Exploring the Role of Serum Osteonectin and Hsp27 in Pediatric MAFLD Diagnosis and Cardiometabolic Health
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Auxological Data and Derived Indices
- BMI (Body Mass Index) was calculated as weight (kg) divided by squared height (mp).
- TMI (Triponderal Mass Index) was calculated as weight (kg) divided by cubed height (m3) [10].
- VAI (visceral adiposity index) [11] as follows:
- ○
- Male = [WC/(39.68 + (1.88 × BMI))] × (TG/1.03) × (1.31/HDL-C);
- ○
- Female = [WC/(36.58 + (1.89 × BMI))] × (TG/0.81) × (1.52/HDL-C).
- AIP (Atherogenic Index of Plasma) = log (TG/HDL Cholesterol) [12].
- WtHR was calculated as waist circumference (cm) divided by height (cm) multiplied by 100.
2.3. Imagistic Evaluation
2.4. Laboratory Analysis
2.5. NAFLD/MAFLD/PeFLD Type 2 Diagnosis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blundell, J.E.; Dulloo, A.G.; Salvador, J.; Frühbeck, G. EASO SAB Working Group on BMI. Beyond BMI-phenotyping the obesities. Obes Facts. 2014, 7, 322–328. [Google Scholar] [CrossRef]
- Eslam, M.; Alkhouri, N.; Vajro, P.; Baumann, U.; Weiss, R.; Socha, P.; Marcus, C.; Lee, W.S.; Kelly, D.; Porta, G.; et al. Defining paediatric metabolic (dysfunction)-associated fatty liver disease: An international expert consensus statement. Lancet Gastroenterol. Hepatol. 2021, 6, 864–873. [Google Scholar] [CrossRef] [PubMed]
- Kos, K.; Wilding, J.P. SPARC: A key player in the pathologies associated with obesity and diabetes. Nat. Rev. Endocrinol. 2010, 6, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Mazzolini, G.; Atorrasagasti, C.; Onorato, A.; Peixoto, E.; Schlattjan, M.; Sowa, J.; Sydor, S.; Gerken, G.; Canbay, A. SPARC expression is associated with hepatic injury in rodents and humans with non-alcoholic fatty liver disease. Sci. Rep. 2018, 8, 725. [Google Scholar] [CrossRef]
- Marion, D.M.S.V.; Lanters, E.A.H.; Ramos, K.S.; Li, J.; Wiersma, M.; Baks-Te Bulte, L.J.Q.M.; Muskens, A.; Boersma, E.; de Groot, N.M.S.; Brundel, B.J.J.M. Evaluating Serum Heat Shock Protein Levels as Novel Biomarkers for Atrial Fibrillation. Cells 2020, 9, 2105. [Google Scholar] [CrossRef]
- Bălănescu, A.; Stan, I.; Codreanu, I.; Comănici, V.; Bălănescu, E.; Bălănescu, P. Circulating Hsp90 Isoform Levels in Overweight and Obese Children and the Relation to Nonalcoholic Fatty Liver Disease: Results from a Cross-Sectional Study. Dis. Markers 2019, 2019, 9560247. [Google Scholar] [CrossRef]
- Bălănescu, A.; Codreanu, I.F.; Comanici, V.D.; Stan, I.V.; Bălănescu, E.; Bălănescu, P. Endocan and Lumican in Relation to Cardiometabolic Risk in a Pediatric Overweight and Obese Cohort: A Cross-Sectional Study. Biomed Res. Int. 2020, 2020, 2102401. [Google Scholar] [CrossRef] [PubMed]
- Hampl, S.E.; Hassink, S.G.; Skinner, A.C.; Armstrong, S.C.; Barlow, S.E.; Bolling, C.F.; Edwards, K.C.A.; Hamre, I.E.R.; Joseph, M.M.; Lunsford, D.; et al. Clinical Practice Guideline for the Evaluation and Treatment of Children and Adolescents with Obesity. Pediatrics 2023, 151, e2022060640. [Google Scholar] [CrossRef]
- WHO STEPS Surveillance Manual: The WHO STEPwise Approach to Chronic Disease Risk Factor Surveillance/Noncommunicable Diseases and Mental Health, World Health Organization. Available online: https://apps.who.int/iris/handle/10665/43376 (accessed on 22 March 2019).
