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Abstract: Non-alcoholic fatty liver disease (NAFLD) is a common chronic hepatic condition whose
impact on human health is increasingly significant. The imbalance of the gut microbiome, linked to
insulin resistance, heightened intestinal permeability, and pro-inflammatory reactions, may be the
linchpin in the development of NAFLD. In our research, the impact of Lactiplantibacillus plantarum
ZDY2013 administration for 12 weeks on gut microbiota dysbiosis induced by a high-fat, high-
fructose, high-cholesterol (FHHC) diet in male C57BL/6n mice was investigated. Research results
presented that the intervention of L. plantarum ZDY2013 in mice fed with the FHHC diet could
restore their liver function and regulate oxidative stress. Compared to mice in the model group,
the intervention of L. plantarum ZDY2013 significantly regulated the gut microbiota, inhibited the
LPS/NF-κB pathway, and led to a lower level of colonic inflammation in the mice administered with
L. plantarum ZDY2013. It also improved insulin resistance to regulate the PI3K/Akt pathway and
lipid metabolism, thereby resulting in reduced fat accumulation in the liver. The above results suggest
that the intervention of L. plantarum ZDY2013 can hinder the progression of diet-induced NAFLD by
reducing inflammation to regulate the PI3K/Akt pathway and regulating gut microbiota disturbance.

Keywords: NAFLD; L. plantarum; gut microbiota; PI3K/Akt pathway; LPS/NF-κB pathway

1. Introduction

Characterized by an overabundance of fat accumulation (with fat filtration being >5%
of hepatocytes) and no evident alcohol consumption, non-alcoholic fatty liver disease
(NAFLD) is a metabolic syndrome that ranges from simple hepar adiposum to non-alcoholic
steatohepatitis and cirrhosis, and even to hepatocellular carcinoma [1]. A large number of
clinical studies show that NAFLD is associated with heightened rates of both intrahepatic
illness morbidity and mortality, as well as an augmented likelihood of various extrahepatic
disorders [2]. Based on the statistics of global epidemiological research, the morbidity of
NAFLD is about 22.1–28.65% of the world’s population, and the mortality rate of patients
with NAFLD will increase progressively with worsening NAFLD; even simple fatty liver
disease will increase the risk of death by 71% [3,4]. With the rapid increase of its prevalence,
NAFLD poses a great threat to human health and has proved to be a worldwide public
health issue [5]. However, in addition to lifestyle interventions such as diet interventions
and regular exercise, there is a scarcity of drugs approved by regulatory agencies for
the treatment of NAFLD [6]. Consequently, finding effective treatment is necessary to
improve NAFLD.
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At present, the widely accepted theory of the pathogenesis of NAFLD is a “multiple-
hit model”, involving the interaction of genetic, neuroendocrine disorders, oxidative stress,
inflammatory response, intestinal microbiota disorders, environmental factors, and alter-
ations in the interorgan and intertissue communication dynamics [7]. Intestinal microbiota
disorders, which are closely associated with inflammatory response, lipid deposition, ox-
idative stress, and insulin resistance (IR), play an indispensable role in the occurrence and
development of NAFLD [8]. Intestinal microbiota disorders can promote intestinal inflam-
mation to enlarge intestinal permeability, causing microbes, microbial products, and toxins
to translocate from the gut into the hepar by means of the portal vein, thereby elevating the
likelihood of NAFLD progression by increasing hepatic inflammation [9]. In addition, after
the introduction of intestinal microbiota from obese mice, the energy absorption efficiency
of sterile mice was improved, and the body weight was significantly increased, suggesting
that the gut microbiota of obese mice can absorb more energy and have an important effect
on the occurrence of obesity [10]. Therefore, regulating gut microbiota dysbiosis may be an
effective strategy for therapeutic targeting to ameliorate NAFLD.

Probiotics can arrive at the gut in a vigorous state, thereby generating a salutary impact
on health [11]. Probiotics also can ameliorate gut microbiota dysbiosis and decrease the
production of detrimental metabolites; therefore, probiotic supplements have application
potential in the treatment of NAFLD [12]. A preclinical study has suggested that probiotic
replenishers could colonize the intestinal tract, increase beneficial microbiota, and improve
intestinal endotoxemia, thereby ameliorating the liver inflammatory response and delaying
the progression of NAFLD [13]. L. plantarum strains K2 and K6 ameliorated NAFLD by
improving liver function, lipogenesis-related genes, and oxidative stress [14]. Furthermore,
the study has shown that L. plantarum NA136 ameliorated NAFLD by regulating intestinal
microbiota and reducing inflammation [15].

