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Abstract: The aim of the study was to develop and evaluate a novel dietary index for gut microbiota
(DI-GM) that captures dietary composition related to gut microbiota profiles. We conducted a
literature review of longitudinal studies on the association of diet with gut microbiota in adult
populations and extracted those dietary components with evidence of beneficial or unfavorable
effects. Dietary recall data from the National Health and Nutrition Examination Survey (NHANES,
2005–2010, n = 3812) were used to compute the DI-GM, and associations with biomarkers of gut
microbiota diversity (urinary enterodiol and enterolactone) were examined using linear regression.
From a review of 106 articles, 14 foods or nutrients were identified as components of the DI-GM,
including fermented dairy, chickpeas, soybean, whole grains, fiber, cranberries, avocados, broccoli,
coffee, and green tea as beneficial components, and red meat, processed meat, refined grains, and
high-fat diet (≥40% of energy from fat) as unfavorable components. Each component was scored 0 or
1 based on sex-specific median intakes, and scores were summed to develop the overall DI-GM score.
In the NHANES, DI-GM scores ranged from 0–13 with a mean of 4.8 (SE = 0.04). Positive associations
between DI-GM and urinary enterodiol and enterolactone were observed. The association of the
novel DI-GM with markers of gut microbiota diversity demonstrates the potential utility of this index
for gut health-related studies.

Keywords: gut microbiota; dysbiosis; diet; dietary index; dietary index for gut microbiota; DI-GM

1. Introduction

Gut microbiota play a crucial role in human health, including the immune system,
metabolic regulation, and neurobehavioral traits [1–3]. Imbalance in gut microbiota or
dysbiosis is linked with insulin resistance, increased trimethylamine N-oxide production,
colonic cell proliferation, and other disease pathways [1]. Dysbiosis is characterized by
lower bacterial diversity, lower species richness, and lower relative abundance of beneficial
bacteria, leading to lower production of short-chain fatty acids (SCFAs), mainly acetate,
propionate, and butyrate [1]. Diet is among the main factors that strongly influence gut
microbiota composition [4–6].

There is a growing interest in manipulating gut microbiota through diet. Studies
have shown that changes in diet can induce shifts in the species composition of the gut
microbiota [1,7]. Healthy microbiota, such as butyrate-producing bacteria, have been
shown to increase with higher dietary fiber intake [8]. A review that included 19 human
intervention studies reported that fermented foods may be potential dietary targets to
prevent or overcome gut dysbiosis in humans [9]. Other studies examined the effects on
gut microbiota for diets that are characterized by a reduction in or exclusion of a specific
nutrient from a dietary pattern, such as ketogenic diets, gluten-free diets, and vegan
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diets [6,10]. However, there is a lack of a comprehensive measure of diet or a dietary index
that can quantify individuals’ diets in terms of attaining a healthy gut microbiota.

Dietary indices are tools used to characterize ways of eating based on dietary assess-
ment data [11,12]. Among the most commonly used currently available indices are the
Healthy Eating Index (HEI), the alternate HEI (aHEI), the Mediterranean Diet Score (MDS),
and the Dietary Approaches to Stop Hypertension (DASH) [13]. Although these indices
are useful in examining the relationship between diet quality and health outcomes [13],
their associations with gut microbiota diversity and richness indicators have been inconsis-
tent [5,14,15].

Developing a tool that can measure diet quality associated with maintaining healthy
gut microbiota is essential not only for understanding how dietary change can modify gut
microbiota but ultimately for designing dietary interventions to alleviate dysbiosis-related
diseases. To construct a literature-derived dietary index for gut microbiota (DI-GM), we
conducted a systematic review of interventional and longitudinal observational studies that
assessed the association of different foods or food groups on gut microbiota composition
in adults. The novel DI-GM was then compared to existing dietary indices based on its
strength in association with indirect biomarkers of gut microbiota diversity using data from
the National Health and Nutrition Examination Survey (NHANES). Urinary enterodiol
and enterolactone are indirect biomarkers of gut microbiota diversity. We expected a
positive association between the DI-GM and levels of urinary enterodiol and enterolactone
indicating enhanced gut microbiota diversity.

2. Materials and Methods
2.1. Development of the DI-GM
2.1.1. Literature Search Strategy

The literature search and reporting were conducted following the Preferred Report-
ing Items for Systematic Reviews and Meta-analysis guidelines (PRISMA) [16]. Articles
published in peer-reviewed journals were identified by systematic search in PubMed and
Embase databases by two authors (primary investigator and librarian). The search terms
included a combination of ‘gut’, ‘microbiota’, ‘dysbiosis’, ‘alpha diversity’, ‘short-chain
fatty acid’, ‘Bifidobacterium’, ‘Firmicutes’, ‘food’, ‘diet’, ‘nutrient’, and equivalent terms. The
results were filtered for articles published in the English language, human species, and
publication date since January 2008, representing a timeframe when current sequencing
technologies to study gut microbiota became available. The last search was run on 17 Oc-
tober 2021, and resulted in 19,306 articles. The complete list of search terms and search
strategies for each database can be found in Supplementary Material Section S1.

