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Abstract: Aging-related sarcopenia exerts harmful impacts on muscle mass, strength, and physical
mobility. Protein supplementation has been demonstrated to augment efficacy of resistance training
(RT) in elderly. This study compared the relative effects of different protein supplements on muscle
mass, strength, and mobility outcomes in middle-aged and older individuals undergoing RT. A
comprehensive search of online databases was performed to identify randomized controlled trials
(RCTs) examining the efficacy of protein supplement plus RT in untrained community-dwelling
adults, hospitalized, or institutionalized residents who suffered acute or chronic health conditions.
Network meta-analysis (NMA) was performed using a frequentist method for all analyses. Treatment
effects for main outcomes were expressed as standard mean difference (SMD) with 95% confidence
interval (CI). We used the surface-under-the cumulative-ranking (SUCRA) scores to rank probabilities
of effect estimation among all identified treatments. Meta-regression analyses were performed to
identify any relevant moderator of the treatment efficacy and results were expressed as β with
95% credible interval (CrI). We finally included 78 RCTs (5272 participants) for analyses. Among
the six protein sources identified in this NMA, namely whey, milk, casein, meat, soy, and peanut,
whey supplement yielded the most effective treatments augmenting efficacy of RT on muscle mass
(SMD = 1.29, 95% CI: 0.96, 1.62; SUCRA = 0.86), handgrip strength (SMD = 1.46, 95% CI: 0.92, 2.00;
SUCRA = 0.85), and walking speed (SMD = 0.73, 95% CI: 0.39, 1.07; SUCRA = 0.84). Participant’s
health condition, sex, and supplementation dose were significant factors moderating the treatment
efficacy on muscle mass (β = 0.74; 95% CrI: 0.22, 1.25), handgrip strength (β = −1.72; 95% CrI: −2.68,
−0.77), and leg strength (β = 0.76; 95% CrI: 0.06, 1.47), respectively. Our findings suggest whey
protein yields the optimal supplements to counter sarcopenia in older individuals undergoing RT.
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1. Introduction

Sarcopenia, an age-driven skeletal muscle condition, has been recognized as a muscle
disease characterized by progressive attenuation of muscle mass [1,2]. The loss of muscle
mass can further impact muscle strength and its function performance which in turn
results in high risks of physical difficulty and disability in elderly [3–6]. Senile primary
sarcopenia commonly occurs with advancing age which is accompanied with a number of
chronic comorbidities or long-term health conditions such as cardiovascular diseases [7],
arthritis [8–11], diabetes mellitus [12], and stroke [13]; accordingly, sarcopenia has become
epidemic in the ageing population. Depending on the various diagnostic criteria, 5–13%
of people who aged older than 60 years are identified as having sarcopenia, with an
increasing prevalence up to 50% in elderly aged older than 80 years [14,15]. In worldwide,
an overall estimate of prevalence of sarcopenia is reported to be around 10% in community-
dwelling older individuals, 31–51% in long-term care institutions and 24% in the acute
hospital-care population [16,17]. Because of the growing numbers on prevalence and
the accompanied adverse effects of sarcopenia [18–22], such disease is responsible for
considerable burden in healthcare system [23,24]. Therefore, it is imperative to investigate
effective treatment strategies developed to preserve or restore muscle mass as early as
possible for elderly people.

The primary sarcopenia is defined based on handgrip strength, lean mass, and mo-
bility due to progressive skeletal muscle wasting and related physical decline with aging.
The major underlying mechanism driving the disease development and progression of
sarcopenia has been addressed to the blunted muscle protein synthetic response (i.e., myo-
genesis) and negative muscle net balance in elder people [25–27]. Additionally, sarcopenia
is commonly recognized as a multi-etiological disease associated with a multiplicity of
physical, psychological, and social factors in community-dwelling older adults, among
which physical inactivity as well as malnutrition are determinant factors that have great
impacts on sarcopenia [28]. Therefore, the most effective managements for sarcopenia rely
on the adoption of healthy lifestyle behaviors, including adherence to regular physical
activity and high-quality diets [29–32]. Under such scenario, the optimal treatment strategy
of sarcopenia comprises multidisciplinary interventions including exercise and nutrition
treatment [33–35]. With respect to physical activity intervention, resistance training (RT)
has been identified as a successful exercise therapy which have promising effects on coun-
teracting sarcopenia in terms of increased whole-body lean mass and muscular strength in
elderly population [36–39]. Aside from regular physical activity, nutritional interventions
using nutrient supplements are targeted to prevent or postpone the onset of such geriatric
conditions derived from sarcopenia [32,40,41]. Especially, a high-protein diet or protein
supplementation is believed to have surplus benefits in augmenting efficacy of RT for
healthy older people [42–45], as well as those who have high risks of sarcopenia [41,43–51].
Sufficient protein intake plays a key role to stimulate maximal rate of muscle protein syn-
thesis leading to anabolism and net new muscle protein accretion during RT [52,53]. Such
resultant net of muscle protein is in turn accumulated over the training period to yield
muscle mass gain or morphological hypertrophy.

The postprandial muscle protein synthetic response appears to be modulated by the
amount, source, and type of protein consumed [54]. Numerous protein nutrients are
available for individuals to intake and meet their daily protein needs, including animal-
derived (e.g., whey, casein, milk, or beef etc.) and plant-derived (e.g., soy, pea, or rice
etc.) dietary protein sources, and most of which have been shown to effectively stimulate
post-exercise myofibrillar protein synthesis rates [55–58]. Due to that rate of digestibility
and amount of leucine content are varied among different protein supplements, the muscle
protein synthesis rates in response to the ingestion of such protein supplements may differ
at rest and following RT. Empirical support for this inference have been observed [59–61].
Therefore, in terms of muscle protein synthesis rate, the protein source and type deem an
important factor determining the acute treatment efficacy of such intervention of nutrient
supplementation along with RT. However, it remains unclear whether the variety type or
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source of protein supplements obtain different long-term outcome of muscle mass and
its function after RT intervention. Identifying relative treatment efficacy among different
protein supplements assists the clinical practitioners establishing optimal and efficient
intervention strategies.

Previous systemic review and meta-analysis studies have compared the effects of
different protein sources during exercise training [44,62–67], among which the compared
protein supplements included whey [44,62–65,67], milk [44,63,65,67], casein [44,62,65,67],
beef [63,64], soy [62,63,65,67], and cereal protein [63,65]. However, all such protein sup-
plements were not yet fully compared in single meta-analysis study and the most ef-
fective treatment option remains unknown. In addition, most of the previous systemic
reviews enrolled both young and older adults, only few targeted the elderly population
alone [44,65,67]. Based on the increasing number of sarcopenic individual among elderly
population, there is an urgent need to identify the most effective and efficient treatment
strategy for such population restoring their muscle strength and function. With respect to
the above considerations, the purpose of this study was to (1) compare the relative efficacy
of different type of protein supplements combined with RT on muscle mass, strength,
and physical mobility by using network meta-analysis (NMA); (2) identify if there is any
relevant moderator affecting the relative treatment efficacy; and (3) determine the optimal
treatment by ranking the probability of each supplement type for community-dwelling or
institutionalized older adults undergoing RT.

2. Materials and Methods
2.1. Study Protocol

This NMA adapted the guidelines of the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) [68] and the extension statement for reporting of
systematic reviews incorporating NMA [69,70]. The protocol of the present NMA was
registered at PROSPERO (registration number: CRD42023472942).