Lactiplantibacillus plantarum ZDY2013 was isolated from Chinese traditional fermented
acid beans, which exhibited antioxidant, anti-inflammatory, and good intestinal coloniza-
tion abilities [16]. In addition, L. plantarum ZDY2013 can regulate the intestinal microbiota
and improve intestinal permeability to alleviate inflammation [17]. In preparing the ex-
periment, we found that L. plantarum ZDY2013 has a good cholesterol-lowering ability.
Therefore, this research aimed to elucidate the impact of L. plantarum ZDY2013 intervention
on the development of diet-induced NAFLD, as well as to delineate the potential molecular
mechanisms implicated.

2. Materials and Methods
2.1. Strain

Under 37 ◦C and anaerobic (5.0% carbon dioxide, 10% hydrogen, 85% nitrogen)
conditions, L. plantarum ZDY2013 was cultured in sterile MRS broth (Shanghai Fusheng
Industrial Co., Ltd., Shanghai, China) in an anaerobic incubator (Gene Science, San Diego,
CA, USA) for 24 h. The bacterial liquid was centrifuged (5000× g, 5 min), and the thalli were
washed with a sterile 1× PBS buffer. L. plantarum ZDY2013 was preserved in the China
Center for Type Culture Collection, with the preservation number CCTCC NO: M 2014170.

2.2. Cholesterol-Lowering Capability

In a sterile MRS–CHOL medium, bacterial cultures were inoculated at a concentration
of 2% (v/v) and incubated under the anaerobic conditions mentioned above (37 ◦C, 24 h).
This medium was an MRS medium supplemented with 0.1 mg/mL cholesterol. The
determination of the cholesterol-lowering ability of the strain referred to the method of
Azat et al. [18].

2.3. Animals and Intervention

Moreover, 24 five-week-old SPF male C57BL/6n mice (Beijing Vital River Laboratory
Animal Technology Co., Ltd., Beijing, China) were acclimated for one week under standard
conditions at the animal facility of Nanchang Royo Biotech, Co., Ltd., Nanchang, China,
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with a 12 h light/dark cycle, during which food and water were freely available. After the
adaptation period ended, all mice were randomly divided into three groups (n = 8/group)
using a random number table. Mice in the ND group (normal diet group) were provided
with a normal diet (19.5% protein, 4.6% fat, 2% fiber, SPF (Beijing) Biotechnology Co., Ltd.,
Beijing, China) and water. Mice in the MD group (model group) and the LD group (L. plan-
tarum ZDY2013 administration group) were given an HFFC diet (40% fat, 22% fructose,
2% cholesterol, Trophic Animal Feed High-Tech Co., Ltd., Nantong, China) and normal
drinking water [19]. Meanwhile, the ND group and the MD group were orally gavaged
with 0.1 mL PBS, and the LD group was orally gavaged with 0.1 mL 1 × 109 CFU/mL
L. plantarum ZDY2013. The body weight of mice was transcribed every four days. Mice
were euthanized with ether after intervention for 12 weeks. Liver samples, cecum contents,
serum, and colons were gathered and saved at −80 ◦C. We referred to the method of Chen
et al. to calculate the liver weight index and Lee’s index [20].

2.4. Biochemical Analyses in the Serum and Liver

Furthermore, 0.1 g liver samples were homogenized in 0.9 mL sterile normal saline,
and the homogenized liquid was centrifuged (4 ◦C, 5000× g, 10 min). The levels of blood
glucose (Kit Number: F006-1-1), high-density lipoprotein cholesterol (HDL-C, Kit Number:
A112-1-1), low-density lipoprotein cholesterol (LDL-C, Kit Number: A113-1-1), total choles-
terol (TC, Kit Number: A111-1-1), triglycerides (TG, Kit Number: A110-1-1), aspartate
aminotransferase (AST, Kit Number: C010-2-1), alanine aminotransferase (ALT, Kit Number:
C009-2-1), superoxide dismutase (SOD, Kit Number: A001-3-2), catalase (CAT, Kit Number:
A007-2-1), glutathione (GSH, Kit Number: A006-2-1), and malondialdehyde (MDA, Kit
Number: A003-1-2) were measured using biochemical kits. The above-mentioned kits all
came from Nanjing Jiancheng Bioengineering Institute, Nanjing, China.