- Peterson, C.M.; Su, H.; Thomas, D.M.; Heo, M.; Golnabi, A.H.; Pietrobelli, A.; Heymsfield, S.B. Tri-Ponderal Mass Index vs Body Mass Index in Estimating Body Fat during Adolescence. JAMA Pediatr. 2017, 171, 629–636. [Google Scholar] [CrossRef]
- Dong, Y.; Bai, L.; Cai, R.; Zhou, J.; Ding, W. Visceral adiposity index performed better than traditional adiposity indicators in predicting unhealthy metabolic phenotype among Chinese children and adolescents. Sci. Rep. 2021, 11, 23850. [Google Scholar] [CrossRef]
- Fawwad, A.; Mahmood, Y.; Askari, S.; Butt, A.; Basit, A.; NDSP members. NDSP 12: Atherogenic index of plasma as a useful marker of cardiovascular disease risk among Pakistani individuals; a study from the second National Diabetes Survey of Pakistan (NDSP) 2016–2017. Clin. Epidemiol. Glob. Health 2023, 19, 101202. [Google Scholar] [CrossRef]
- Ejtahed, H.S.; Kelishadi, R.; Hasani-Ranjbar, S.; Angoorani, P.; Motlagh, M.E.; Shafiee, G.; Ziaodini, H.; Taheri, M.; Qorbani, M.; Heshmat, R. Discriminatory ability of visceral adiposity index as an indicator for modeling cardio-metabolic risk factors in pediatric population: The CASPIAN-V study. J. Cardiovasc. Thorac. Res. 2019, 11, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Kromeyer-Hauschild, K.; Neuhauser, H.; Schaffrath Rosario, A.; Schienkiewitz, A. Abdominal obesity in German adolescents defined by waist-to-height ratio and its association to elevated blood pressure: The KiGGS study. Obes. Facts. 2013, 6, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Zimmet, P.; Alberti, K.G.M.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S. The metabolic syndrome in children and adolescents—An IDF consensus report. Pediatric Diabetes 2007, 8, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Colucci, A.; Rocco, M.C.; De Anseris, A.G.E.; Nazzaro, L.; Vajro, P.; Mandato, C. Pediatric vs. adult NAFLD to MAFLD transition: A welcome but tangled path. Explor. Med. 2021, 2, 333–342. [Google Scholar] [CrossRef]
- Kirichenko, T.V.; Markina, Y.V.; Bogatyreva, A.I.; Tolstik, T.V.; Varaeva, Y.R.; Starodubova, A.V. The Role of Adipokines in Inflammatory Mechanisms of Obesity. Int. J. Mol. Sci. 2022, 23, 14982. [Google Scholar] [CrossRef]
- Wen, W.; Li, H.; Wang, C.; Chen, C.; Tang, J.; Zhou, M.; Hong, X.; Cheng, Y.; Wu, Q.; Zhang, X.; et al. Metabolic dysfunction-associated fatty liver disease and cardiovascular disease: A meta-analysis. Front. Endocrinol. 2022, 16, 934225. [Google Scholar] [CrossRef]
- Zhou, X.D.; Targher, G.; Byrne, C.D.; Somers, V.; Kim, S.U.; Chahal, C.A.A.; Wong, V.W.; Cai, J.; Shapiro, M.D.; Eslam, M.; et al. An international multidisciplinary consensus statement on MAFLD and the risk of CVD. Hepatol. Int. 2023, 17, 773–791. [Google Scholar] [CrossRef]
- Peng, H.; Pan, L.; Ran, S.; Wang, M.; Huang, S.; Zhao, M.; Cao, Z.; Yao, Z.; Xu, L.; Yang, Q.; et al. Prediction of MAFLD and NAFLD using different screening indexes: A cross-sectional study in U.S. adults. Front. Endocrinol. 2023, 14, 1083032. [Google Scholar] [CrossRef] [PubMed]
- Zadarko-Domaradzka, M.; Sobolewski, M.; Zadarko, E. Comparison of Several Anthropometric Indices Related to Body Fat in Predicting Cardiorespiratory Fitness in School-Aged Children—A Single-Center Cross-Sectional Study. J. Clin. Med. 2023, 12, 6226. [Google Scholar] [CrossRef] [PubMed]