2.2. Search Strategy

Electronic databases including PubMed, the Cochrane Library Database, EMBASE,
the ClinicalKey, the China Knowledge Resource Integrated Database, the Physiotherapy
Evidence Database, and Google Scholar were searched from inspection to 31 July 2023 to
identify eligible randomized controlled trials (RCTs) investigating the efficacy of protein
supplementation (PS), resistance training (RT), or combined treatment for older people. We
also performed manual search for RCTs cited in articles retrieved from the databases. There
was no limitation for the publication year or language.

The following search terms were based on PICOS (Participants, Intervention, Control,
Outcomes, Study design) criteria: (1) Participants’ conditions: (“older adult” OR “elder
individual”) AND (“untrained” OR “sedentary” OR “frailty” OR “sarcopenia” OR “nursing
home” OR “institutionalization” OR “hospitalization”). (2) Intervention: (“resistance
exercise training” OR “strengthening exercise”) AND (“protein supplementation” OR
“high-protein diet”); (3) Comparisons: placebo supplementation with or without RT, RT
alone, usual medication or regular care (RC) without any PS or RT; (4) Outcomes: lean
mass OR strength OR mobility. The details for main outcome measures were described
in the following Section 2.4; (5) Study design: a parallel or crossover RCT with two or
multiple study arms. The detailed search formulas for each database are presented in
Supplementary Table S1.

2.3. Criteria for Selecting Studies

Trials were included if they met the following criteria: (1) the study design was
an RCT (2) the study enrolled institutionalized residents or community-dwelling elders
who aged ≥50 years, were untrained, sedentary, frail, or identified as having sarcopenia.
Participants were excluded if they had considerable conditions in hematological, hepatic,
or renal functions; (3) the treatment groups received PS in combination with RT. The PS
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involved different type of protein supplements derived from animal or plant sources; (4) the
comparator group received an active treatment including comparative PS alone, placebo
supplementation, RT with or without placebo supplementation, or regular care (RC) which
was not related to PS or RT; and (5) the study reported main outcome measures defined in
the following Section 2.4.

The exclusion criteria were as follows: (1) a vitro or vivo study; (2) a case report or
case series study; and (3) a prospective study without randomised allocation.

Study search, screen, and selection for relevant studies were independently performed
by two authors (CDL and SWH). Another team members (THL and CLL) were consulted
for any disagreement between the authors until consensus reached.

2.4. Main Outcomes

The main outcomes in this NMA included measures of muscle mass, muscle strength,
and physical mobility, all of which are diagnostic indicators of sarcopenia recommended
by the Asian Working Group for Sarcopenia [1] and the European Working Group on
Sarcopenia in Older People [2]. The measures assessing skeletal muscle mass and volume
included, but were not limited to, whole body lean mass, fat-free mass, appendicular lean
mass, muscle thickness, muscle cross-sectional area, and circumference of arms or legs.
Regarding muscle strength measures, handgrip strength was extracted as priori [2]. The
strength measures for lower extremity were extracted based on the following sequence
of preference: Peak torque and maximum voluntary isometric contraction of quadriceps
hamstring muscles, and hip abductors. Physical mobility was assessed using walking
speed, chair rising ability, timed up-and-go (TUG) task, or the Short Physical Performance
Battery (SPPB) score.

2.5. Data Extraction

We established a worksheet to extract the following data from each included study:
(1) characteristics of study arm according to the intervention nature; (2) characteristics of the
participants including age, sex distribution, and body mass index (BMI); (3 characteristics
of the PS and RT protocols; (4) follow-up time points; and (5) main outcome measures. The
relevant data from included trials were initially extracted by the author (CDL), and another
author (SWH) validated and confirmed the extracted data. In cases of inconclusiveness, the
author (CLL) was consulted to discuss the disagreements in a consensus meeting.

Subgroup analysis was performed based on the follow-up time frame which was
defined as short-term (≤3 months), medium-term (>3 months and ≤6 months), and long-
term (>6 months) for each outcome; when multiple time points were conducted within the
same time frame, the longest one was selected for analysis (e.g., if the follow-up time points
for muscle mass measurement were 6 and 12 weeks, the data measured at the 3-month time
point were used as the short-term results). We also examined the compliance as well as
side effects responding to PS and RT interventions among the included studies.

2.6. Risks of Bias in Individual Study and across Studies

Two reviewers (CDL and SWH) independently assessed the risk of bias of the included
studies using the Cochrane Collaboration’s risk-of-bias tool for quality assessment [71,72].
Any discrepancy between reviewers’ assessments was resolved by a consensus meeting
and, if necessary, discussed with a third reviewer (THL) until consensus was reached. The
following six domains seven judgement items related to biased estimates of treatment
effects were assessed [72]: (1) the selection bias determined by two judgements regarding
random sequence generation and allocation concealment; (2) the performance bias judged
by blinding of participants; (3) the detection bias associated with blind of outcome assessors;
(4) the attrition bias corresponded with incomplete outcome data; (5) the reporting bias
raised from selective reporting; and (6) other bias considering other sources of potential
bias such as lack of information on sponsors, funding sources, or author conflict of interest
disclosures which raise agenda bias. Each item was judged as low-risk, unclear-risk (specific
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details or description were not reported) or high-risk (not fulfilling the criteria) according
to criteria specified by Cochrane. Based on the judged scores of the six domains of bias, an
overall bias was identified as low, unclear, or high risk for each study [72].

To assess publication bias for each outcome, a funnel plot was employed to visually
inspect any asymmetry among all effect sizes of treatment arms. In addition, we performed
the Begg–Mazumdar rank correlation test to identify any significant publication bias across
all included RCTs in each outcome [73].

2.7. Data Synthesis and Analysis

Treatment effects were expressed as standard mean differences (SMDs) alongside 95%
confidence intervals (CIs) of each main outcome across the included RCTs. The mean value
of change scores from baseline and its standard deviation (SD) were directly extracted
from each study arm of the included RCTs. The missing SD of change score was estimated
using the SD of baseline (SDbase) and posttest (SDpost) measured data by the following
calculation:

SDchange=
√
[( SDbase)

2+(SDpost)
2 − 2 × Corrbase–post × SDbase × SDpost

]
Based on the recommended method [74], the within-participant correlation coefficient

(Corrbase–post) represents the mean of the available correlations from the included studies
in which the SD change was available. Accordingly, we used the resulted correlation
coefficient of 0.9 for muscle mass measures and 0.7 for strength and mobility measures.
Wherever the SD was not presented, it was estimated using p-values or 95% CIs. If data
were reported as the median, range, or interquartile range, we followed the Wan’s methods
to estimate the mean value [75]; and accordingly, the SD was estimated by dividing the
interquartile range by 1.35 [74]. The magnitude of the SMD was interpreted based on
Cohen’s criteria of effect size (d) and was categorized in accordance with the criteria [76]:
trivial (d < 0.10), small (0.10 ≤ d < 0.25), medium (0.25 ≤ d < 0.40), and large (d ≥ 0.40).

A random-effects NMA model was performed using a frequentist method to estimate
effects from direct and indirect comparisons among all treatment arms. Heterogeneity
as well as global consistency were assessed using the I2 statistic alongside τ2 values to
estimate variance across the comparisons. The node-splitting method was used to assess
consistency between direct and indirect comparisons and results were resented in a forest
plot [77]. In addition, a full design-by-treatment interaction model was established to test
total inconsistency across all treatment arms [78]. Ranking probabilities of effect estimation
among all treatment arms per outcome were performed and expressed as the surface under
the cumulative ranking (SUCRA) score [79].