2.5. Inflammatory Cytokines and IR

The levels of serum lipopolysaccharide (LPS, Kit Number: MM-0634M1), insulin
(INS, Kit Number: MM-0579M1), IKKβ (Kit Number: MM-44844M1), IκB-α (Kit Number:
MM-45167M1), and NF-κB (Kit Number: MM-44130M1were measured by using ELISA kit
(Jiangsu Meimian Industrial Co., Ltd., Yancheng, China). The levels of Beclin1 (Kit Number:
HB-P9S3110X), ATG5 (Kit Number: HB-P9S2003X), and LC3-II (Kit Number: HB-P9S1485X)
in serum were measured by using an ELISA kit (Huabang BIO Co., Ltd., Shanghai, China).
Insulin resistance in mice was assessed using the homeostasis model assessment for insulin
resistance (HOMA-IR) and the insulin sensitivity index (ISI) [21].

2.6. Histological Staining

Frozen liver samples were embedded in an OCT compound and cut to 8 µm thickness
with the intention of conducting Oil Red O staining, Hematoxylin and Eosin (H&E) staining,
or Masson’s trichrome staining on 8 µm-thick polyformaldehyde-fixed liver or colon tissue.
The images of the stained slices were obtained by an upright microscope (NIKON Eclipse
ci, Nikon Precision Co., Ltd., Shanghai, China). These processes were completed at Wuhan
Servicebio Technology Co., Ltd. (Wuhan, China). To prevent overestimating the impact of
L. plantarum ZDY2013 due to non-blind outcome assessment, histological staining images
were assessed by three study members who were blinded to the experimental grouping.

2.7. 16S rRNA Sequencing

Initially, DNA extraction was performed on the cecal contents, which was then fol-
lowed by purification and subsequent quantification processes. Afterward, the high-
throughput sequencing protocol and subsequent analysis process referred to our labora-
tory’s previous research [22]. The specific sequencing process was carried out by Biomarker
Tech (Beijing, China).
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2.8. Western Blot

Proteins were abstracted from liver tissue using a lysis solution (Beyotime, Shanghai,
China) with 0.5 mM PMSF and phosphatase inhibitors. Protein concentrations were de-
termined to calculate the loading amount. SDS-PAGE was performed on proteins using a
10% acrylamide gel. The specific operation process of protein immunoblotting also referred
to a previous study [23]. Antibodies against t-Akt, p-Akt, SREBP-1c, and β-actin were
from Beyotime Biotech, Shanghai, China. The secondary antibodies were from Proteintech
Group, Inc., Wuhan, China.

2.9. Gene Expression Analysis

Through the utilization of the RNA extraction kit (GenStar, Beijing, China), high-
quality RNA was successfully obtained from the liver and colon. Subsequently, the cDNA
synthesis was carried out with the aid of a cDNA synthesis kit (Takara, Otsu, Japan).
Relative mRNA expression of inflammation, tight junction proteins, fat synthesis, and
PI3K-Akt pathway-related genes in the colon and liver was assessed by a three-step PCR
reaction procedure and normalized using β-actin level as the standard [23]. Supplementary
Table S1 lists the sequences of the primers.

2.10. Statistical Analysis

Data were analyzed by GraphPad Prism 8 software, provided by GraphPad Software,
located in La Jolla, CA, USA. All results are exhibited as the means ± standard deviation
(S.D.). One-way ANOVA was used to evaluate the differences between groups, and we
subsequently performed Tukey’s HSD for multiple pairwise comparisons. p = 0.05 was the
significance threshold. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

3. Result
3.1. Cholesterol-Lowering Capability

The cholesterol removal rate of L. plantarum ZDY2013 is 63.3%, which is superior to
that of L. rhamnosus GG (Table 1). The survival rates of L. plantarum ZDY2013 and LGG
in MRSC broth were 79.6% and 71.7%, respectively. The above results indicated that L.
plantarum ZDY2013 might have a good cholesterol-lowering capability.

Table 1. The cholesterol-lowing capability of L. plantarum ZDY2013.

Items L. plantarum ZDY2013 LGG

The cholesterol-clearance rate (%) 63.3 ± 0.01 * 57.7 ± 0.04
The survival rate (%) 79.6 ± 0.27 * 71.7 ± 0.26

* p < 0.05; * is compared with LGG.