2.1.2. Selection Criteria

Articles retrieved from the initial search were exported to Covidence to remove du-
plicates, conduct title and abstract screening, and subsequently full-text review. Studies
that examined the effect of certain foods or food groups on gut microbiota composition
were the focus of the review. Eligibility criteria to select articles are presented in Table 1.
Articles were included if they met inclusion criteria for the study population [adult par-
ticipants, i.e., age 20 years and above and without inflammatory bowel disease (IBD)],
exposure/intervention (at least one food, food group, or nutrient), outcome (such as gut
microbiota richness and evenness indices, phyla count, levels of SCFAs, a ratio of Firmicutes
to Bacteroidetes, or any specific gut bacteria), and study design (either intervention studies
including randomized controlled studies, non-randomized interventions, and cross-over
studies, or longitudinal observational studies). Studies that examined extracts, prebiotics,
probiotics, or overall diet quality indices were excluded.
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Table 1. Inclusion and exclusion criteria for articles in the systematic review.

Inclusion Criteria Exclusion Criteria

Study population: age 20 years and older
Participants with gastrointestinal disorders (irritable bowel
syndrome, inflammatory bowel diseases, colorectal cancer)

Participants on enteral nutrition

Exposure/Intervention: foods and food groups Exposure/Interventions such as extracts, prebiotics, probiotics,
supplements, and diet quality indices

Outcomes such as gut microbiota diversity indices, SCFAs, ratio
of Firmicutes to Bacteroidetes or any specific gut bacteria

Study designs: Intervention studies and longitudinal
observation studies

SCFAs: short-chain fatty acids.

2.1.3. Data Extraction

One author extracted relevant data from all eligible articles, and a second author
checked that the extracted data were consistent with the reported findings in the articles.
Data extraction was conducted using a template in Excel, including first author and year of
publication, description of the study population (i.e., sample size, age, sex), study design
and length of follow-up, food or food group (type, amount, and duration of consumption
and comparison arm), and effect on gut microbiota (effect estimate, p-value, summary of the
finding). Risk-of-bias assessments were performed using design-specific tools: Risk of Bias
for Nutrition Observational Studies tool (RoB-NObs) [17], and Cochrane risk-of-bias tool
for randomized parallel-group trials, cluster-randomized trials, and crossover trials [18].

2.1.4. Data Synthesis

The associations of foods or food groups with gut microbiota were summarized de-
scriptively in terms of evidence of beneficial, unfavorable, or no observed effect. Attributes
of gut microbiota (outcome) that were of interest in this review were diversity indices
(α-diversity and β-diversity indices), fecal SCFA levels, change in ratios of phyla, and
change in specific bacteria (relevant bacteria in disease mechanisms). A comprehensive list
of gut microbiota outcomes can be found in Supplementary Material Section S2. Beneficial
effects on gut microbiota were defined as an increase in α-diversity and β-diversity indices;
an increase in total SCFA, butyrate, acetate, propionate, or isobutyrate; or balanced Firmi-
cutes/Bacteroidetes ratio [19–22]. For specific bacteria, a beneficial effect was defined as an
increase in Faecalibacterium, Bifidobacterium, Lactobacillus, Lactococcus, Parabacteroides, Rose-
buria, Eubacterium rectale, Eubacterium hallii, Akkermansia, Akkermansia muciniphila, Prevotella,
Prevotella copri, Anaerostipes, Anaerostipes hadrus, Veillonellaceae, Parabacteroides distasonis,
Gemmiger, or Moraxellaceae [19–22]. A decrease in Bacteroides, Bacteroides fragilis, Fusobacteria,
Streptococcus, Clostridium, Clostridium symbiosum, Clostridium perfringens, Dialister, Alistipes,
Bilophila, Ruminococcus gnavus, Dorea, Actinomyces, Odoribacter, Blautia, Lachnospira, Lach-
nospiraceae, Sutterella, Enterobacteriaceae, or Klebsiella sp., were also indicators of beneficial
effect on gut microbiota [19–22]. Findings of opposite effects to those defined as beneficial
effects were considered unfavorable effects.

Given the high variability of dose and duration of consumption of foods or food
groups and variation in reporting type of effect measures across studies, we did not meta-
analyze the data and no quantitative summary measures were computed. Consensus on the
beneficial or unfavorable effects of a specific food or food group was reached if at least one
intervention study or more than two observational studies showed supporting evidence
with minimal risk of bias and no conflicting evidence from other studies included in the
review. Based on this, foods or food groups with evidence of a beneficial or unfavorable
effect on gut microbiota were selected to be components of the DI-GM.
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2.2. Evaluation of the DI-GM
2.2.1. Study Population

The novel DI-GM was first computed using dietary data from NHANES. NHANES is
a comprehensive population-based survey designed to collect data on the diet, nutritional
status, health, and health behaviors of the US civilian population per 2-year cycle [23].
NHANES incorporated urinary enterolignan assessment, indirect biomarkers of gut micro-
biota diversity [24], in 6 cycles starting from 1999–2010.