We established the network meta-regression (NMR) models to identify any relevant
moderators affecting the relative efficacy among treatment options. For each main outcome,
the univariate NMR model was using an individual moderator as a covariate performed
accordingly [80]. Substantial moderators were identified on the basis of (1) participant
characteristics including age, BMI, female sex distribution of study sample (i.e., percentage
proportion of women of total number of participants), world region of study application,
and health status (i.e., relatively healthy versus subhealth with acute conditions or chronic
diseases [81]); (2) the study methodology, comprising ROB and follow-up time frame;
and (3) the intervention protocol, including PS dose, RT intensity (i.e., percentage of one
repetition maximum), and treatment time period. The analyses results of NMR were
expressed as β with 95% credible interval (CrI).

The participant compliance in response to PS plus RT was measured by all-cause
withdrawal rate. In addition, any adverse event reported by the included RCTs was
extracted and the corresponded occurrence rate was calculated to evaluate the adverse
effects. The analyses results were presented as odds ratios (ORs) alongside 95% CIs.
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All NMA and NMR analyses were performed using R statistical software (version
4.2.3, R Foundation for Statistical Computing, Vienna, Austria) [80,82]. For all the analyses,
the statistical significance was accepted by a two-tailed p value of <0.05.

2.8. Certainty of Evidence

The Grading of Recommendation Assessment, Development, and Evaluation (GRADE)
system was employed to assess the quality of evidence contributing to NMA estimates for
all main outcomes [83]. The GRADE framework evaluates five domains of each treatment
arm derived from the included RCTs, namely study limitations, inconsistency, imprecision,
incoherence, and publication bias. Based on the ranked score of each domain which was
considered to upgrade or downgrade the quality of evidence, the evidence certainty was
overall graded as high, moderate, low, and very low. The ranking and grading procedures
were independently performed by two individuals (CDL, SWH) and validated by the
others (HCC, MHH, THL, CLL).

We assessed the weighted contribution of direct comparisons to the NMA estimates
for each outcome using the contributions matrix [84,85]. The downgrading level for the
study limitation was based on the amounts of contribution of each direct estimate and
corresponding risk of bias to the NMA estimates [86,87].

3. Results
3.1. Trial Selection Flowchart

The PRISMA flowchart of the trial selection process was presented in Figure 1. Ini-
tially, a total of 1079 articles were identified by electronic searches and manual screen of
literature. After excluding duplicates, we examining the retrieved titles of 471 studies
and reviewed the abstracts of to assess their eligibility; followed by the full-text assess-
ment of 126 relevant articles. A total of 78 registered clinical RCTs, corresponding with
85 published studies [88–172], were included in this NMA and all of which were published
between 1994 and 2023. The following included studies shared a common trial protocol
respectively: 2 studies [89,90], 2 studies [94,110], 2 studies [107,160], 2 studies [120,121],
2 studies [127,128], 2 studies [130,131], and 2 studies [147,148].

3.2. Study Characteristics

Table 1 summarizes the participant demographic data and study characteristics of
the included RCTs. The details of each trial are presented in the Supplementary Table S2.
A total of 5272 participants were recruited among all included RCTs. In overall, the
sample had a mean age of 70.2 (range: 47.0–89.2) years and a mean BMI of 25.8 (range:
18.6–33.3) kg/m2. Among the 78 included RCTs (Table S2), 39 enrolled both women and
men with an average proportion of female participants being 57.6% (range: 12.5–90.2%)
whereas 22 had men-specific study design [93,95–97,106,109,110,116,121,122,124,127,130,
132,137,141,149,156,158,163,167,170], 16 enrolled women only [102,113,123,135,136,143,145–
147,151,152,155,157,161,165,168], and one did not report the sex distribution of the study
sample [103].
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Table 1. Participant characteristics and study summary.

Study Arm Combined Treatment Resistance Training (Combined with or without
Placebo Supplement) Protein Supplementation Alone Control (Placebo Supplement or Regular Care)

Item Trials
(Groups), n a Sample (n) Mean (Range) b Trials

(Groups), n a Sample (n) Mean (Range) b Trials
(Groups), n a Sample (n) Mean (Range) b Trials

(Groups), n a Sample (n) Mean (Range) b

Age, year 78 (89) 2458 69.8 (47.0–87.2) 62 (64) 1664 69.8 (47.4–86.2) 19 (19) 415 68.6 (50.0–85.7) 27 (27) 735 73.8 (54.1–89.2)
Body mass index, kg/m2 74 (83) 2287 26.1 (18.8–32.7) 60 (62) 1624 26.9 (18.8–33.3) 18 (18) 400 25.5 (18.6–31.0) 25 (25) 592 24.9 (18.9–30.0)
Sex, n, %

Sex-specific trial
Men 22 (26) 573 100 18 (20) 332 100 4 (4) 91 100 8 (8) 288 100
Women 16 (17) 375 100 14 (14) 275 100 5 (5) 98 100 3 (3) 46 100
Sex mixed trial 39 (45) 1494 29 (29) 1052 10 (10) 226 16 (16) 401
Men 614 42.3 (13.0–87.5) 422 41.5 (9.8–73.7) 89 40.0 (16.7–73.3) 175 44.8 (12.5–80.0)
Women 880 57.7 (12.5–87.0) 630 58.5 (26.3–90.2) 137 60.0 (26.7–83.3) 226 55.2 (20.0–87.5)

Population (area)
America 29 (36) 669 25 (27) 434 6 (6) 107 7 (7) 108
Asia 18 (18) 589 12 (12) 333 7 (7) 147 11 (11) 387
Europe 23 (26) 710 17 (17) 469 5 (5) 116 6 (6) 109
Oceania 8 (9) 490 8 (8) 428 1 (1) 45 3 (3) 131

Physical condition
Untrained healthy 33 (38) 947 27 (29) 692 8 (8) 202 9 (9) 199
Dynapenia 4 (4) 92 3 (3) 78 2 (2) 39 3 (3) 51
Frailty 12 (13) 394 12 (12) 356 2 (2) 44 5 (5) 122
Sarcopenia 18 (20) 516 11 (11) 202 6 (6) 105 10 (10) 353
Sedentary or inactive 7 (9) 213 5 (5) 100 2 (2) 25 1 (1) 10
Overweight or obesity 5 (6) 296 5 (5) 236 0 0

Protein source of supplementation
Whey 43 (47) 1311 11 (11) 243
Milk 17 (18) 553 2 (2) 73
Soy 14 (14) 324 6 (6) 99
Casein 4 (4) 94 0
Meat 5 (5) 194 0
Peanut 1 (1) 20 0

Intervention compliance (%)
Protein supplement 40 (47) 1287 91.5 (64–100) 37 (37) 323 87.8 (73–100)
Resistance training 46 (52) 1505 87.3 (44–100) 38 (38) 1117 86.2 (44–100)
Placebo supplement 15 (15) 300 93.8 (71.5–100) 4 (4) 55 89.4 (75–99)

Muscle mass (baseline)
Total lean mass, kg 41 (47) 1354 45.9 (31.8–59.2) 36 (37) 1050 46.2 (32.0–60.8) 7 (7) 158 46.2 (39.9–56.6) 7 (7) 117 49.0 (47.9–51.5)
Appendicular lean

mass, kg 38 (41) 1160 18.8 (7.9–30.5) 36 (36) 955 18.8 (8.0–30.0) 9 (9) 161 18.8 (12.8–27.2) 11 (11) 260 19.2 (12.6–26.7)

Total lean index,
kg/m2 44 (50) 1406 17.2 (13.6–22.9) 39 (40) 1143 17.4 (13.9–22.5) 8 (8) 168 17.2 (15.5–19.0) 8 (8) 128 17.6 (16.6–19.1)
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Table 1. Cont.