3.2. L. plantarum ZDY2013 Intervention Reduced the Liver Fat Accumulation in Mice Fed with
HFFC Diet

Hepatic lipid deposits were assessed to determine whether the NAFLD model was
successful. In the MD mice, the liver weight, Lee’s coefficient, and liver index were evidently
greater than in the ND mice. However, in the LD mice, the intervention of L. plantarum
ZDY2013 led to observably lower levels of the above indicators compared to the MD mice
(Table 2). The weight gain of mice was evidently higher in the MD group than the ND
group, but that in the LD group was obviously lower in comparison with the MD group
(Figure 1A). The blood lipid levels in the MD mice were evidently higher than in the ND
mice, while the LD mice exhibited observably lower levels of TC, TG, and LDL-C than the
MD mice (Figure 1B,C). Moreover, the differences in the HDL-C levels of the liver among
all groups were not significant. The above findings exhibit that the long-term intake of an
HFFC diet caused an obvious increase in body weight and liver lipids in mice.
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Table 2. Liver weight and Lee’s index.

Items ND MD LD

Liver weight (g/each) 1.18 ± 0.05 *** 1.54 ± 0.13 1.24 ± 0.09 ***
Liver index (%) 4.44 ± 0.27 * 4.80 ± 0.16 4.27 ± 0.15 **

Lee’s index 3.08 ± 0.05 *** 3.39 ± 0.06 3.25 ± 0.06 **
* p < 0.05; ** p < 0.01; *** p < 0.001; * is compared with MD.
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Figure 1. Impacts of L. plantarum ZDY2013 on body weight and biochemical parameters (A) Changes
in body weight of mice; the levels of TC, TG, HDL-C and LDL-C in serum (B) and liver (C). * p < 0.05;
** p < 0.01; *** p < 0.001; **** p < 0.0001; ns, not significant.

3.3. L. plantarum ZDY2013 Intervention Alleviated Liver Dysfunction in Mice Fed with
HFFC Diet

In this study, H&E staining, Oil Red O staining, and Masson staining of liver samples
were used to assay histological changes. As shown in Figure 2A, moderate-to-marked
macrovesicular steatosis was developed in the MD mice via H&E staining, whereas the
steatosis grade was great lower in the LD group. Compared with the ND mice, the MD
mice showed a notable accumulation of liver lipid droplets, as revealed by Oil Red O
staining, while the LD mice were significantly lower in liver lipid droplets compared to the
MD mice. Masson staining revealed that, compared to the ND mice, the MD mice exhibited
significant liver collagen deposition, while the LD mice showed significantly lower liver
collagen deposition compared to the MD mice.
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(A) hepatic H&E staining, Oil Red O staining and Masson staining (200×); (B) serum and (C) hepatic
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By measuring the enzymatic activities (AST and ALT), we investigated whether L. plan-
tarum ZDY2013 could alleviate liver dysfunction in mice fed with an HFFC diet. Compared
with the ND mice, the MD mice had significantly lower activities of AST and ALT, while
those were similar in the LD and ND groups.

3.4. L. plantarum ZDY2013 Intervention Relieved Hepatic Oxidative Stress and Inhibited
Autophagic Pathway in Mice Fed with HFFC Diet

The reduction in antioxidant capacity could result in lipid peroxidation and hepatic
damage [24]. To explore the impact of L. plantarum ZDY2013 on liver oxidative stress,
the activities of SOD and CAT, as well as the levels of GSH and malondialdehyde MDA,
in the liver were assessed. In contrast to the ND group, mice exhibited lower SOD and
CAT activities along with higher GSH and MDA content in the MD group (Figure 2D–G).
However, the related conditions were alleviated in the LD group mice.
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In MD mice, the content of autophagy proteins was evidently higher compared with
the ND group, including Beclin1, ATG5, and LC3-II. Nevertheless, the content of these
proteins in the LD group with L. plantarum ZDY2013 administration was observably lower
compared with the MD group (Figure 2H). The above results present that L. plantarum
ZDY2013 could relieve autophagy disorders in mice fed with an HFFC diet.

3.5. L. plantarum ZDY2013 Intervention Improved IR in Mice Fed with HFFC Diet

Insulin resistance is a hallmark of NAFLD, which is important to the pathogenesis
and progression of diseases associated with obesity. Moreover, IR is an important factor
in determining the progression from NAFLD to NASH [25]. In elucidating the impact of
L. plantarum ZDY2013 administration on IR in mice fed with an HFFC diet, we detected the
content of serum glucose and insulin. Compared to the ND mice, the MD mice exhibited
significantly higher levels of blood glucose, insulin content, and HOMA-IR but lower ISI
values. Compared with the MD mice, the LD mice showed evidently lower levels of blood
glucose, insulin content, and HOMA-IR, while ISI was higher (Figure 3A–D). Therefore,
L. plantarum ZDY2013 improved IR in mice fed with an HFFC diet.
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3.6. L. plantarum ZDY2013 Intervention Regulated Intestinal Microbiota Disturbance in Mice Fed
with HFFC Diet