For the current study, data from 3 cycles, 2005–2006, 2007–2008, and 2009–2010 of
NHANES were used to examine the association of diet (indicated by the novel DI-GM,
HEI, and MDS) and urinary enterolignans (n = 31,034). These three cycles were selected
because a similar dietary assessment method, 24-h dietary recall, was used across the cycles
in addition to the assessment of urinary enterolignan. We further excluded participants
aged less than 20 years, who did not complete two days of 24-h dietary recall, who reported
extreme daily caloric intake (less than 500 kcals or greater than 6000 kcals), who had
extreme body mass index (BMI, less than 15 kg/m2 or greater than 65 kg/m2), or those
with incomplete covariate data. We included 11,982 participants for descriptive analyses
and correlation analyses of the three dietary indices. In the final analysis to examine
the association of the dietary indices and urinary enterolignan, participants with missing
data on urinary enterolignan were also excluded, resulting in the final analytic sample of
n = 3812.

2.2.2. Dietary Assessment

In NHANES, two interviewer-based 24-h dietary recall assessments using USDA’s
Automated Multiple-Pass Method were conducted 3–10 days apart [25]. The first 24-h
dietary recall was conducted in Mobile Examination Centers (MEC), and the second 24-h
dietary recall was obtained by telephone interview [25]. Portion size estimations were
performed using a standard set of measuring guides. Codes to all foods and beverages and
amounts reported by participants during their 24-h dietary interviews were assigned using
the food composition database of the USDA’s Food and Nutrient Database for Dietary
Studies (FNDDS) [25]. For the current study, the mean intake of foods, food groups, and
nutrients from the two 24-h recalls were used to construct the DI-GM and existing indices
(HEI-2015 and MDS).

Details about the construction of the DI-GM are presented in the Results section. The
HEI-2015 assesses conformity with the 2015 Dietary Guidelines for Americans [26]. The
HEI-2015 has 13 components and the total score ranges from 0 to 100, with higher scores
indicating a healthier diet. The MDS is an index that quantifies conformity to the traditional
Mediterranean diet [27]. The MDS has nine components, and scores range from 0 to 9 with
higher scores indicating better conformity to the Mediterranean diet.

2.2.3. Urinary Enterolignans Assessment

Urinary enterolignans (enterodiol (ng/mL) and enterolactone (ng/mL)) were mea-
sured in spot urine samples. Detailed specimen collection and processing instructions are
discussed in the NHANES Laboratory/Medical Technologists Procedures Manual [28].
Urinary enterolignan concentrations were normalized by urinary creatinine (mg/dL) to
correct for urine dilution (expressed as ug/g creatinine) [29].

2.2.4. Statistical Analysis

Sample characteristics of the unweighted total sample (n = 11,982) were presented
using mean (standard error) for continuous variables and frequency (percentage) for
categorical variables. Correlations between the DI-GM and pre-existing indices (HEI-
2015 and MDS) were determined using the Pearson correlation coefficient. Bivariate and
multivariable linear regression were used to examine associations between DI-GM and
urinary enterolignans in the smaller subsample with urinary biomarker data (n = 3812).
In the multivariable linear regression models, sex (female, male), age (in years), race
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and ethnicity (Hispanic, non-Hispanic Black, non-Hispanic White, other), education level
(<12th grade, high school diploma, some college education, college graduate and above),
marital status (married, widowed, divorced or separated, living with a partner, never
married), smoking status (never smoked, occasional smoker, regular smoker, previous
smoker), alcohol use in the past 12 months (none, once or more per month), and BMI
(kg/m2) were included to adjust for potential confounding effects. Similar bivariate and
multivariable linear regression analyses were used to examine the association between
existing indices (HEI-2015 and MDS) and urinary enterolignans.

All analyses were run using SAS survey procedures considering the NHANES strata,
cluster, and sampling probability weights. We confirmed the assumption of normality was
not violated for any of the variables using histograms and Kolmogorov–Smirnov tests.
Both crude and adjusted regression coefficients (β) with a 95% confidence interval (CI)
were reported. All analyses were performed using SAS® 9.4 software.

3. Results
3.1. Construction of the DI-GM

A total of 106 articles were included in the systematic review, composed of intervention
studies (n = 102) and longitudinal observational studies (n = 4). Figure 1 shows the PRISMA
flow chart. The articles were grouped by the type of food examined, i.e., articles on dairy,
meat and fish products, legumes and nuts, grains, fiber, fruits, vegetables, macronutrients,
oils and seasonings, coffee and tea, and alcohol and wine. Supplementary Table S1 shows a
summary table of the findings from the reviewed articles.
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Among the articles in the dairy group, five articles were intervention studies [30–36],
and one was a prospective cohort study [37]. The articles examined the effect of intake
of total dairy, kefir, yogurt, and whole milk on gut microbiota diversity and composition,
SCFA levels, and specific bacteria count. Kefir and fermented dairy intake were associated
with beneficial changes in gut microbiota, mainly an increase in actinobacteria [30]. Dairy
intake was associated with some beneficial effects such as an increase in Faecalibacterium
and Bifidobacterium and some unfavorable effects such as an increase in Streptococcus and
Clostridium [33,37]. Based on the consistency of evidence and the number of studies,
fermented dairy was included as a component of the DI-GM, but the evidence was too
limited for other dairy products at this time, so they were not included as components of
the index.

There were seven articles in the meat and fish products group, and all were interven-
tion studies [38–43]. Foods examined in these articles were sardines, salmon, cod, red meat,
and animal-based diets. Animal-based diet was associated with an increase in the abun-
dance of bile-tolerant microorganisms (Alistipes, Bilophila, and Bacteroides) [42]. Findings
on sardines, salmon, and cod intake were inconclusive, and thus were not included in the
DI-GM [38,40]. The review indicates sufficient evidence to support the inclusion of red and
processed meat as unfavorable components of the DI-GM.