Study Arm Combined Treatment Resistance Training (Combined with or without
Placebo Supplement) Protein Supplementation Alone Control (Placebo Supplement or Regular Care)

Item Trials
(Groups), n a Sample (n) Mean (Range) b Trials

(Groups), n a Sample (n) Mean (Range) b Trials
(Groups), n a Sample (n) Mean (Range) b Trials

(Groups), n a Sample (n) Mean (Range) b

Appendicular lean
index, kg/m2 39 (41) 1150 7.0 (3.0–9.4) 35 (35) 935 7.1 (3.0–9.4) 11 (11) 208 7.1 (5.4–8.8) 11 (11) 257 7.1 (5.2–8.9)

Handgrip strength (baseline), kg
Sex-specific trial
Men 7 (8) 282 30.3 (15.3–41.1) 4 (4) 64 33.2 (19.7–42.2) 2 (2) 37 25.5 (18.8–30.0) 3 (3) 190 18.6 (15.2–21.1)
Women 4 (5) 93 20.2 (15.8–22.4) 4 (4) 71 20.3 (15.1–23.1) 1 (1) 25 23 0
Sex mixed trial 23 (25) 819 26.5 (13.8–41.2) 19 (19) 619 26.8 (15.8–41.8) 6 (6) 119 22.3 (16.4–35.6) 11 (11) 300 23.1 (15.1–33.6)

Physical mobility (baseline)
5-time chair rise, s 28 (31) 1032 12.2 (4.6–26.5) 25 (25) 850 13.6 (4.7–30.0) 4 (4) 83 12.6 (7.7–18.7) 7 (7) 216 11.9 (7.8–18.6)
Walking speed, m/s 36 (39) 1277 1.26 (0.44–2.33) 31 (31) 956 1.18 (0.51–2.05) 13 (13) 322 1.25 (0.45–2.14) 15 (15) 407 1.26 (0.47–2.05)
Global mobility c 16 (16) 402 9.0 (6.2–11.4) 10 (10) 181 9.3 (7.1–11.2) 1 (1) 20 6.2 7 (7) 224 8.6 (7.8–11.0)

a Number of trials that reported the indicated item. b All summations calculated on the basis of the values reported in the analyzed studies that could be estimated. c The score is derived
from the Short Physical Performance Battery.
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With respective to participant physical conditions, 33 RCTs out of 78 [92,93,95–97,102,
106,108,110,112,113,116,118,119,121,123–125,130,133,134,136,138,139,141,143,146,151,155,
161–163,167,168] enrolled community-dwelling untrained middle-aged and older adults
who were medically stable and relatively healthy, whereas others recruited individu-
als who were identified as sedentary or inactive (7 RCTs [91,103,109,126,129,149,153]),
overweight or obesity (5 RCTs [140,156,159,164,170]), dynapenia (4 RCTs [88,98,104,
169]), frailty (12 RCTs [101,105,111,114,117,132,142,147,150,152,157,160]), and sarcopenia
(18 RCTs [89,99,100,115,122,127,135,137,144,145,154,158,165,166,169,171,172]). The study
population were enrolled in America (29 RCTs), Asia (18 RCTs), Europe (23 RCTs), and
Oceania areas (8 RCTs; Table 1 and Table S2).

Among all participants, 2458 (46.6%) received PS in combination with RT, 415 (7.9%)
received PS alone, 1664 (31.6%) received RET alone, and 735 (13.9%) received RC (Table 1).
With respect to the follow-up time points for outcome assessment, 57 out of 78 included
RCTs conducted a short-term duration of ≤12 weeks; 23 out of 78 RCTs [91,98–102,110,112,
123,126,134,136,137,140,143,144,150–152,158,160,164,172] employed a medium-term time
frame ranging from 14 to 24 weeks, and 4 RCTs [127,130,139,144] assessed a long-term
outcome ranging from 9 to 12 months (Table S2).

3.3. Protocol of Protein Supplementation

The characteristics for PS protocol are summarized in the Supplementary Table S2. In
this NMA, a total of 6 types of protein supplement were identified (Table 1), namely whey
protein (WP, 43 RCTs); milk protein (MP, 17 RCTs); soy protein (SP, 14 RCTs); casein (4 RCTs);
beef meat (5 RCTs); and peanut (1 RCT). Regarding the PS protocol, 25 out of 78 included
RCTs prescribed supplementation immediately after RT on the training days with a mean
dosage of 26 (range 10–60) g/day; and the other 53 employed daily supplementation by a
mean intake amount of 30 (range 10–80) g during an RT intervention (Table S2).

3.4. Protocol of Resistance Training

Table S2 summaries the characteristics of RT protocols. In overall, the training load
was moderate to high with a median (range) intensity of 75% (30–85%) of one-repetition
maximum or 7 (5–9) of 10-point rating of perceived exertion. Regarding the training
duration, 54 out of 78 included RCTs conducted a short intervention of 12 weeks or less,
corresponding with 6–84 sessions; 21 RCTs employed a medium intervention of 14 weeks
to 6 months, corresponding with 6–84 sessions; and 3 RCTs [127,130,139] had a long
intervention up to 12 months.

3.5. Risks of Bias in Individual Study and Across Studies

Figure 2 shows a summary of the risk-of-bias analysis for each domain and an overall
rank crossing included RCTs. The details of each ranked risk-of-bias item per trial are
presented in the Supplementary Figure S1. Using the Cochrane risk-of-bias tool, over half
of the included RCTs (43 out of 78, 55.1%) were ranked as having an overall high risk of
bias whereas it determined 12 RCTs (15.4%) had low risk of bias and 23 RCTs (29.5%) had
some concerns of bias (Figure S1). In total, the common domain of biases which obviously
contributed to high risk of bias across all RCTs included at least one of the follows: selection,
performance, detection, and attrition biases (Figure 2).

Risk of bias analysis crossing trials showed that 41 RCTs (52.6%) had a substantial
unclear or high risk of selection bias raising from insufficient information regarding pro-
cedures of randomization or group assignment. Thirty-four RCTs out of 78 (43.6%) were
considered having high risks of performance bias for blinding the participants and 27 RCTs
(34.6%) were judged having high risks of detection bias because of the unblinded asses-
sors. In addition, 40 RCTs (51.3%) which did not perform intention-to-treat analyses were
scored as high risks of attrition bias; and low risk of reporting bias was ranked among
all the included trials. Regarding other bias, we assumed that use of PS products sup-
ported by any funds or grants may arise potential agenda bias and therefore information of
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funding sources and conflict-of-interest declaration were assessed. There was potentially
high risk of agenda bias in 11 RCTs (14.1%) which reported funding sources without any
conflict-of-interest disclosures whereas 6 RCTs (7.7%) which did not report any information
regarding funding sources and conflict of interest were considered unclear risk of agenda
bias (Figure 2).
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3.6. Treatment Efficacy for Muscle Mass