Alpha and beta diversity were analyzed to assess the intestinal microbiota differences
among the groups. The MD group had significantly lower alpha diversity indexes (Shan-
non, 3.75 ± 0.70, and Simpson, 0.81 ± 0.09) than the ND group (Shannon, 5.35 ± 0.18,
and Simpson, 0.93 ± 0.01). After the intervention of L. plantarum ZDY2013, the two alpha
diversity indices were evidently higher in comparison with the MD group (Figure 4A).
β-diversity analysis (PCoA and UPGMA) showed that the composition of intestinal micro-
biota in the LD group mice was analogous to the ND group mice but inconsistent with the
MD group mice (Figure 4B–D).

Through cluster analysis, the relative abundance of different taxa among different
samples was detected. Dominant phyla in these samples included Firmicutes, Bacteroidetes,
Proteobacteria, and Fusobacteria. In contrast to the ND mice, the abundances of Firmicutes,
Bacteroidetes, and Proteobacteria were lower, while the abundances of Verrucomicrobia and
Fusobacteria were higher in the MD mice. In contrast to the MD mice, the LD mice revealed
higher abundances of Firmicutes, Bacteroidetes, and Proteobacteria, while the abundance of
Fusobacteria and Verrucomicrobia was lower (Figure 4E). Compared to the LD mice, the
lower abundance of Bacteroidetes resulted in a higher Firmicutes/Bacteroidetes (F/B) ratio in
the MD mice (Figure 4F). In contrast to the ND mice, Lachnospiraceae, Desulfovibrionaceae,
Prevotellaceae, and Muribaculaceae showed lower abundance, whereas Akkermansiaceae and
Fusobacteriaceae showed higher abundance at the family level in the MD mice. L. plan-
tarum ZDY2013 administration recovered the microbiota structure at the family level
(Figure 4G). Compared with the ND mice, at the genus level, the abundances of Fusobac-
terium, Ruminococcaceae_UCG-005, and Akkermansiaceae were significantly higher, whereas
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the abundances of Lactobacillus, Blautia, and uncultured_bacterium_f _Muribaculaceae were ev-
idently lower in the MD mice. By contrast, L. plantarum ZDY2013 regulated the microbiota
structure, particularly increasing the abundance of Alloprevotella (Figure 4H).

Nutrients 2024, 16, x FOR PEER REVIEW 8 of 16 
 

 

Proteobacteria, and Fusobacteria. In contrast to the ND mice, the abundances of Firmicutes, 
Bacteroidetes, and Proteobacteria were lower, while the abundances of Verrucomicrobia and 
Fusobacteria were higher in the MD mice. In contrast to the MD mice, the LD mice revealed 
higher abundances of Firmicutes, Bacteroidetes, and Proteobacteria, while the abundance of 
Fusobacteria and Verrucomicrobia was lower (Figure 4E). Compared to the LD mice, the 
lower abundance of Bacteroidetes resulted in a higher Firmicutes/Bacteroidetes (F/B) ratio in 
the MD mice (Figure 4F). In contrast to the ND mice, Lachnospiraceae, Desulfovibrionaceae, 
Prevotellaceae, and Muribaculaceae showed lower abundance, whereas Akkermansiaceae and 
Fusobacteriaceae showed higher abundance at the family level in the MD mice. L. plantarum 
ZDY2013 administration recovered the microbiota structure at the family level (Figure 
4G). Compared with the ND mice, at the genus level, the abundances of Fusobacterium, 
Ruminococcaceae_UCG-005, and Akkermansiaceae were significantly higher, whereas the 
abundances of Lactobacillus, Blautia, and uncultured_bacterium_f_Muribaculaceae were evi-
dently lower in the MD mice. By contrast, L. plantarum ZDY2013 regulated the microbiota 
structure, particularly increasing the abundance of Alloprevotella (Figure 4H). 

 
Figure 4. Impacts of L. plantarum ZDY2013 on intestinal microbiota disturbance (A) Shannon and 
Simpson index; (B) PCoA plot; (C) Three-dimensional PCoA analysis chart; (D) UPGMA hierar-
chical clustering analysis; the intestinal bacterial composition at the levels of (E) the phylum, (G) 
family and (H) genus; (F) Firmicutes/Bacteroidetes ratio. * p < 0.05; ** p < 0.01; *** p < 0.001; ns, not 
significant. 

