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Abstract: In recent years, heightened attention has been devoted to unravelling the intricate interplay
between genetic and environmental factors shaping the gut microbiota and its significance for human
health. This study delves into exploring the plausible connection between Alopecia Areata (AA), an
autoimmune disease, and the dynamics of the gut microbiome. Examining a cohort of healthy adults
and individuals with AA, both the gut microbiota composition and volatile organic compound (VOC)
metabolites from faeces and urine were analysed. While overall microbiota composition showed no
significant differences, intra-individual variability revealed distinctions related to age, gender, and
pathology status, with AA individuals exhibiting reduced species richness and evenness. Differential
abundance analysis identified microbial biomarkers for AA, notably Firmicutes, Lachnospirales, and
Blautia, while Coprococcus stood out for healthy individuals. The Data Integration Analysis for
Biomarker discovery using Latent Components (DIABLO) method further supported these findings
including metabolite biomarkers, such as esters of branched chain fatty acids and branched chain
amino acids as predictors for AA, suggesting potential links to oxidative stress. Despite certain
limitations, the study highlights the complexity of the gut microbiome and its metabolites in the
context of AA, while the biomarkers identified could be useful starting points for upcoming studies.

Keywords: alopecia areata; immunoregulation; gut microbiome; metabolome; biomarkers

1. Introduction

The human gastrointestinal (GI) tract harbours a complex and dynamic population
of microorganisms, which is sparse in the stomach and upper intestine, but abundant in
the colon tract [1]. The gut microbiome in its totality plays a key role in maintaining host
homeostasis and health status [2–4]. Consciously, the modification of the gut microbiota
and its related metabolome are intimately linked to numerous genetic, nutritional, and
environmental determinants [5]. Nevertheless, the environment appears to be primarily
responsible for shaping the human microbiota compared to host genetics [2]. For instance,
the immune’s system abnormal generation of autoantibody-producing B cells and au-
toreactive T cells and the anomalous production of proinflammatory cytokines are some
examples of the influence of environmental factors [6,7]. In this scenario, the association
between alteration of the gut microbiome in patients suffering from autoimmune diseases
such as inflammatory bowel disease (IBD) and multiple sclerosis (MS) has recently been
investigated [8–12].

Among autoimmune disorders, Alopecia Areata (AA), originally called “Area Celsi”,
is one of the most common forms of non-scarring alopecia, whose prognosis is still difficult
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and unpredictable [13–15]. Although the triggers of alopecia areata (AA) remain partially
understood, it is widely acknowledged that the loss of immune privilege (IP), subsequent
injury to hair follicle cells, and the promotion of inflammatory pathways are key factors
considered prerequisites for the development of AA [16,17]. AA is considered a T-cell de-
pendent autoimmune disease [18]. C8+ T cells are predominant in the follicular epithelium
and are thought to be primarily responsible for the damage, while CD4+ lymphocytes aid
the CD8+ response [19]. The loss of the normal IP of growing hair follicles in the active stage
of the disease is associated with the occurrence of inflammatory cells, where the substance
P (SP)-dependent modulation of IgM and interferon-γ (IFN-γ), a neuropeptide involved in
pain transmission, are the key inducers of this phenomena [20,21]. The aetiology of AA
presents a high activity of natural killer (NK) cells, and a dysregulated expression of the
activation receptor NKG2D by activating NK receptors and its ligands, which are also impli-
cated in other autoimmune diseases [22]. The imbalanced ratio of Th17 lymphocytes and T
cells (Treg lymphocytes) is engaged in the pathophysiology of autoimmune conditions [23].
Hence, Th17 cells are involved in the pathogenesis of AA [24].