- Efrem, I.C.; Moța, M.; Vladu, I.M.; Mitrea, A.; Clenciu, D.; Timofticiuc, D.C.P.; Diaconu, I.D.; Turcu, A.; Crișan, A.E.; Geormăneanu, C.; et al. A Study of Biomarkers Associated with Metabolic Dysfunction-Associated Fatty Liver Disease in Patients with Type 2 Diabetes. Diagnostics 2022, 12, 2426. [Google Scholar] [CrossRef]
- Dağ, H.; İncirkuş, F.; Dikker, O. Atherogenic Index of Plasma (AIP) and Its Association with Fatty Liver in Obese Adolescents. Children 2023, 29, 641. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Li, Y.; Esangbedo, I.C.; Li, G.; Feng, D.; Li, L.; Xu, L.; Han, L.; Li, M.; Li, C.; et al. Circulating Osteonectin and Adipokine Profiles in Relation to Metabolically Healthy Obesity in Chinese Children: Findings From BCAMS. J. Am. Heart Assoc. 2018, 7, e009169. [Google Scholar] [CrossRef] [PubMed]
- Ferns, G.; Shams, S.; Shafi, S. Heat shock protein 27: Its potential role in vascular disease. Int. J. Exp. Pathol. 2006, 87, 253–274. [Google Scholar] [CrossRef] [PubMed]
- Vidyasagar, A.; Wilson, N.A.; Djamali, A. Heat shock protein 27 (HSP27): Biomarker of disease and therapeutic target. Fibrogenesis Tissue Repair. 2012, 5, 7. [Google Scholar] [CrossRef]
- Sookoian, S.; Castaño, G.O.; Scian, R.; San Martino, J.; Pirola, C.J. Heat Shock Protein 27 is down-regulated in Ballooned Hepatocytes of Patients with Nonalcoholic Steatohepatitis (NASH). Sci. Rep. 2016, 6, 22528. [Google Scholar] [CrossRef]
- Cole, T.J. Weight/heightp compared to weight/height2 for assessing adiposity in childhood: Influence of age and bone age on p during puberty. Ann. Hum. Biol. 1986, 13, 433–451. [Google Scholar] [CrossRef]
- Shim, Y.S. The Relationship Between Tri-ponderal Mass Index and Metabolic Syndrome and Its Components in Youth Aged 10–20 Years. Sci. Rep. 2019, 9, 14462. [Google Scholar] [CrossRef]
- Calcaterra, V.; Verduci, E.; Schneider, L.; Cena, H.; De Silvestri, A.; Vizzuso, S.; Vinci, F.; Mameli, C.; Zuccotti, G. Sex-Specific Differences in the Relationship between Insulin Resistance and Adiposity Indexes in Children and Adolescents with Obesity. Children 2021, 8, 449. [Google Scholar] [CrossRef] [PubMed]
- Basarir, G.; Ozcabi, B.; Aksu Sayman, O.; Ozturkmen Akay, H.; Yildiz, F.M. Evaluation of clinical, endocrine and metabolic findings in obese children with and without hepatosteatosis. J. Pediatr. Endocrinol. Metab. 2021, 34, 1081–1087. [Google Scholar] [CrossRef] [PubMed]
- Verduci, E.; Banderali, G.; Di Profio, E.; Vizzuso, S.; Zuccotti, G.; Radaelli, G. Effect of individual- versus collective-based nutritional-lifestyle intervention on the atherogenic index of plasma in children with obesity: A randomized trial. Nutr. Metab. 2021, 18, 11. [Google Scholar] [CrossRef] [PubMed]
- Nur Zati Iwani, A.K.; Jalaludin, M.Y.; Wan Mohd Zin, R.M.; Fuziah, M.Z.; Hong, J.Y.H.; Abqariyah, Y.; Mokhtar, A.H.; Wan Mohamud, W.N. TG : HDL-C Ratio Is a Good Marker to Identify Children Affected by Obesity with Increased Cardiometabolic Risk and Insulin Resistance. Int. J. Endocrinol. 2019, 2019, 8586167. [Google Scholar] [CrossRef] [PubMed]