3.7. L. plantarum ZDY2013 Intervention Relieved Intestinal Inflammation in Mice Fed with 
HFFC Diet 

In general, intestinal microbiota disorders are accompanied by inflammation and in-
testinal barrier destruction. The extent of pathological damage in colonic tissue was 
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Simpson index; (B) PCoA plot; (C) Three-dimensional PCoA analysis chart; (D) UPGMA hierarchical
clustering analysis; the intestinal bacterial composition at the levels of (E) the phylum, (G) family
and (H) genus; (F) Firmicutes/Bacteroidetes ratio. * p < 0.05; ** p < 0.01; *** p < 0.001; ns, not significant.

3.7. L. plantarum ZDY2013 Intervention Relieved Intestinal Inflammation in Mice Fed with
HFFC Diet

In general, intestinal microbiota disorders are accompanied by inflammation and
intestinal barrier destruction. The extent of pathological damage in colonic tissue was
evaluated utilizing H&E staining. The MD group revealed a pronounced destruction of the
colon mucosa, accompanied by a significant infiltration of inflammatory cells, in contrast
to the ND group (Figure 5A). In addition, L. plantarum ZDY2013 intervention showed less
severe mucosal damage and slighter inflammatory cell infiltration compared with the MD
group. Therefore, in the mice fed with an HFFC diet, L. plantarum ZDY2013 intervention
could relieve colon pathological damage.

The mRNA quantitation of colonic inflammatory factors revealed that, in the MD mice,
the expression of NF-κB, TLR4, IκB-α, IFN-γ, TNF-α, and IL-6 was notably higher compared
with the ND mice. The aforementioned expressions in the LD mice were drastically lower
than those in the MD mice (Figure 5B). To explore whether mice with NAFLD had intestinal
barrier destruction and research the impact of L. plantarum ZDY2013 on the permeability of
the gut, the mRNA expression of colonic TJ proteins was detected. The mRNA expression
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levels of Claudin-3, Occludin, and ZO-1 were lower in the MD mice in comparison with the
ND mice, while such levels in the LD mice were higher than in the MD mice (Figure 5C).
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Intestinal barrier trauma may cause the seepage of LPS and pro-inflammatory molecules
out of the gut [26]. The serum LPS level was remarkably higher in the MD mice than the
ND mice due to the HFFC diet. However, it was distinctly lower after the intervention with
L. plantarum ZDY2013 compared to the MD mice (Figure 5D). In contrast to the ND group,
the MD group exhibited significantly lower serum IκB-α activity but higher activities of
NF-κB and IKKβ. Nevertheless, the activities of NF-κB and IKKβ were lower than in the
MD mice due to L. plantarum ZDY2013 intervention in the LD mice. Moreover, in the LD
and MD groups, the serum IκB-α levels were similar (Figure 5E–G). The above findings
indicate that L. plantarum ZDY2013 intervention promoted the mRNA expression of TJ
proteins to prevent LPS and inflammatory cytokine leakage from the gut.

3.8. L. plantarum ZDY2013 Intervention Relieved Liver Inflammation and Regulated Lipogenesis
through Regulating the PI3K/Akt Signaling Pathway

To explore whether L. plantarum ZDY2013 administration could attenuate liver in-
flammation in mice fed with an HFFC diet, the expression of hepatic inflammation-related
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mRNA was detected. In contrast to the ND mice, the mRNA expression of NF-κB, TLR4,
IκB-α, IFN-γ, TNF-α, and IL-6 was evidently higher in the MD mice. However, with L.
plantarum ZDY2013 intervention, the LD mice exhibited significantly lower expression
levels of the above factors compared to the MD mice (Figure 6A).
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Hepatic lipid metabolism is primarily regulated by multiple associated pathways, such
as fatty acid synthesis pathways and β-oxidation [27]. β-oxidation can indicate hepatic
lipid accumulation, as it is the critical way in lipid metabolism [28]. The mRNA expression
of genes concerning lipid oxidation (PPAR-γ and CPT-1α), lipogenesis (FAS, ACC, C/EBP-
α, and SREBP-1c), and PI3K/Akt pathway-related genes were investigated to explore the
impact of L. plantarum ZDY2013 on lipid deposition in the liver. In contrast to the ND
mice, the mRNA expression level of CPT1α was significantly lower in the MD mice, while
the mRNA expression of ACC, C/EBP-α, FAS, and SREBP-1c was significantly higher.
However, in contrast to the MD mice, the mRNA expression of CPT1α and PPAR-γ in the
LD mice was significantly higher, while the mRNA expression of ACC, C/EBP-α, FAS, and
SREBP-1c was significantly lower (Figure 6B). Similarly, Lactobacillus plantarum LG42 can
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effectively downregulate the expression of the ACC gene in adipose tissue to inhibit fatty
acid synthesis [29]. These findings implied that the capability of L. plantarum ZDY2013
to decrease lipid accumulation might be related to the downregulation of lipogenesis.
Compared to the ND mice, in the MD mice, the mRNA expression of AMPK was lower,
whereas that of Akt, PI3K, and mTOR was higher. Following the intervention with L.
plantarum ZDY2013, the mRNA expression of IRS-1, InsR, and AMPK was higher compared
to the MD mice, while the mRNA expression of Akt, PI3K, and mTOR was lower (Figure 6C).
The expression levels of TNF-α, t-Akt, p-Akt, SREBP-1c, and β-actin proteins in the liver
tissue were detected by Western blotting. The expression of TNF-α, p-Akt, and SREBP-1c
proteins was higher than the ND mice in the MD mice, and it was lower than the MD mice
in the LD mice (Figure 6D).