Figure 3 presents the network connections among all treatment arms for muscle
mass outcome. A total of 11 treatment options were identified in this NMA, included
6 combined treatments namely WP plus RT (WP + RT), MP plus RT (MP + RT), casein
plus RT (Casein + RT), meat plus RT (Meat + RT), SP plus RT (SP + RT), peanut plus RT
(Peanut + RT), 5 monotherapies namely WP, MP, SP, meat, and RT.
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Figure 3. Network diagram illustrating the interconnections among different treatment arms for
muscle mass. Each node represents a treatment arm, and the size of the node is proportional to the
number of participants assigned to the specific treatment. The thickness of each line is proportional
to the number of direct comparisons between arms denoted on the line. RT, resistance training.
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3.6.1. Conventional Pairwise Meta-Analysis

Muscle mass outcome were reported by 73 RCTs along with 12 treatment options
and 151 pairwise comparisons in NMA (Figure 3). Direct comparisons of pairwise meta-
analyses indicated that WP + RT (SMD = 1.36, 95% CI: 0.90–1.83), MP + RT (SMD = 1.31,
95% CI: 0.41–2.22), SP + RT (SMD = 1.06, 95% CI: 0.49–1.63) and RT (SMD = 0.79, 95%
CI: 0.42–1.15) were more efficacious than RC for increasing muscle mass (Supplementary
Table S3). In addition, the combined treatments WP + RT (SMD = 0.95, 95% CI: 0.52–1.37)
and SP + RT (SMD = 1.21, 95% CI: 0.58–1.85) achieved favor effects on muscle mass gain
compared with its monotherapy of WP and SP, respectively. While comparing with RT
alone, similar results were observed in WP + RT (SMD = 0.55, 95% CI: 0.17–0.93) and
WP + RT (SMD = 0.56, 95% CI: 0.33–0.79).

3.6.2. Network Meta-Analysis

Considering RC as reference, the combined treatments namely WP + RT (SMD = 1.29),
MP + RT (SMD = 1.24), Meat + RT (SMD = 1.23), and SP + RT (SMD = 1.06) achieved
favorable outcomes for muscle mass increase regardless of follow-up time (Figure 4).
Among all treatment arms, WP + RT was ranked as the most effective (SUCRA = 0.86) for
muscle mass gain—followed by MP + RT (SUCRA = 0.83), and Meat + RT (SUCRA = 0.80)
(Figure 4). The NMA results were based on significant global heterogeneity across treatment
arms (τ2 = 0.36, I2 = 73.4%, p < 0.0001). Q statistic results assessing total consistency between
designs in NMA showed insignificant under the assumption of a full design-by-treatment
random-effects model (τ2 = 0.35, p > 0.05). According to the node-splitting analyses results,
there was no inconsistencies between direct and indirect effects in NMA for muscle mass
gain (Figure S2).
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Figure 4. Relative efficacy of treatment regimens on muscle mass gain during an overall follow-up
duration. Each point estimate (square) presents the network combined effect (SMD) on the outcome
measure relative to RC, with the 95% CI (horizontal line). SMD, standardized mean difference; CI,
confidence interval; SUCRA, surface under the cumulative ranking curve; RT, resistance training; RC,
regular care.

3.6.3. Subgroup Analysis Based on Follow-Up Time

The combined treatment WP + RT yielded the most effective treatment for muscle
mass (SMD = 1.32, SUCRA = 0.83) over the short-term duration, whereas MP + RT was
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ranked the highest probabilities of successful treatment over the medium-term (SMD = 1.48,
SUCRA = 0.93) and long-term (SMD = 1.14, SUCRA = 0.83) durations (Figure S3).

3.7. Treatment Efficacy for Muscle Strength

Muscle strength outcomes were assessed in terms of handgrip strength and leg
strength. A total of 37 RCTs reported treatment outcome of handgrip strength along with
9 treatment regiments and 78 pairwise comparisons in NMA (Figure 5A). The treatment
effects on leg strength were investigated by 56 RCTs along with 11 treatment regiments and
104 pairwise comparisons in NMA (Figure 5B).
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3.7.1. Conventional Pairwise Meta-Analysis

Results of direct comparisons indicated that PS plus RT achieved favorable effects on
handgrip strength gain compared to RC (Supplementary Table S4), particularly the protein
types of whey (SMD = 1.53, 95% CI: 0.88–2.19), casein (SMD = 2.98, 95% CI: 0.99–4.97),
and soy (SMD = 1.51, 95% CI: 0.11–2.90). In addition, WP + RT yielded greater changes
in handgrip strength than WP alone did (SMD = 0.86, 95% CI: 0.11–1.61); similar results
were presented for the comparison between SP + RT and SP alone (SMD = 2.46, 95% CI:
0.44–4.48; Table S4).

The pairwise meta-analysis results for leg strength showed that WP + RT (SMD = 1.30,
95% CI: 0.73–1.87) and SP + RT (SMD = 1.73, 95% CI: 1.14–2.32) achieved favorable effects
on leg strength gain compared to RC (Supplementary Table S5). Additionally, the combined
treatments WP + RT yielded greater changes in leg strength than the monotherapy WP
(SMD = 1.30, 95% CI: 0.76–1.84) or RT (SMD = 0.45, 95% CI: 0.20–0.69) did; similar results
were observed in SP + RT when it compared with SP alone (SMD = 1.92, 95% CI: 1.16–2.68;
Table S5).

3.7.2. Network Meta-Analysis

There were significant effects in favor of PS plus RT for handgrip strength compared to
RC, particularly the protein sources derived from whey (SMD = 1.46), soy (SMD = 1.41), and
milk (SMD = 1.27), during an overall follow-up duration (Figure 6A). Among all treatment
options, WP + RT yielded the highest probabilities of treatment effects (SUCRA = 0.84)—
followed by SP + RT (SUCRA = 0.78) and MP + RT (SUCRA = 0.72)—during the overall
follow-up duration (Figure 6A). There was significant global heterogeneity across all
treatment arms involved in NMA model (τ2 = 0.88, I2 = 91.7%, p < 0.0001). Q statistic
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results assessing total consistency between designs in NMA showed insignificant under
the assumption of a full design-by-treatment random-effects model (τ2 = 0.88, p > 0.05).
According to the node-splitting analyses results, there was no inconsistencies between
direct and indirect effects in NMA for handgrip strength gain (Figure S4).
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regular care.

With respect to treatment outcome of muscle strength in the lower extremity (Figure 6B),
majority of the PS regimens augmented increases in leg strength during RT, including whey,
milk, soy, and meat (SMD = 1.27–1.41). In addition, WP + RT yielded the most effective
(SUCRA = 0.87) for muscle strength in the legs—followed by MP + RT (SUCRA = 0.80)
and SP + RT (SUCRA = 0.79; Figure 6B). Significant global heterogeneity was observed
(τ2 = 0.30, I2 = 75.6%, p < 0.0001). Q statistic results assessing total consistency between
designs in NMA showed insignificant under the assumption of a full design-by-treatment
random-effects model (τ2 = 0.88, p > 0.05). According to the node-splitting analyses results,
there was no inconsistencies between direct and indirect effects in NMA for leg strength
(Figure S5).

3.7.3. Subgroup Analysis Based on Follow-Up Time

In handgrip strength, WP + RT yielded the highest medium-term (SMD = 1.74,
SUCRA = 0.83) and long-term (SMD = 1.69, SUCRA = 0.99) treatment efficacy, respec-
tively (Figure S6). Within the short-term time frame, SP + RT was ranked the most effective
among whole treatment regimens in NMA (SMD = 1.42, SUCRA = 0.91).

For leg strength gain, the combined regimen SP + RT yielded the highest short-term
efficacy (SMD = 1.52, SUCRA = 0.93), whereas MP + RT was ranked the most effective
among all treatment regimens over the medium-term (SMD = 1.11, SUCRA = 0.95) and
long-term (SMD = 1.21, SUCRA = 0.95) time frames, respectively (Figure S7).