- Draijer, L.G.; Feddouli, S.; Bohte, A.E.; Vd Baan Slootweg, O.; Pels Rijcken, T.H.; Benninga, M.A.; Stoker, J.; Koot, B.G.P. Comparison of diagnostic accuracy of screening tests ALT and ultrasound for pediatric non-alcoholic fatty liver disease. Eur. J. Pediatr. 2019, 178, 863–870. [Google Scholar] [CrossRef] [PubMed]
Variable | Non-MAFLD Patients (n = 42) | MAFLD Patients (n = 29) | p-Value |
---|---|---|---|
Male gender (n, %) | 23 (54.8%) | 14 (48.3%) | 0.63 |
Age (years) | 8.50 (3–16) | 12 (6–17) | 0.007 |
MUHO (n, %) | 33 (78.6%) | 24 (82.8%) | 0.66 |
WC (percentile) | 95 (75–99) | 95 (90–99) | 0.048 |
MAC (percentile) | 95 (75–99) | 95 (25–99) | 0.95 |
WtHR | 58.60 (45.56–68.70) | 61.40 (50–78.28) | 0.058 |
BMI (kg/m2) | 24.04 (18.40–32.70) | 29 (17.60–40.43) | 0.003 |
BMI percentile | 98 (88–99) | 98 (85–99) | 0.62 |
BMI z-score | 2.00 (1.18–4.00) | 2.08 (1.04–3.14) | 0.51 |
TMI | 16.96 (14.19–24.91) | 18.24 (13.45–26.48) | <0.001 |
TMI (percentile) | 99 (75–99) | 99 (50–99) | 0.09 |
HTA (n,%) | 18 (42.9%) | 16 (55.2%) | 0.34 |
Dyslipidemia (n,%) | 28 (66.7%) | 22 (75.9%) | 0.44 |
TG (mg/dL) | 71 (30–195) | 121 (44–251) | <0.001 |
HDL cholesterol (mg/dL) | 45 (33–70) | 37 (19–68) | 0.008 |
LDL cholesterol (mg/dL) | 98 (53–156) | 109 (51–156) | 0.38 |
Non-HDL cholesterol (mg/dL) | 114.5 (50–170) | 128 (62–188) | 0.22 |
TG/HDL ratio | 1.76 (0.52–5.00) | 3.49 (0.81–8.58) | <0.001 |
Insulin (mU/L) | 7.71 (0.96–41.41) | 16.90 (2.05–41.57) | 0.015 |
HOMA-IR | 1.67 (0.34–13.91) | 3.69 (0.55–10.57) | 0.006 |
VAI | 2.50 (0.59–10.31) | 5.45 (0.92–16.35) | <0.001 |
AIP | –0.11 (–0.63–+0.64) | 0.18 (–0.45–+0.57) | <0.001 |
AIP group stratification (n,%) | |||
1 (low risk) | 34 (81%) | 11 (37.9%) | <0.001 |
2 (intermediate risk) | 25 (11.9%) | 6 (20.7%) | |
3 (high risk) | 3 (7.1%) | 12 (41.4%) |
Overweight Non-MAFLD (n = 7) | Overweight MAFLD (n = 3) | p-Value | |
---|---|---|---|
AIP | −0.13 (−0.51–+0.02) | 0.25 (0.08–0.57) | 0.017 |
VAI | 2.23 (1.46–5.03) | 5.45 (5.24–16.35) | 0.017 |
TG/HDL ratio | 1.69 (0.71–2.37) | 4.14 (2.73–8.58) | 0.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bălănescu, A.; Bălănescu, P.-C.; Codreanu, I.F.; Stan, I.-V.; Comanici, V.-D.; Robu, A.M.; Ciomârtan, T. Exploring the Role of Serum Osteonectin and Hsp27 in Pediatric MAFLD Diagnosis and Cardiometabolic Health. Nutrients 2024, 16, 866. https://doi.org/10.3390/nu16060866
Bălănescu A, Bălănescu P-C, Codreanu IF, Stan I-V, Comanici V-D, Robu AM, Ciomârtan T. Exploring the Role of Serum Osteonectin and Hsp27 in Pediatric MAFLD Diagnosis and Cardiometabolic Health. Nutrients. 2024; 16(6):866. https://doi.org/10.3390/nu16060866
Chicago/Turabian StyleBălănescu, Anca, Paul-Cristian Bălănescu, Ioana Florentina Codreanu, Iustina-Violeta Stan, Valentina-Daniela Comanici, Alina Maria Robu, and Tatiana Ciomârtan. 2024. "Exploring the Role of Serum Osteonectin and Hsp27 in Pediatric MAFLD Diagnosis and Cardiometabolic Health" Nutrients 16, no. 6: 866. https://doi.org/10.3390/nu16060866
APA StyleBălănescu, A., Bălănescu, P.-C., Codreanu, I. F., Stan, I.-V., Comanici, V.-D., Robu, A. M., & Ciomârtan, T. (2024). Exploring the Role of Serum Osteonectin and Hsp27 in Pediatric MAFLD Diagnosis and Cardiometabolic Health. Nutrients, 16(6), 866. https://doi.org/10.3390/nu16060866