4. Discussion

NAFLD represents a prevalent chronic liver condition affecting individuals across
various age demographics, and the proportion of adult NAFLD accounts for 30% [30]. With
the pivotal function of the gut-liver axis in NAFLD’s onset and development becoming
clearer, investigations about NAFLD prevention and therapy using probiotics have been
increasing continuously [31]. In this study, L. plantarum ZDY2013 intervention inhibited
the development of HFFC diet-induced NAFLD through regulating gut microbiota and
LPS/NF-κB and PI3K/Akt pathways to reduce fat accumulation in the liver.

At present, many researchers indicate that the intestinal microbiota exerts an essential
function in the development of NAFLD, involving enhancing mucosal immunity, im-
proving intestinal barrier integrity, and reducing the leakage of harmful metabolism [32].
Significantly, the high proportion of F/B indicates that the host can absorb more energy from
the food and promote fat accumulation [33]. In this research, compared to the mice in the
ND mice, the mice in the MD mice that consumed the long-term HFFC diet exhibited lower
gut microbial diversity, a higher F/B ratio, and a higher abundance of Enterobacteriaceae
and Fusobacterium, and the results are consistent with most studies [34]. Enterobacteriaceae
produces LPS and promotes proinflammatory cytokine production, which is associated
with the exacerbation of hepatic inflammation [35]. Furthermore, Fusobacterium can damage
the intestinal barrier and result in high expression levels of LPS and TNF-α in patients
with NAFLD, which may induce insulin resistance [36]. However, L. plantarum ZDY2013
intervention led to a lower F/B ratio and a lower abundance of Enterobacteriaceae and a
higher abundance of beneficial gut microbiota—for instance, Lachnospiraceae, Muribacu-
laceae, Lactobacillus, Alloprevotella, and Blautia. It is well known that Lactobacillus, Blautia,
and Alloprevotella can ameliorate intestinal barrier integrity and the leakage of LPS, and
competitively inhibit pathogenic bacterial growth [37–39]. Furthermore, Lachnospiraceae
and Muribaculaceae synthesize short-chain fatty acids (SCFAs) to maintain intestinal perme-
ability, exhibiting potential anti-inflammatory activity that can enhance insulin sensitivity
and improve IR [40,41]. Multiple researchers have demonstrated that providing SCFAs
mitigates diet-induced NAFLD by decreasing inflammation and improves intestinal barrier
function and hepatic lipid metabolism [42,43]. Therefore, L. plantarum ZDY2013 inter-
vention might restrain the development of NAFLD by increasing the beneficial intestinal
bacteria and regulating intestinal microbiota dysbiosis induced by the consumption of an
HFFC diet.