3.8. Effectiveness of Treatment for Physical Mobility

Treatment efficacy on physical mobility were assessed by walking speed (35 RCTs),
chair rise (31 RCTs), TUG (8 RCTs), and global function in terms of SPPB score (13 RCTs).
In walking speed, a total of 9 treatment options were identified along with 91 pairwise
comparisons in NMA (Figure 7A). In addition, a total of 8 treatment options (62 pairwise
comparisons) and 6 treatment options (12 pairwise comparisons) were identified in NMA
for chair rise (Figure 7B) and TUG (Figure 7C), respectively. For SPPB, 6 treatment options
were identified along with 18 pairwise comparisons in NMA (Figure 7D).
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Short Physical Performance Battery.

3.8.1. Conventional Pairwise Meta-Analysis

Direct pairwise comparisons indicated that WP + RT achieved favorable effects on
walking-speed recovery (SMD = 0.84, 95% CI: 0.43–1.25; Supplementary Table S6), chair
rise (SMD = 0.85, 95% CI: 0.46–1.25; Supplementary Table S7), and SPPB score increase
(SMD = 1.79, 95% CI: 1.09–2.48; Supplementary Table S8) compared to RC, respectively. The
monotherapy WP (SMD = 0.76, 95% CI: 0.30–1.22; Table S6) achieved favorable effects on
walking-speed recovery compared to RC, as well as RT did in walking speed (SMD = 0.59,
95% CI: 0.22–0.95; Table S6) and chair rise (SMD = 0.82, 95% CI: 0.53–1.11; Table S7). In
TUG, direct pairwise comparison results showed no significant effects among all treatment
options with reference to RC (Table S9).

3.8.2. Network Meta-Analysis

For walking speed recovery during an overall time (Figures 8A and S8), the composed
regimens WP + RT (SMD = 0.73) and MP + RT (SMD = 0.53) achieved favorable effects
compared to RC. Among all treatment options, WP + RT was ranked the most effective treat-
ment to increase walking speed (SUCRA = 0.84; Figure S8). Significant global heterogeneity
was observed (τ2 = 0.28, I2 = 58.9%, p < 0.0001). The full design-by-treatment random-
effects model determined that the overall inconsistency between designs in NMA was
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significant (τ2 = 0.29, p < 0.0001). According to the node-splitting analyses results, it showed
no inconsistencies between the direct and indirect comparisons in NMA (Figure S9).
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Figure 8. Relative efficacy among treatment regimens on changes in physical mobility scores during
an overall study time. Each point estimate (square) presents the network combined effect on the
specific outcome measure, with the 95% CI (horizontal line). The positive results indicate favorable
efficacy of the treatment regimen compared to RC. The blue-colored point represents the highest
probability of effects among all treatment regimens. Std, standardized; CI, confidence interval; RT,
resistance training; SPPB, Short Physical Performance Battery; RC, regular care.

For chair-rise performance at an overall time frame (Figures 8B and S10), the NMA
results showed favorable effects responding to WP + RT (SMD = 0.84), as well as SP + RT
(SMD = 0.44) and MP + RT (SMD = 0.31), compared to RC. Of all treatment regimens,
WP + RT was ranked the optimal treatment to increase chair-rise ability (SUCRA = 0.88;
Figure S10). Significant global heterogeneity of the NMA model was identified (τ2 = 0.12,
I2 = 57.0%, p < 0.0001). Using a full design-by-treatment random-effects model, it de-
termined an insignificant overall between-design inconsistency of the NMA (τ2 = 0.16,
p > 0.05). The node-splitting analyses did not indicate any inconsistency between direct
and indirect effects in NMA (Figure S11).

Regarding TUG task, the NMA results showed no favorable effects responding to any
of treatment arms (Figures 8C and S12). Among all treatment arms, MP + RT was ranked
as the most effective treatment to save time in completing the TUG task (SUCRA = 0.79;
Figure S12). No evidence of the global heterogeneity was identified (τ2 < 0.0001, I2 = 0%,
p > 0.05). The overall between-design inconsistency of the NMA showed insignificant
(τ2 = 0.005, p > 0.05). Based on the node-splitting analyses results, there was no inconsis-
tencies between direct and indirect evidence (Figure S13).

With respect to treatment outcome for global function, in terms of SPPB score, the
NMA results showed that WP (SMD = 1.45), as well as MP (SMD = 0.97), in combination
with RT obtained favorable effects on SPPB score relative to RC, regardless of study time
frame (Figure 8D and Supplementary Figure S14). Of all treatment regimens, WP + RT was
ranked the optimal treatment to increase SPPB score (SUCRA = 0.87; Figure S14). There
was significant global heterogeneity of the NMA model for SPPB (τ2 = 0.27, I2 = 75.2%,
p < 0.0001). There was significant overall between-design inconsistency (τ2 = 0, p < 0.0001).
The node-splitting analyses did not indicate any inconsistency between direct and indirect
comparisons (Figure S15).

3.8.3. Subgroup Analysis Based on Follow-Up Time

During the short-term time, WP + RT yielded the optimal treatment option to increase
performances in walking speed (SMD = 0.74, SUCRA = 0.83; Figure S8) and chair rise
(SMD = 0.98, SUCRA = 0.85; Figure S10), as well as MP + RT did for saving timed-up-
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and-go time (SMD = 0.33, SUCRA = 0.76; Figure S12) and increasing total score of SPPB
(SMD = 0.45, SUCRA = 0.71; Figure S14).

Within the medium-term follow-up time frame, WP + RT was ranked the most effective
treatment option for walking-speed recovery (SMD = 0.25, SUCRA = 0.78; Figure S8) and
to increase total score of SPPB (SMD = 2.19, SUCRA = 0.88; Figure S14), as well as SP + RT
and MP + RT did for increasing chair-rise ability (SMD = 0.87, SUCRA = 0.88; Figure S10)
and saving TUG time (SMD = 0.33, SUCRA = 0.76; Figure S12), respectively.

Regarding the long-term treatment outcome, WP + RT was ranked the most effective
treatment option for walking-speed recovery (SMD = 0.58, SUCRA = 0.98; Figure S8).
None of the included RCTs conducted long-term follow up for chair rise, TUG, and
SPPB outcome.

3.9. Network Meta-Regression Anlyses

Effects of substantial moderators for each main outcome are presented in the Supple-
mentary Table S10. Health status had effects on relative treatment efficacy among treatment
arms. Participants who suffered acute (hospitalized) or chronic (obese, sarcopenic, frail,
and mobility limited) conditions may achieved greater effects on muscle-mass changes
(β = 0.74; 95% CrI: 0.22, 1.25) compared with those who were relatively healthy. In addition,
there was potential gender effect on relative treatment efficacy for muscle strength and
physical function. A greater proportion of women in the study sample predicted minor
effects on handgrip strength (β = −1.72; 95% CrI: −2.68, −0.77) and SPPB (β = −1.61; 95%
CrI: −2.47, −0.79). Other potential moderators of relative treatment efficacy were identified,
including amounts of PS (β = 0.76; 95% CrI: 0.06, 1.47) and BMI (β = −1.85; 95% CrI: −2.89,
−0.81) for leg strength and SPPB, respectively. In addition, a longer intervention period
(β = 1.41; 95% CrI: 0.78, 2.05), as well as follow-up time (β = 1.41; 95% CrI: 0.77, 2.03), was
associated with greater increases in SPPB score. Furthermore, area of study population had
significant influences in strength gains of handgrip (β = −1.04; 95% CrI: −2.00, −0.07) and
leg extensors (β = −0.86; 95% CrI: −1.70, −0.05). No moderator was identified to have an
influence on the treatment efficacy regarding mobility tasks of walking speed, chair rise,
and TUG.