Human gut microbiome dysbiosis appears to also be a driving factor in other skin
diseases such as atopic dermatitis (AD) and psoriasis [25,26]. Among diseases affecting
the scalp, lichen planopilaris, a form of cicatricial alopecia, has been recently inspected
in terms of microbiota composition and volatile compound profiles obtained by directly
sampling scalp biopsy layers [27]. The onset and maintenance of the autoimmune skin
diseases, including AA, is recognized as a possible cause of the depletion of bacteria that
are beneficial for their anti-inflammatory properties including the release of short chain
fatty acids (SCFAs) [28]. The intricate relationship between the gut and skin is bidirectional,
with lifestyle factors like diet and hygiene significantly affecting immune tolerance and
microbial dysbiosis. Notably, a Western diet and overly hygienic practices are linked to the
development of immune-mediated inflammatory diseases, highlighting the importance
of the gut–skin axis in understanding conditions like rheumatoid arthritis, psoriasis, and
atopic dermatitis [25]. Despite the metagenomic evaluations of gut microbiota showing
correlation with autoimmune disorders, at present, only few studies investigated the
structure of gut microbiota in AA patients regardless of the possible interaction with gut
metabolites [23,29,30].

In this study, we combined 16S rRNA gene sequencing and metabolomics to thor-
oughly characterize and compare faecal and urine samples from AA patients and healthy
individuals (HI) using a novel integrative method (DIABLO) to identify multi-omics
biomarkers that can discriminate between the phenotypic groups (AA vs. HI).

2. Materials and Methods
2.1. Patients’ Recruitment

Eighteen (n = 18) HI and twenty-four (n = 24) AA patients were enrolled after dermato-
logical control at the Italian private dermatological clinic, Studio Rinaldi (Milan, Italy). The
dermatological control was conducted by Dr. Fabio Rinaldi (HMAP, Human Microbiome
Advanced project, Giuliani S.p.A, Milan, Italy, Former Director of the Dermatology Unit at
Policlinico Multimedica in Milan), the dermatologist who participated in the study design
and enrolment procedure of patients. For each AA patient, essential background data were
collected at baseline according to the guidelines of the National Alopecia Areata Founda-
tion [31]. Healthy patients were enrolled following clinical examination and in the absence
of any history of dermatological or scalp disorders. Cohorts met the following criteria:
(i) no consumption of antibiotics in the last 30 days before the sampling; (ii) no consumption
of probiotics in the last 15 days before the sampling; (iii) not pregnant or breastfeeding;
(iv) absence of other dermatological diseases; (v) no consumption of anti-tumour or im-
munosuppressive drugs (patients receiving oral corticosteroids were excluded) and not
having undergone radiation therapy in the 3 months before the sampling; and (vi) no
topical or hormonal therapy on the scalp in the 3 months before the sampling. Participant
recruitment spanned one year, encountering substantial challenges in identifying a suffi-
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cient number of individuals for both groups. Meeting the criteria for medical visits and
fulfilling the requirements for clinical diagnosis proved to be a demanding task. The time
constraints imposed by the research project precluded any extension of the recruitment
period. The Severity of Alopecia Tool (SALT) score, an established metric, offers a standard-
ized method for assessing the degree of hair loss in individuals with AA. This score was
derived during the clinical examination, wherein the scalp was divided into quadrants,
and scores were assigned based on the observed percentage of hair loss in each quadrant.
Scores range from 0 to 100, reflecting 0–100% scalp hair loss. The scores were then averaged
to obtain the overall severity score, providing a comprehensive assessment of alopecia
severity. Only terminal hair, excluding vellus or intermediate hairs, was accounted for in
the SALT scoring process.

2.2. Nutrient Intake

Enrolled HI and AA patients were asked to fill out a 7-day dietary survey at the time
of enrolment, being instructed by a dietician on how to record the food and beverages
consumed. The food surveys were analysed by Winfood software (Winfood 2.7, Medimatica
S.r.l, Colonnella, Italy) to estimate the energy intake and the percentage of macro- and
micro-nutrients. Data collected were compared with the tables of food consumption
and recommended dietary intakes of the Italian National Institute of Nutrition and Food
Composition Database in Italy [32].

2.3. Samples Collection

Each subject collected a pre-prandial faecal sample in the morning on three different
days of the same week. After collection, samples were immediately mixed with RNA later
(Thermo Fisher Scientific, Waltham, MA, USA) (ca. 5 g, 1:2 [wt/vol]) under anaerobic condi-
tions (AnaeroGen, Oxoid Ltd., Basingstoke, UK). Suspended samples were stored at −80 ◦C
until further analyses. Urine samples were also collected in the same day, immediately
frozen to avoid bacterial overgrowth, and stored at −20 ◦C until metabolomics analysis.

