through interactions with these calcium transporters and enzymes
involved in intestinal calcium absorption and increased parathyroid hormone (PTH) [43,44].
Meanwhile, PTH also indirectly affects the content of 1,25(OH)2D3, the hormonal form of
vitamin D [45]. Calbindin-D9k is regulated at the transcriptional and post-transcriptional
levels by the serum level of 1,25(OH)2D3 [46]. Therefore, the increased expression levels
of TRPV6 and Calbindin-D9k in LHWCC may be related to PTH and 1,25(OH)2D3 in the
serum of rats. Further experiments in this aspect would be desirable for understanding the
mechanism of the effect of LHWCC on calcium absorption and bone health.

5. Conclusions

In conclusion, LHWCC exerted a notable impact on bone health. Compared with
inorganic calcium, LHWCC had a higher solubility during in vitro digestion and had
promotive effects on serum biochemical parameters, bone microstructure, and calcium
absorption in vivo. LHWCC treatment exerted promotive effects on calcium absorption by
upregulating TRPV6, TRPV5, PepT1, Calbindin-D9k, and PMCA1b-signaling pathways in
intestines, thereby improving serum and bone calcium concentration and restoring bone
biomechanical parameters and histomorphometry.
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