Among the articles in the legumes and nuts group, 14 were intervention studies [44–57],
and one was a cohort study [58]. Foods examined in these articles were flaxseed, almonds,
pistachios, walnuts, chickpeas, soy, and total legume intake. Findings on almond intake
indicate some beneficial effects such as an increase in bacterial richness and evenness [46],
and decrease in Bacteroides fragilis [49], and some unfavorable effects such as a decrease in
Actinobacteria and Bifidobacterium [48]. Intake of chickpeas was associated with an increase in
Faecalibacterium prausnitzii and a decrease in Clostridium clusters but no effect on α-diversity
and SCFA levels [52]. Intake of soy was associated with an increase in Bifidobacteria and
Lactobacilli and a decrease in Clostridia [55,56]. The evidence supports the inclusion of
chickpeas and soy as components of the DI-GM; however, the evidence was inconclusive
for flaxseed, almonds, pistachios, and walnuts.

A total of 20 articles, all of which were intervention studies, were focused on the effects
of intake of grains on gut microbiota [59–78]. The foods examined in these articles were
whole grains, refined grains, rye, oatmeal, barley, brown rice, and ancient grains (“Tim-ilia”,
“Margherito”, and “Russello”). Whole-grain intake was associated with an increase in
Bifidobacterial, Prevetolla, and Roseburia hominis [59,60,62]. Compared to intake of refined
grains, whole grain intake was associated with an increase in acetate and total SCFA [68].
The accumulation of evidence from intervention studies supported the inclusion of whole
grains and refined grains as components of the DI-GM.

A total of three intervention studies examined intake of fiber [7,79,80]. Intake of fiber
was associated with an increase in Firmicutes, Bifidobacterium, E. rectale, and an increase
in fecal butyrate [7,79]. Evidence from the reviewed intervention studies supported the
inclusion of fiber as a component of the DI-GM.

Among articles that examined intake of fruits, 18 were intervention studies [81–98],
and one was a prospective cohort study [99]. Fruits examined in these articles were olives,
mangos, apples, cranberries, orange juice, dates, strawberries, avocados, boysenberry juice,
raisins, and total fruit and vegetable intake. Intake of cranberries was associated with an
increase in Bacteroidetes and a decrease in Firmicutes [84,85]. No effect on α-diversity or
β-diversity, SCFA, or fecal microbiota was found after intake of dates [88], strawberries [89],
and boysenberry juice beverage [96]. Intake of avocados was associated with an increase
in Faecalibacterium, Veillonellaceae, and Prevotellaceae and an increase in fecal acetate in two
intervention studies [91,92]. Among the fruits that were examined in the reviewed studies,
evidence was present for only cranberries and avocado to suffice inclusion as components
of the DI-GM.

A total of ten intervention studies were included in the vegetable group, which
examined the effects of green leafy vegetables [100], kimchi [101,102], inulin-type fructans-
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rich vegetables [103], broccoli [104–106], cruciferous vegetables [107], tomato and carrot
juice [108], and ginger juice [109]. Inulin-type fructans-rich vegetables include artichokes,
asparagus, chicory root, garlic, and onions [110]. No changes in diversity indices or phyla
were found after intake of green leafy vegetables [100], tomato or carrot juice [108]. Intake
of kimchi was associated with some beneficial effects such as an increase in Chao1 Richness
index and Shannon index, and an increase in Actinobacteria, Bacteroides, and Prevotella,
and some unfavorable effects such as a decrease in Roseburia and Bifidobacterium [101,102].
Intake of steamed broccoli was associated with an increase in Bacteroidetes phylum and
Bacteroides genus, a decrease in sulphate-reducing bacteria, and an increase in the ratio of
Bacteroidetes to Firmicutes [104,105]. The evidence for broccoli warranted the inclusion as a
component of the DI-GM; however, the evidence for other vegetables was inconclusive.

Among articles that examined the effect of macronutrients on gut microbiota, 13 were
intervention studies [111–123], and one was a prospective cohort study [124]. A high protein
diet was associated with a decrease in Faecalibaculum, Prevotella_2, and Lachnospiraceae_UCG-
004 [111,115]. A high-fat diet was associated with a decrease in Firmicutes and lower total
bacterial count [117,119]. Three studies found no association between fat intake and α-
diversity and β-diversity [118,120,121]. Among the macronutrients examined, high-fat was
included as a component of the DI-GM.

Articles that examined oils and seasonings were five intervention studies [125–129].
Oils and seasonings examined in these articles were artificial sweeteners, polyphenol-rich
mixed spices, soybean oil, extra virgin olive oil, and coconut oil. No change in richness
and evenness, SCFA, and bacteria phyla were found after intake of the examined oils and
seasonings [126,128,129]. Thus, oils and seasonings were not included as components of
the DI-GM.

The effects of coffee and tea intake were examined using three intervention stud-
ies [130–132]. Intake of coffee was associated with an increase in Prevotella and Bifidobac-
terium and a decrease in Bacteroidetes [130,131]. Intake of green tea was associated with an
increase in α-diversity and β-diversity, and an increase in Firmicutes, Actinobacteria, and
Bifidobacterium [132]. Both coffee and green tea were included as components of the DI-GM.