2.4. 16S rRNA Gene Sequencing

Faecal samples were subjected to total DNA extraction using the Spin Kit for Soil (MP
Biomedicals, Milan, Italy) according to the manufacturer’s instructions. To analyse the
bacteria, specific primers targeting the V3-V4 region of the 16S rRNA gene (Escherichia coli
position 341–805; forward 341 F: CCTACGGGNGGCWGCAG and reverse 806R: GACTAC-
NVGGGTWTCTAATCC) were used. The amplicons were cleaned (Agencourt AMPure
kit, Beckman Coulter, Brea, CA, USA), and DNA was quantified (Quant-iT PicoGreen
dsDNA kit, Invitrogen, Waltham, MA, USA). The quality and purity of the library were
checked using a high sensitivity DNA kit (Agilent, Palo Alto, CA, USA) by the Bioanalyzer
2100 (Agilent). The library was prepared, and pair-end sequencing was carried out at the
Genomic Platform of Fondazione Edmund Mach in Italy, using the Illumina MiSeq system
(Illumina, San Diego, CA, USA). The raw paired-end FASTQ files were demultiplexed
using idemp (https://github.com/yhwu/idemp/blob/master/idemp.cpp, accessed on
4 March 2022) and imported into Quantitative Insights into Microbial Ecology (Qiime2,
version 2018.2). The sequences were quality filtered, trimmed, de-noised, and merged
using DADA2 pipeline. Chimeric sequences were removed through the consensus method
in DADA2. A taxonomy classifier was trained on the Silva database using r132 reference
sequences, trimmed to the V3-V4 region of 16S rRNA gene, and applied to paired-end
sequence reads to generate an operational taxonomic unit (OTU) table.

2.5. Faecal and Urine Volatile Organic Compounds (VOCs)

A sensitive assay to identify VOCs was used to evaluate the metabolic features in faecal
and urine samples obtained from total forty-two HI and AA patients. In order to obtain
the best extraction efficiency, the micro-extraction procedure was performed as described
in [33] with slight modifications. Two grams faecal or urine samples with addition of
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5 µL of 4-methyl-2-pentanol (final concentration 0.3 mg/L) were placed into 20 mL glass
vials and sealed with polytetrafluoroethylene (PTFE)-coated silicone rubber septa (20 mm
diameter; Supelco, Bellefonte, PA, USA). The samples were then equilibrated for 30 min
at 60 ◦C. At the end of sample equilibration, a conditioned 50/30 µm DVB/CAR/PDMS
fibre (Supelco) was exposed to headspace for 50 min to extract volatile compounds by
CombiPAL system injector autosampler (CTC Analytics, Zwingen, Switzerland). VOCs
were thermally desorbed by immediately transferring the fibre into the heated injection
port (220 ◦C) of a Clarus 680 (Perkin Elmer, Beaconsfield, UK) gas chromatography machine
equipped with an Rtx-WAX column (30 m × 0.25 mm i.d., 0.25 µm film thickness) (Restek,
Shanghai, China) and coupled to a Clarus SQ8MS (Perkin Elmer) with source and transfer
line temperatures kept at 250 and 210 ◦C, respectively. The injection was carried out in
splitless mode for two minutes, and helium was used as the carrier gas at flow rate of
1 mL/min. The oven temperature was initially set at 35 ◦C for 8 min, then increased to 60 ◦C
at 4 ◦C/min, to 160 ◦C at 6 ◦C/min, and finally to 200 ◦C at 20 ◦C/min and held for 15 min.
Electron ionization masses were recorded at 70 eV in the mass-to-charge ratio interval,
which was m/z 34 to 350. The GC-MS generated a chromatogram with peaks representing
individual compounds. Each chromatogram was analysed for peak identification using the
National Institute of Standard and Technology 2008 (NIST) library. A peak area threshold
of >1,000,000 and 90% or greater probability of matches was used for VOCs identification,
followed by the manual visual inspection of the fragment patterns when required. To
quantify the identified compounds, the internal standard area was used by interpolation
with the area of each compound.