Gut microbiota dysbiosis could cause many problems, including the overgrowth of
pathogenic or harmful bacterial and intestinal barrier damage in patients with NAFLD [44].
Intestinal barrier injury, characterized by the breakdown of the intestinal epithelium and
the upward serum LPS level, is linked to the progression of NAFLD [45]. Here, compared
with the ND group, a lower mRNA expression of ZO-1, Claudin-3, and Occludin was
observed in the MD group. Compared with the ND group, the remarkably higher serum
LPS level reflected an elevation of intestinal permeability in the MD group. The results
of intestinal microbiota analysis indicated that intestinal microbiota dysbiosis induced by
the consumption of an HFFC diet could ultimately weaken the intestinal barrier. Once
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the intestinal barrier is disrupted, LPS and inflammation-related factors produced by
microbiota will reach the liver through blood circulation, promoting liver inflammation,
oxidative stress, IR, and the disturbance of lipid metabolism [46]. LPS binding to TLR4 will
activate NF-κB to increase inflammatory cytokines, thereby resulting in hepatic injury and
inflammation [47]. As shown in our results, the liver inflammation in the MD mice was
significantly higher than in the ND mice. However, in contrast to the MD mice, L. plantarum
ZDY2013 intervention could maintain liver inflammation at a lower level by repairing the
barrier of the gut, thwarting the leakage of LPS, and inhibiting the NF-κB pathway in the
LD mice.

TNF-α and IL-6 interfere with insulin signals at the level of insulin receptors through
multiple signal pathways, leading to IR [48]. In previous reports, the interplay of insulin
with its receptor triggered the activation of IRS-1, PI3K, and Akt [49]. The PI3K-Akt
pathway is vital for glycolipid metabolism because it is the primary pathway of insulin
signaling [50]. However, the PI3K-Akt pathway will be over-activated in the inflammatory
state of NAFLD mice [51]. Subsequently, the activation of Akt signaling activates SREBP-1c
and its downstream lipases (ACC and FAS) to increase adipogenesis, aggravating liver
tissue damage [52]. In the MD mice, Akt was activated, and lipid synthesis and IR were
greater in contrast to the ND mice; contrarily, those improved in the LD mice, thereby
decreasing lipid synthesis. Therefore, in the mice fed with an HFFC diet, L. plantarum
ZDY2013 might inhibit the PI3K-Akt pathway to relieve IR and decrease lipid synthesis.
This may be related to the fact that L. plantarum ZDY2013 can regulate the gut microbiota
to reduce inflammation in hepatic tissues.

Investigations have disclosed that diets high in fat and fructose elevate levels of free
radicals and reactive oxygen species, leading to oxidative stress—a critical point in the
advancement of NAFLD [53]. Furthermore, previous work has shown that oxidative
stress exacerbates hepatic de novo lipogenesis, causing the vicious cycle of steatosis and
damage [54]. MDA is regarded as an indicator of oxidative stress, which is produced by
lipid peroxidation. Moreover, SOD is capable of transforming oxygen free radicals into
hydrogen dioxide and oxygen [55]. In this research, the LD mice showed higher antioxidant
activity than the MD mice. The MDA level was lower in the LD mice than in the MD mice
after the intervention with L. plantarum ZDY2013, and these results also appeared in another
study using L. plantarum NA 136 [15]. Autophagy is a pivotal process that maintains liver
physiology and balances liver metabolism [56]. Within the liver, autophagy is able to
stabilize the protein and lipid levels; however, it may also lead to injury [57]. In this study,
HFFC diet consumption could induce autophagy disorders, whereas L. plantarum ZDY2013
intervention alleviated autophagy maladjustment in the mice fed with an HFFC diet, and
the results are consistent with previous studies [58]. Based on previous studies, oxidative
stress and inflammation can lead to liver injury [59]. The measurement of liver ALT and
AST, whose continuously elevated serum levels can indicate NAFLD, can allow us to detect
hepatocellular damage [60]. Our results showed that long-term HFFC diet consumption
increased oxidative stress and caused autophagy maladjustment in the NAFLD mouse
model, which resulted in liver damage in NAFLD-model mice, whereas the administration
of L. plantarum ZDY2013 could alleviate liver damage in mice.

In this research, we discovered the inhibitory impact of L. plantarum ZDY2013 on the
development of NAFLD by administering it to mice fed with an HFFC diet and elucidated
the underlying molecular mechanisms. However, the impact of L. plantarum ZDY2013
on mice that are already diagnosed with NAFLD was not explored, which warrants fur-
ther investigation.

5. Conclusions

In summary, the results suggest that regulating the intestinal microbiota and restoring
the barrier of the gut to inhibit the LPS/NF-κB signaling pathway may be the potential
underlying mechanism for L. plantarum ZDY2013 restraining the progression of NAFLD,
thereby decreasing inflammatory cytokine levels, relieving IR, regulating the PI3K/Akt
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pathway to decrease hepatic lipid accumulation, restoring liver function, and ameliorating
oxidative stress. The aforementioned results suggested that L. plantarum ZDY2013 could be
used as a potential intervention to inhibit the development of NAFLD.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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