Two intervention studies examined the effect of red wine and gin on gut microbiota
composition [133,134]. An increase in Firmicutes, Bacteroidetes, and Fusobacteria was found
after red wine intake in one study [134]. Another study reported no change in α-diversity
and Bacteroidetes/Firmicutes ratio after wine consumption [133]. We did not find sufficient
evidence for red wine and gin, thus neither were included as components of the DI-GM.

Based on the reviewed articles, 14 foods and nutrients were identified as having benefi-
cial or unfavorable effects on gut microbiota (Table 2). Beneficial effects were an increase in
α-diversity and β-diversity indices; an increase in total SCFA, butyrate, acetate, propionate,
or isobutyrate; or balanced Firmicutes/Bacteroidetes ratio. Beneficial components identified
were fermented dairy, chickpeas, soybean (including tofu), whole grains, fiber, cranberries,
avocados, broccoli, coffee, and green tea. Unfavorable effects on gut microbiota were
findings of opposite effects to those defined as beneficial effects. Unfavorable components
identified were red meat, processed meat, refined grains, and a high-fat diet (≥40% energy
from fat). These foods and nutrients were included as components of the novel DI-GM. To
score the DI-GM, sex-specific median intakes of each component were computed except
for a high-fat diet for which a fixed cutoff, i.e., 40% energy from fat, was used. A score
of 1 is assigned for participants who consumed above the sex-specific median for each
beneficial component and for participants who consumed below the sex-specific median
for each unfavorable component. A score of 0 is assigned for participants who consumed
below the sex-specific median for each beneficial component and for participants who
consumed above the sex-specific median for each unfavorable component. The scores
for each component are summed to obtain the DI-GM score ranging from 0–14. A higher
DI-GM score indicates a healthier gut microbiota.
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Table 2. Components of the DI-GM identified based on the systematic review.

Component Included Foods within the Component Scoring

Beneficial to gut microbiota

Avocados Avocados

For each component, a score of 1 if
consumption at or above the sex-specific

median, else 0

Broccoli Broccoli

Chickpea Chickpeas

Coffee Coffee

Cranberries Cranberries

Fermented dairy Yogurt, cheese, kefir, sour cream,
buttermilk

Fiber Not applicable

Green tea Green tea

Soybean Soy products–-Soy milk, Tofu

Whole grains
Grains defined as whole grains,

containing the entire grain kernel—the
bran, germ, and endosperm

Unfavorable to gut microbiota

High-fat diet (% energy) Not applicable

0 if consumption at or above 40%
energy from fat, else 1

For each remaining component, a score of
0 if consumption at or above the

sex-specific median, else 1

Processed meat
Frankfurters, sausages, corned beef, and
luncheon meat that are made from beef,

pork, or poultry

Red meat Beef, veal, pork, lamb, and game meat;
excludes organ meat and cured meat

Refined grains Refined grains that do not contain all of
the components of the entire grain kernel

3.2. Correlations between the DI-GM and Markers of Gut Microbiota Diversity

The DI-GM was computed using 24-h dietary recall data in NHANES. The mean age
of participants was 47.3 years (±0.4), and about half of the participants (51.8%) were female.
Most participants were non-Hispanic White (72.1%) and were married (59.1%) (Table 3).

Table 3. Sample characteristics of study population, NHANES 2005–2010.

Characteristics Sample for Correlation
Analyses (n = 11,982)

Sample for Biomarker
Analyses (n = 3812) a

Mean (SE) or n (%) Mean (SE) or n (%)

Age in years 47.3 (0.36) 47.3 (0.48)

Sex

Females 6177 (51.8) 1971 (51.8)

Males 5805 (48.2) 1841 (48.2)

Race and ethnicity

Non-Hispanic White 6052 (72.1) 1891 (71.4)

Non-Hispanic Black 2302 (10.4) 744 (10.8)

Hispanic 3163 (12.2) 1026 (12.5)

Other including multi-racial 465 (5.3) 151 (5.5)
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Table 3. Cont.

Characteristics Sample for Correlation
Analyses (n = 11,982)

Sample for Biomarker
Analyses (n = 3812) a

Mean (SE) or n (%) Mean (SE) or n (%)

Marital status

Married 6604 (59.1) 2133 (60.3)

Widowed, divorced or separated 2605 (17.9) 826 (18.1)

Living with partner 907 (7.2) 285 (6.9)

Never married 1866 (15.8) 568 (14.6)

Educational status

Less than 12th grade 3269 (17.6) 1021 (17.5)

High school diploma 2884 (24.5) 934 (25.2)

Some college education 3337 (30.4) 1095 (31.9)

College graduate or above 2492 (27.5) 762 (25.4)

Smoking status

Never smoked 6375 (53.6) 2042 (53.1)

Occasional smoker 423 (3.2) 116 (2.9)

Previous smoker 3111 (25.4) 990 (25.7)

Regular smoker 2073 (17.9) 664 (18.3)

Alcohol Use in the past 12 months

None 3471 (24.7) 1083 (24.4)

12 drinks or more 8511 (75.3) 2729 (75.6)

Body mass index, kg/m2 28.7 (0.11) 28.7 (0.15)

Enterodiol (µg/g) b NA 1.53 (0.12)