2.6. Statistical Analyses

All statistical analyses were performed in R programming version 4.1.1. Statistical
analyses of the microbiome composition of patients were carried out using “phyloseq”
and “microbiome” R packages [34]. Data were rarefied to even sequencing depth. Alpha
diversity (Chao1 and Shannon indexes) was computed using relative abundances and fitted
on a linear model that included pathology, age range, and their interactions as the main
effect variables. The model met the assumptions of the analysis of variance (ANOVA).
Two-way ANOVA and post hoc Tukey’s HSD test were further used to determine in depth
differences in alpha diversity indexes of microbial communities across different groups
(pathology, age range, their interactions). Beta diversity was calculated on centred log-ratio-
transformed (CLR transformation) relative abundance data, and ordination was plotted
using principal component analysis (PCA), considering the compositional nature of the
microbiome data. The permutational multivariate analysis of variance (PERMANOVA) on
beta diversity measures was used to compare the groups age range, gender, and pathology
and explain any differences in their microbiomes. The core microbiome was defined as the
set of OTUs present in at least 50% of the samples. The core microbiome was identified
using the function “core_microbiome()” in the “microbiome” package in R. Differentially
abundant taxa in pathology status (AA vs. HI) were estimated by two different methods. In
the first method, the CLR transformed the microbiome data of all taxa, which were analysed
and plotted in a Bland–Altman-style plot using “ggplot” package in R. The second method
used linear discriminant analysis (LDA) and LDA effect size (LEfSe) algorithms. The LEfSe
algorithm used the Wilcoxon rank-sum test and linear discriminant analysis (LDA) with
the cut-off LDA score (log10) set as 2. DIABLO was used to integrate multiple omics
datasets (microbiome, nutrition, urine VOC, and faecal VOC). DIABLO was performed
using the R package “mixOmics”. This approach is based on a variant of the multivariate
statistical technique generalised canonical correlation analysis. Subsequently, a process of
adjusting the parameters (performed by the “tune.block.splsda” function) was carried out
to find the most suitable number of significant predictors in every dataset to minimize the
misclassification rate [35]. The effectiveness of the model was assessed using 10-fold cross-
validation. Blocks corresponded to microbiome dataset (CLR-transformed data, aggregated
to genus level including the differentially abundant taxa identified before), nutrition dataset,
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urine VOC, and faecal VOC. The loading weights of each selected variables on each
component was represented with plotLoadings function. Power analysis was carried out in
R version 4.1.1. using the package “pwr” (https://github.com/heliosdrm/pwr, accessed
on 20 November 2023). The analysis parameters were as follows: Cohen’s d/effect size of
0.8; α (significance level) = 0.05; Group 1: n = 24; and Group 2: n = 18.

3. Results
3.1. Power Analysis, Demographic Data, and Nutrient Intake

The outcome of the power analysis indicates that, under the specified conditions
(including disparate group sizes, a significance level of 0.05, and an effect size of 0.8), there
is a 70% likelihood that the study will accurately detect a genuine effect. The demographic
data of all recruited volunteers (HI and AA patients), including ethnicity, age, gender, AA
subtype, and comorbidities are reported in Table 1. The energy intake and macro- and micro-
nutrients consumption were evaluated through a food diary for each recruited individual.
Data collected agreed with the tables of food consumption of the Italian National Institute
of Nutrition and Food Composition Database in Italy. Based on the dietary pattern, no
clustering of the two groups (HI and AA patients), or for males and females and age range
(30–50 years and over 50 years), were found (Figure S1).

Table 1. Demographic data of all volunteers including gender, age, ethnicity, Severity of Alopecia
Tool (SALT) score, and comorbidities.