3.10. Compliance and Side Effects

As a whole, an all-cause attrition rate of 0–78.6% was reported among the included
RCTs, of which 0% to 45.2% were dropout due to treatment noncompliance (Table S11).
Eleven RCTs reported withdraw of participants due to noncompliance of PS by an attrition
rate of 2.0–32.1% [89,91,103,113,119,126,136,143,153,159,169]. Noncompliance of RT were
reported by 17 RCTs with an attrition rate of 4.5–31.3% [91,101,103,111,114,121,124–126,133,
138,140,151,159,164,169,170]. There was no difference in compliance across all the treatment
regimens with reference to RC (Figure 9A).

There was no serious adverse event occurred after PS plus RT or its monotherapy.
In total, 12 [89,97,98,108,111,117,125,126,136,140,153,159] and 15 [97,98,102,111,112,116,117,
121,124,126,130,140,159,164,166] out of the 78 included RCTs reported mild adverse events
in response to PS and RT, respectively. Majority of the reported adverse events were RT-
induced joint pain and muscle soreness (Table S11) and gastrointestinal symptoms such as
diarrhea, bloating, and constipation after PS. Compared with RC, there was no significant
adverse effects among all treatment regimens excepting WP + RT (Figure 9B).
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Figure 9. Participant compliance and side effects of treatment regimens. Data concerning treatment-
related (A) withdrawals and (B) adverse events were pooled using inverse variance weighting
methods. Each point estimate (square) presents the network combined effect (OR) of the indicated
treatment arm relative to RC, with the 95% CI (horizontal line). OR, odds ratio; CI, confidence interval;
RT, resistance training.

3.11. Publication Bias

Publication biases among the included RCTs for all outcome domains are presented
in the Supplementary Figure S16. The funnel plot indicated no substantial asymmetry of
publication bias across the included RCTs. Begg–Mazumdar test results for muscle mass
(p < 0.01; Figure S16A) and leg muscle strength (p < 0.01; Figure S16C indicated obvious
reporting bias among the RCTs included in the NMA. No significant bias was observed in
other main outcomes.

3.12. Certainty of the Evidence

Table 2 summarizes the GRADE certainty rating for all main outcomes and the de-
tails of judgments in each domain of GRADE framework are presented in Supplementary
Tables S12–S18. In overall, certainty of the evidence ranged from low to high among com-
bined treatments for muscle mass, strength, and mobility outcomes, particularly WP + RT,
SP + RT, MP + RT, and Meat + RT (Table 2). The most common judgements downgrading
the certainty of evidence were associated with major concerns about study limitation,
imprecision, and publication bias.

Table 2. GRADE certainty rating of treatment options in all main outcomes.

Treatment (Common
Comparator: Regular
Care)

GRADE Certainty of Evidence a

Muscle Mass
Muscle Strength Physical Mobility

Handgrip Leg Strength Walking Speed Chair Rise Timed Up and Go SPPB

Combined therapy
Casein + RT ⊕
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Table 2. Cont.

Treatment (Common
Comparator: Regular
Care)

GRADE Certainty of Evidence a

Muscle Mass
Muscle Strength Physical Mobility

Handgrip Leg Strength Walking Speed Chair Rise Timed Up and Go SPPB
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b Network contribution of high risk of bias ≥ 50%. c There is significant difference between direct and indirect
estimates. d 95% confidence interval is wide and imprecise. e Test for publication bias is statistically signifi-
cant. GRADE, Grading of Recommendations, Assessment, Development and Evaluations; SPPB, Short Physical
Performance Battery.

4. Discussion

The main purpose of this study was to identify the comparative efficacy of different
protein sources combined with RT for muscle mass, strength, and physical mobility out-
comes in middle-aged and older adults. The main results showed that (1) the combined
treatment of protein supplement and RT (particularly WP + RT, SP + RT, MP + RT, and Meat
+ RT) exerted favorable effects on muscle mass and strength gain relative to RC, whereas
WP + RT and MP + RT achieved promising effects on physical mobilities including walking
speed, chair rise, and SPPB; (2) based on the cumulative ranking results, whey protein
supplements combined with RT yielded the most effective treatment to increase muscle
mass, strength, and physical mobility, respectively; (3) a number of potential moderators of
relative treatment efficacy were identified, including BMI, gender, healthy status, study
area, supplement dosage, and treatment time. In addition, the composite PS plus RT
exhibited high compliance despite of higher occurrence rate of nonserious adverse events
among PS regimens, particularly WP + RT.

A number of systematic reviews and NMAs have compared the effects among dif-
ferent protein sources of supplementation during exercise training in young and older
people [44,62–67], and results have generally indicated no significant difference in lean
mass or strength gains between WP versus SP [62,63,66], WP versus MP [44], WP versus
beef [64], and SP versus other mixed protein sources [63] during an exercise intervention.
However, more other protein sources, such as casein and peanut, have yet to be compre-
hensively compared with conventional protein supplements. In the present study which
targeted PS during an RT intervention in middle-aged and older populations, six protein
sources (i.e., whey, soy, milk, meat, casein, and peanut) were identified and fully compared
in an NMA. Our analyzed results are generally in agreement with those of the previous
systematic reviews. We further rank the probabilities of successful treatment among multi-
ple regimens of PS, RT, and its combinations, and the results showed that WP + RT yielded
the most effective treatment to increase muscle mass and strength, and to enhance mobility
performance. Additionally, the present results indicate that combined treatments incorpo-
rating PS and RT can yield extra benefits compared with its monotherapies in adults who
aged ≥ 45 years.

In the present study, the ranked results indicated that WP yielded the most effective
supplement to augment RT-induced muscle mass gain, followed by MP, meat, SP, and
casein (Figure 4). Our findings were supported by previous studies. First, PS monotherapy
by WP supplements achieves greater changes in postprandial muscle protein synthesis rate
compared with other protein sources, especially in older individuals [67,173], and such
favorable effects become more significant for WP + RT [67]. Reasonably, it is expected that
the superior effects of WP supplementation on postprandial muscle protein synthesis may
lead to favorable long-term changes in RT-induced skeletal muscle adaptation. Secondly,
the postprandial muscle protein synthetic response to the ingestion of different protein
sources have been compared under RT intervention [61,174–176]. The previous results
revealed that WP supplements stimulate higher postprandial muscle protein synthesis rates
than SP [175] and Casein [61,175] do. In addition, the ingestion of SP after RT stimulates
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muscle protein synthesis to a greater extent when compared with casein [175], as well as
the MP ingestion does while comparing with beef protein [174] and SP supplements [176],
respectively. Accounting these previous results together, it suggests that WP exhibits
similar effects with MP and is superior to MP, meat, SP, and casein with regard to stimulate
muscle protein synthesis, which further supports the ranked results among multiple protein
sources identified in this NMA regarding treatment efficacy on muscle mass gain.