Enterolactone (µg/g) b NA 9.04 (0.58)

DI-GM (ranges 0 to 13) 4.80 (0.04) 4.78 (0.04)

HEI-2015 (ranges 0 to 100) 53.5 (0.3) 53.3 (0.4)

Scaled HEI-2015 (ranges 0 to 10) 5.35 (0.03) 5.33 (0.04)

MDS (ranges 0 to 9) 3.80 (0.03) 3.79 (0.05)
n is unweighted sample size, ±SE—standard error, % percentage, mean values and percentages are weighted,
NA—not available for the full sample, DI-GM—dietary index for gut microbiota, HEI-2015—healthy eating index,
MDS—Mediterranean diet score. a Based on a subsample that includes no missing on enterodiol and enterolactone
(n = 3812). b Levels are creatinine adjusted.

The DI-GM scores in NHANES range from 0–13 with a mean ± standard error (SE)
of 4.80 (±0.04). The green tea component was not included in the scoring of the DI-GM
in NHANES because the specific type of tea consumption was not recorded in the 24-h
dietary recall data. The correlation between DI-GM and HEI-2015 was 0.54 (p < 0.0001),
and the correlation between DI-GM and MDS was 0.42 (p < 0.0001), as shown in Table 4.

The DI-GM was modestly positively correlated with both creatinine-adjusted en-
terodiol (r = 0.19, p < 0.0001) and enterolactone (r = 0.22, p < 0.0001). Of the 13 DI-GM
components, 10 components were correlated to the urinary enterolignans. Fermented dairy,
red meat, processed meat, refined grains, and high-fat diet were negatively correlated with
creatinine-adjusted enterodiol and enterolactone levels (Table 5), while intake of chickpeas,
soybean, whole grains, fiber, avocados, broccoli, and coffee were each positively correlated
with creatinine-adjusted enterodiol and enterolactone concentrations.
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Table 4. Correlation between DI-GM and existing dietary indices, NHANES (n = 11,982).

Correlation with DI-GM
r (p-Value)

HEI-2015 0.54 (<0.0001)

MDS 0.42 (<0.0001)

Correlation between HEI-2015 and MDS 0.62 (<0.0001)
r—correlation coefficient, DI-GM—dietary index for gut microbiota, HEI-2015—healthy eating index, MDS—
Mediterranean diet score.

Table 5. Correlation between creatinine-adjusted enterolignans and DI-GM components, DI-GM,
HEI-2015, and MDS; NHANES (n = 3812).

Enterodiol (µg/g)
r (p-Value)

Enterolactone (µg/g)
r (p-Value)

DI-GM 0.19 (<0.0001) 0.22 (<0.0001)

HEI-2015 scaled 0.23 (<0.0001) 0.25 (<0.0001)

MDS 0.16 (<0.0001) 0.19 (<0.0001)

Components of DI-GM

Avocados 0.05 (0.01) 0.05 (0.007)

Broccoli 0.11 (<0.0001) 0.11 (<0.0001)

Chickpea 0.08 (0.01) 0.09 (0.002)

Coffee 0.01 (0.66) 0.09 (0.0007)

Cranberries 0.03 (0.15) −0.01 (0.77)

Fermented dairy −0.06 (0.01) −0.06 (0.002)

Fiber 0.11 (<0.0001) 0.12 (<0.0001)

Soybean 0.13 (<0.0001) 0.08 (0.01)

Whole grains 0.09 (0.01) 0.11 (0.0003)

High-fat diet (>40% energy) −0.02 (0.26) −0.01 (0.82)

Processed meat −0.08 (0.001) −0.08 (<0.0001)

Red meat −0.05 (0.01) −0.11 (<0.0001)

Refined grains −0.09 (0.0002) −0.10 (<0.0001)
r—correlation coefficient, DI-GM—dietary index for gut microbiota, HEI-2015—healthy eating index—scaled
to 0–10, MDS—Mediterranean diet score, enterodiol and enterolactone values were adjusted for creatinine and
log-transformed.

A one-unit increase in DI-GM was associated with an increase by 0.12 µg/g (95% CI:
0.08, 0.17) in creatinine-adjusted enterodiol concentrations and 0.14 µg/g (95% CI: 0.09, 0.18)
in creatinine-adjusted enterolactone concentrations in the multivariable model (Table 6).

A one-unit increase in the rescaled HEI-2015 (rescaled scores range 0–10) was asso-
ciated with an increase of 0.21 µg/g (95% CI: 0.16, 0.26) in creatinine-adjusted enterodiol
concentrations and 0.20 µg/g (95% CI: 0.15, 0.26) in creatinine-adjusted enterolactone con-
centrations in the multivariable model. A one-unit increase in MDS was associated with an
increase of 0.11 µg/g (95% CI: 0.07, 0.15) in creatinine-adjusted enterodiol and by 0.12 µg/g
(95% CI: 0.08, 0.17) in creatinine adjusted enterolactone.
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Table 6. Association between DI-GM, existing dietary indices and creatinine-adjusted enterolignans,
NHANES (n = 3812).