Demographic Data AA HI

n = 24 n = 18
Men n, (%) 8 (33.33%) 7 (38.88%)
Women n, (%) 16 (66.67%) 11 (61.12%)
Age (y, mean ± DS) 40.00 ± 11.76 45.00 ± 9.86
Ethnicity (n, %)
White 24 (100%) 18 (100%)
Salt Score (mean ± DS) 87.46 ± 1.87 n.a. *
AA subtype (mean ± DS) n.a.
Alopecia areata 24 (100%)
Comorbidities * n.a.
Celiac disease 2 (8.33%)
Allergic rhinitis 1 (4.16%)

* n.a. = not applicable. In the case of healthy individuals (HI), these data were not registered.

3.2. Gut Microbiome of Healthy and AA Patients

The gut microbiome composition of HI (n = 18) and AA (n = 24) patients was analysed
by Illumina MiSeq with an output of total number of 2,500,293 reads, ranging between
78,337 and 153,677 per sample. We identified ten bacterial phyla across the 42 samples com-
bined. However, the relative abundances at phylum level did not show a great variability
between HI and AA patients. Firmicutes was the most abundant phylum (81.64%) followed
by Actinobacteriota (8.49%) and Bacteroidota (7.62%). The relative abundances at the genus
level for the two recruited groups (HI and AA patients) showed higher variability, although
sometimes with common features (Figure 1A). Blautia (20.2%) and Faecalibacterium (8.83%)
were the most abundant genera in both aggregated microbiomes, followed by Bifidobac-
terium (7.15%) and Bacteroides (5.82%). Compared to AA, Bifidobacterium and Subdoligranum
relative abundances were higher in HI samples. To determine the core microbiome at the
genus level, bacterial genera present in more than 50% of the samples were identified using
various detection thresholds, with the lowest set at 0.01%. This led to the identification
of nine principal core genera for AA, which were Blautia, Faecalibacterium, Bifidobacterium,
[Eubacterium] halii group, Bacteroides, Subdoligranum, Dorea, Agathobacter, and Ruminococcus
(Figure S2). These genera were commonly found in both groups, with the first six being the
most frequently detected.

https://github.com/heliosdrm/pwr
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Although there was a core microbiome, the abundance of individual bacterial taxa var-
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by factors such as pathology, age range, and gender, as determined by a linear model 
(Chao1: R2 = 0.268, p = 0.0247; Shannon: R2 = 0.226, p = 0.046). The analysis of variance showed 
that pathology was the most significant factor contributing to variations in alpha diversity 

Figure 1. (A) Relative abundance at genus level of the faecal bacterial microbiome of healthy
individuals (HI) and patients with Alopecia Areata (AA). (B) Alpha diversity metrics Chao 1 (species
richness, ****, p = 0.0001) and Shannon (evenness, **, p = 0.001) based on pathology status (AA (pink)
and HI (blue)). (C) Principal coordinate analysis (PCA) of CLR-transformed microbiome data (beta
diversity). Healthy individuals are coloured in blue, while Alopecia Areata patients are denoted with
red. Gender is shown using triangles for males and circles for females.

Although there was a core microbiome, the abundance of individual bacterial taxa
varied greatly across individuals. There was significant variation in alpha diversity, as
measured by Chao1 (species richness) and Shannon (evenness) indexes, which was influ-
enced by factors such as pathology, age range, and gender, as determined by a linear model
(Chao1: R2 = 0.268, p = 0.0247; Shannon: R2 = 0.226, p = 0.046). The analysis of variance
showed that pathology was the most significant factor contributing to variations in alpha
diversity indexes (Chao1: p = 0.0002; Shannon: p = 0.0007), explaining 31.6 and 26.2% of the
variance, respectively (Supplementary Table S1). Subsequent post hoc comparison carried
out on pathology levels (AA vs. HI) showed that patients with Alopecia had significantly
reduced species richness (p = 0.00001) and evenness (p = 0.001) compared to healthy in-
dividuals (Figure 1B). Ethnicity, AA subtype, and comorbidities had no variability and
were therefore not included in statistical analyses. Finally, correlations between the alpha
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diversity indexes and SALT score were not considered for further elaboration due to low
variability of the data (SALT score) and small sample size (n = 24).