Based on the NMA results in the current study, the protein source WP was ranked
as the optimal regimen for muscle mass gain during RT intervention and such superior-
ity in treatment efficacy was simultaneously observed in strength and physical mobility.
Our findings were in agreement with previous meta-analyses which have concluded that
PS synergistically increases muscle mass along with strength gain and physical mobility
restoration in older people undergoing exercise training enhancement [177–180]. Given the
facts that muscle mass changes in response to PS significantly contribute to additional in-
creases in strength and walking capability during exercise training [181] and that increased
leg strength is associated with faster habitual walking speed following PS plus RT [88],
especially in those at high risk of sarcopenia and frailty, the superior effects of WP + RT on
muscle mass may parallelly give rise to the superiority of effects on strength and mobility
while comparing with other protein sources in this NMA.

In this NMA, a number of substantial moderators were identified to have significant
effects on relative efficacy among treatment regimens. First, greater treatment effects on
muscle mass were likely to be observed in the participants with acute conditions (hos-
pitalized) or chronic diseases (obese, sarcopenic, frail, and mobility limited) compared
with their relatively healthy peers (Table S10). Such findings are in line with the previ-
ous systematic review studies indicating that individuals with sarcopenia or frailty risks
tend to obtain greater lean mass gains after PS plus exercise training than their healthy
peers do [182,183]. Comparing with healthy older, the individuals who suffered frailty,
sarcopenia, or other comorbidities have experienced minor habitual intake of protein and
lower physical activity level [184–187], which impacts myofibrillar protein synthetic rates
following PS and RT [52,53,187]. However, the ingestion of additional protein during RT
may contribute relatively more responses of myofibrillar protein synthesis in those with
aging-related conditions than in normal control [188]. Under such scenario, older people
with acute or chronic conditions are likely to benefit more in lean mass gains from PS
plus RT compared with their healthy peers who achieve minor changes in muscle mass
following PS plus RT [189]. Secondly, increases in proportion of women of the study sample
may result in decreased changes in handgrip strength and SPPB following PS plus RT; such
findings indicated substantial gender effects on muscular adaptations in response to PS
plus RT, particularly for muscle strength and physical mobility. Our results are supported
by the previous studies demonstrating sex-specific difference in treatment efficacy of PS
plus exercise for muscle strength [119,152,190] and mobility (CR) [119] among older adults.
Thirdly, the current NMR results showed positive associations between amount of protein
supplement and leg strength gain, which indicated that PS induced augmentations of
training effects on muscle strength might be dose dependent. Numeral previous studies
have been observed that post-exercise increases in myofibrillar fractional synthesis rates
responding to PS stimuli are significantly enhanced by an increased amount of protein
intake in trained young or older adults [191–193]. Accordingly, such acute dose-dependent
effects on muscle synthesis may lead to long-term neuromuscular adaptations following RT,
particularly in terms of strength gain. In addition, our findings were agreed by the previous
study concluding that ingestion of dietary protein as high as 1.6 g/kg/day significantly
enhances leg extension strength compared with the minor intake (0.8 g/kg/day) in in
elderly men [194]. Finally, we observed that a higher BMI was corresponded with minor
changes in SPPB score whereas greater changes in SPPB score may be observed over a
longer intervention or follow-up length up to 6 months. According to the present results,
greater function recovery may occur at 6-month follow up, compared with that within
a follow-up time of 3 months or shorter in older individuals who are not overweight or
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obese. Therefore, the restoration of physical mobility in response to PS plus RT appears to
be time-dependent, especially for those who have normal body weight.

Participant compliance with PS was equally comparable among protocols of different
protein sources in this NMA. The results indicated that older individuals tolerated well for
all protein products derived from different sources. However, a relatively higher risk of
occurrence rate of adverse events (OR = 3.04) in favor of WP was noted, comparing with that
of other protein sources (OR = 1.13–2.04; Figure 9B). After consuming whey supplements,
45 adverse events in 45 participants were reported by 6 RCTs [89,97,98,108,126,140], most
of which were related to gastrointestinal problems such as gastro esophageal reflux, nausea,
bloating or diarrhea. Among the 45 participants who suffered WP-induced complications,
30 (66.7%) experienced mild to moderate severity of gastrointestinal distress and continued
the supplementation by modifying dose, whereas the others (33.3%) happened severe
gastrointestinal problems which needed to cease consuming whey supplements. Based on
the results, we assume that most of the adverse events responding to WP are considered as
nonserious and can be well treated despite of its higher occurrence rate.

Several limitations of the present NMA are needed to be noted. First, this NMA is
limited by the varied study methodological quality with only 12 RCTs (15.4%) were ranked
as low risk of bias, which restricts the strength of the results, and may lead to overestimation
of relative effects among treatment regimens. Secondly, due to wide variation in PS (protein
source, dosage, intake time) and RT protocols (training mode, duration, and volume)
among included RCTs, it was difficult to make a definite protocol of specific regimen for
treatment efficacy, even though WP + RT was ranked as the highest probability of treatment
efficacy among all treatment arms. In addition, the optimal dosage of supplementation
and training duration were not determined in the current NMA in spite of the fact that an
increase of PS dose is associated with greater leg strength gain and a longer intervention is
accompanied with greater effects on SPPB. Further researches are warranted to identify the
optimal intake amount of protein supplements and training period, especially the WP +
RT, for elder populations. Thirdly, significant publication biases of treatment effects were
detected in muscle mass and leg strength, which downgrades the certainty of evidence.
Therefore, the conclusions in these outcomes should be cautiously interpreted. Finally,
some of the included RCTs conducted placebo supplementation in combination with RT
or not. The placebo effects were not excluded for accounting the treatment effects of RT
alone or RC groups. Therefore, the comparative effects among all treatment arms may be
underestimated, as using the RC groups as the common reference.

5. Conclusions

The present NMA determined the comparative efficacy among different sources of PS
for community-dwelling, hospitalized or institutionalized older individuals undergoing
RT. Overall, the combined treatments of PS and RT were superior to its monotherapy. In
addition, WP + RT was determined to be the optimal treatment regimen for muscle mass
and strength gains as well as restoration of physical mobility with large effects and low to
moderate certainty of evidence, despite of its relatively high risk of nonserious side effects.
The treatment efficacy appears to be mediated by healthy status, sex, and body weight,
and is likely to be dose and time dependent particularly for restorations of strength and
physical mobility. Our findings add the knowledge on RS and RT intervention strategies,
especially for older individuals with high sarcopenia and frailty risks. The results of this
NMA may help the clinicians to prescribe the optimal PS protocol during RT intervention
for ensuring optimal treatment outcomes.
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meta-analysis of mean change in leg strength from baseline; Table S6. League table for pairwise and
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of node-splitting results for muscle mass; Figure S3. Relative effects among treatment regimens for
muscle mass gain at each follow-up time frame; Figure S4. Forest plot of node-splitting results for
handgrip strength; Figure S5. Forest plot of node-splitting results for leg strength; Figure S6. Relative
effects among treatment regimens for handgrip strength at each follow-up time frame; Figure S7.
Relative effects among treatment regimens for leg strength at each follow-up time frame; Figure S8.
Relative effects among treatment regimens for walking speed at each follow-up time frame; Figure S9.
Forest plot of node-splitting results for walking speed; Figure S10. Relative effects among treatment
regimens for chair rise at each follow-up time frame; Figure S11. Forest plot of node-splitting results
for chair rise; Figure S12. Relative effects among treatment regimens for timed up-and-go task at
each follow-up time frame; Figure S13. Forest plot of node-splitting results for TUG; Figure S14.
Relative effects among treatment regimens for Short Physical Performance Battery at each follow-up
time frame; Figure S15. Forest plot of node-splitting results for SPPB; Figure S16. Funnel plots of the
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speed, (E) chair rise ability, (F) timed up and go, and (G) SPPB.
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