Bivariate Association β [95%CI]
(p-Value)

Adjusted Association a β [95% CI]
(p-Value)

Enterolignans DI-GM 0–13 HEI-2015 0–10 MDS 0–9 DI-GM 0–13 HEI-2015 0–10 MDS 0–9

Enterodiol
(µg/g)

0.19
[0.15, 0.23]
(p < 0.0001)

0.29
[0.25, 0.34]
(p < 0.0001)

0.16
[0.12, 0.20]
(p < 0.0001)

0.12
[0.08, 0.17]
(p < 0.0001)

0.21
[0.16, 0.26]
(p < 0.0001)

0.11
[0.07, 0.15]
(p < 0.0001)

Enterolactone
(µg/g)

0.23
[0.18, 0.28]
(p < 0.0001)

0.34
[0.28, 0.40]
(p < 0.0001)

0.21
[0.16, 0.25]
(p < 0.0001)

0.14
[0.09, 0.18]
(p < 0.0001)

0.20
[0.15, 0.26]
(p < 0.0001)

0.12
[0.08, 0.17]
(p < 0.0001)

β [95% CI]—regression coefficient [95% confidence interval], DI-GM—dietary index for gut microbiota, HEI-
2015—healthy eating index—scaled to 0–10, MDS—Mediterranean diet score, enterodiol and enterolactone values
were adjusted for creatinine and log-transformed. a adjusted for age, sex, race, marital status, education, smoking,
alcohol use, and BMI.

4. Discussion

We developed a novel dietary index, DI-GM, from an extensive literature review and
showed that the DI-GM was associated with indirect biomarkers of gut microbiota diversity.
The DI-GM is composed of 14 foods or nutrients: fermented dairy, chickpeas, soybean,
whole grains, fiber, cranberries, avocados, broccoli, coffee, and green tea were beneficial
components, and refined grains, red meat, processed meat, and high-fat diet (≥40% energy
from fat) were unfavorable components. Selection of the components of the DI-GM was
based on having either beneficial or unfavorable effects on gut microbiota indicated by
changes in gut microbiota diversity indices, level of SCFA production, or increase in the
count of specific bacteria. The demonstration of an association between the DI-GM and
biomarkers of gut microbiota diversity in NHANES indicates the construct validity of the
DI-GM to measure the quality of diet in relation to gut microbiota diversity.

The focus and development of the DI-GM make it unique compared to pre-existing
indices that were developed to demonstrate how diet modulates gut microbial composi-
tion [5,14,135–137]. The DI-GM is literature-derived and focuses on broad attributes of gut
microbiota including diversity indices, production of SCFA, change in phyla, and specific
bacteria. Among related pre-existing indices is the sulfur-metabolizing diet score where
dietary constituents associated with the enrichment of sulfur-metabolizing bacteria were
identified using clustering and regression techniques [135,136]. The components of the
sulfur-metabolizing diet score include processed and red meat, liquor, low-calorie drinks,
beer, fruit juice, legumes, mixed (other) vegetables, and sweets/desserts [135,136]. There
are some similarities between the DI-GM and the sulfur-metabolizing diet score because
sulfur-metabolizing bacteria were among the gut bacteria of interest in the construction of
the DI-GM. Some differences between the DI-GM and sulfur-metabolizing diet likely arose
due to the methods used in creating these indices/patterns. The DI-GM was developed
based on current literature, whereas the sulfur-metabolizing diet score is data-driven within
a specific study population (the Health Professionals Follow-up Study) [135], and replicated
in one other study population (Nurses’ Health Study) [136]. In addition, the target for the
DI-GM is broader in which diversity indices, production of SCFA, change in phyla, and
specific bacteria were outcomes compared to the target for the sulfur-metabolizing diet
which focused on only sulfur-metabolizing bacterium. Thus, the DI-GM can be utilized in
studies where the focus is not limited to sulfur-metabolizing bacterium.

While the novel DI-GM is intended to measure diet quality in relation to gut micro-
biome health, it appears to also inherently measure the overall healthfulness of diet as
evidenced by the DI-GM showing a correlation, albeit moderate, with the HEI-2015 and
MDS. The strength of the diet index–urinary enterolignan association using DI-GM was
slightly weaker than using HEI-2015 but was similar to using the MDS. This may be due to
the inclusion of broad sources of dietary lignans in the HEI-2015 which are not included in
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the DI-GM. Both indices include whole grains which are good sources of lignans, but the
HEI-2015 includes additional lignan sources such as legumes, fruits, and vegetables. An
increase in enterolignan excretion has been shown to be explained by higher gut bacterial
diversity and composition as well as dietary intake of lignans [24]. Although the association
between the DI-GM and urinary enterolignans is in the expected direction, there are no
threshold levels of urinary enterolignans that mark levels of gut bacteria diversity and
community structure to speculate on the strength of association.

Some dietary components overlapped between the DI-GM, HEI-2015, and MDS, for
instance, whole and refined grains. The DI-GM like the HEI-2015 and MDS is an a priori
index that can be used to compare dietary patterns of different populations. Given the
overarching role of gut microbiota in different diseases, the DI-GM can be used to examine
diet-disease associations similar to the HEI-2015 and MDS. However, the DI-GM differs
from existing indices in that for some components, it includes specific foods, rather than
a food group [26,138]. Most of the reviewed articles in the construction of the DI-GM
were dietary intervention studies that focused on the provision of a specific food. The
inclusion of specific foods in the DI-GM may be potentially beneficial in determining
dietary recommendations.

One of the unique dietary components of the DI-GM is fermented dairy. There is
increasing evidence to support the role of fermented foods in enhancing the gut microbiota.
Fermented dairy such as yogurt, cheese, and kefir contain lactic acid bacteria and lactic
acid and have been shown to increase the abundance of Lactobacillus spp. counts in the gut,
which has the potential to overcome gut dysbiosis [9,139]. However, we found a negative
correlation between fermented dairy intake and indirect biomarkers of gut microbiota
diversity in NHANES. This finding could be due to the added sugar or fat content in
some fermented dairy products. It has been previously shown that the microbial profile
associated with the intake of yogurt differs between natural and sweetened yogurt [140].
In the United States, the consumption of sweetened yogurt far exceeds the consumption
of natural yogurt [141]. We speculate that combining natural and sweetened yogurt
as one component in the DI-GM could mask the positive effect of natural yogurt and
emphasize the negative effect of sweetened yogurt as it is predominantly consumed.
However, in constructing the DI-GM we did not have sufficient evidence from the literature
to distinguish the types of yogurt in the fermented dairy component of the DI-GM.

Chickpeas and soybeans were among the beneficial components of the DI-GM. These
components include soybean oligosaccharides and raffinose that selectively enhance the
growth of Bifidobacterium, a bacteria that has shown anti-cancer properties [52,55,142]. Broc-
coli is also among the beneficial components. Similar finding from the sulfur-metabolizing
diet indicates that plant-based sulfur sources, such as those found in legumes and veg-
etables, are associated with the relative depletion of sulfur-metabolizing bacteria [135].
Glucosinolates in broccoli are degraded by gut bacteria into phytochemicals that decrease
the initiation and progression of cancer [143]. It has been shown that whole grains and veg-
etable consumption enhance gut microbes known to utilize components of the whole grain,
including fiber, and subsequently produce a range of short-chain fatty acids [137]. Both
coffee and green tea were beneficial components in the DI-GM, and their polyphenol con-
tent may explain this [144,145]. Polyphenols in coffee, mainly chlorogenic acids, stimulate
the growth of Bifidobacteria spp. and a decrease in Clostridium spp. [144]. Similarly, green
tea catechins (phenolic compounds) have been shown to act as prebiotics by stimulating
specific bacteria that metabolize these compounds [145].

Red meat, processed meat, and a high-fat diet were among the unfavorable compo-
nents of DI-GM, and studies suggest different mechanisms through which these foods bring
about dysbiosis. A high-fat diet has been linked to reduced microbial count and an increase
in gut permeability [146]. High-fat diets enriched with meat-based proteins may promote
distinct and less diverse populations of sulfur-metabolizing bacteria due to their high
sulfur content from both sulfur-containing amino acids and the organic sulfurs found in
preservatives [135]. In addition, dietary choline or L-carnitine found in red and processed
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meat has been linked to gut microbiota responsible for the biosynthesis of Trimethylamine
N-oxide (TMAO), a pro-atherosclerotic metabolite [147,148]. More research is needed to
identify the effect of other factors related to meat consumption such as methods of cooking
on gut microbiota diversity [149].

The study has some limitations. Although a substantial number of articles (n = 106)
were included in the review, there was a limited number of articles per food or food group.
Thus, the selection of the components of the DI-GM relied on limited articles per food,
and foods that have not been studied in relation to gut microbiota were not included in
the index. Therefore, the DI-GM may benefit from revisions as more evidence becomes
available. Variations between articles in reporting consumption levels of foods and methods
of cooking made it difficult to add such attributes to the components of the DI-GM. Another
limitation was the lack of a clear definition of what constitutes healthy/unhealthy gut
microbiota and the variation in ways that articles report markers of healthy/unhealthy gut
microbiota. To overcome this, we constructed a comprehensive list of direct markers of gut
microbiota outcomes, i.e., diversity indices, levels of SCFA, and specific bacteria. The use
of urinary enterolignans as indirect biomarkers of gut microbiota diversity has a limitation
as it is a non-specific indicator of gut microbiota diversity. Thus, the study needs to be
replicated in a dataset where direct gut microbiota diversity measures are available.

The study has strengths that are worth noting. The DI-GM is derived based on a
review of longitudinal studies, most of which were intervention studies and thus provided
the highest level of causal evidence for the associations under study. Given the DI-GM is
an a priori-defined index, it can be computed using dietary intake data of existing studies,
allowing more direct comparisons across studies when examining DI-GM–health outcome
association [150]. Most of the DI-GM components are foods as opposed to nutrients which
can more easily be interpreted for dietary recommendations. Lastly, we showed that the
DI-GM has construct validity in measuring the role of diet in gut microbiota diversity using
a nationally representative sample.

5. Conclusions

In conclusion, we constructed a novel dietary index, i.e., DI-GM, based on a literature
review that characterizes the relationship between diet and different aspects of gut micro-
biota. Beneficial components included fermented dairy, chickpeas, soybean, whole grains,
fiber, cranberries, avocados, broccoli, coffee, and green tea, while unfavorable components
included refined grains, red meat, processed meat, and greater than 40% of daily energy
from fat. We found that the DI-GM was positively associated with urinary enterolignans,
indicating a relationship with gut microbiota diversity. Future studies that incorporate gut
microbiome data are needed to evaluate the utility of the index.
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