To investigate whether the taxonomic composition of bacteria communities (beta
diversity) was influenced by different variables, the count data were subjected to CLR
transformation and ordination was computed with PCA. The results of the PCA (Figure 1C)
indicated that the centroids of the pathology groups were close to each other and did not
significantly impact the overall microbiota composition. This finding was further confirmed
by PERMANOVA analysis, which indicated that none of the variables (i.e., pathology,
gender, and age range) individually had a significant effect on the microbiota composition,
nor did their pairwise interactions (Supplementary Table S2). The only exception was the
interaction between gender and age range, which was found to be significant (p = 0.03)
in relation to the microbiome but explained only 6.86% of the variance (Supplementary
Table S2).

The analysis of differential abundant taxa was carried out using centred log-ratio-
transformed relative abundance data across all taxonomic levels and results were plotted
on a Bland–Altman-style plot (Figure 2A). The results of the analysis showed that various
bacteria taxa, such as Bacteria, Firmicutes, Clostridia, Lichnospirales, and Lachnospiraceae,
were significantly different between pathologies. The results of the LEfSe analysis were
largely consistent with the previous method used, with several bacteria taxa including
Lachnospirales, Firmicutes, Lachnospiraceae, Clostridia, Blautia, and Bacteria (LDA > 4) identified
as biomarkers for AA, while Coprococcus (LDA > 4) was identified as a biomarker for HI
(Figure 2B).

3.3. Integrated Multi-OMICs Analysis on Pathology Regimen (DIABLO)

A total of 97 metabolites were found in the urine and 105 in the faecal samples of all
recruited individuals, which were further integrated for the supervised multivariate analy-
sis. To assess the interplay across, gut microbiota composition, nutrition, and metabolites
(urine and faecal VOC) in relation to the observed impact of pathology, the multi-OMICs
datasets were integrated using DIABLO. In the initial analysis, a blocked partial least
squares discriminant analysis (PLS-DA) model was constructed using numerous compo-
nents. The objective was to assess the reduction in the error rate as more components were
added, as illustrated in Figure 3A. Error rates decreased somewhat and reached a plateau
when two components were used. Hence, the most suitable number of components for
blocked PLS-DA analysis was two, for each of the omics datasets. When examining the
correlation among the three datasets, the most robust correlation was identified between
the microbiome and faecal VOC datasets (Figure 3B). On the contrary, the correlation
between urine VOC and nutrition datasets showed the weakest interaction, similar to the
relationship observed between urine VOC and faecal VOC, as depicted in Figure 3B. The
overall ordination of the samples accounting for all blocks showed that the separation
according to pathology status is decent (Figure 4A). Overlapped samples in the middle of
the ordination plot resulted in the final error rate of approximately 35% for the multiblock
PLS-DA (Figure 4A). The optimally selected key predictors (top 10) of each group included
several taxa of the gut microbiota, i.e., Firmicutes, Clostridia, Lachnospirales, Blautia, Holde-
mania, Acetanaerobacterium Erysipelotrichaceae UCG-003, and Eubacterium as biomarkers for
AA, while Coprococcus for HI. Nutrition predictors for AA included mainly amino acids,
i.e., valine, leucine, arginine, serine, and aspartic acid, while the predictor for HI was the
glycaemic index. Faecal VOC predictors associated with HI were 3-methylbutanal, copaene,
d-limonene, nonanal, and acetone, whereas AA was associated with 1-tetradecanol, bu-
tanoic acid, 2-methyl-, ethyl ester and butanoic acid, 3-methyl-, and butyl ester. Finally,
urine VOC predictors for AA included pentanal, butanoic acid, pentanoic acid, butanoic
acid, 2-methyl-, furan, and phenol-2,4-bis(1,1-dimethylethyl) (Figure 4B). For HI the urine,
VOC predictors were dimethyl trisulfide, 2H-Pyran, 2-ethenyltetrahydro-2,6,6-trimethyl,
and methyl isobutyl ketone (Figure 4B).
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Figure 2. (A) Bland–Altman and effect plot of differentially abundant taxa calculated by assessing the
fold change of CLR-transformed microbiome counts. Each point on the plot represents a taxonomic
feature, colored black if not statistically different between groups, red if identified as significantly
different, and grey taxa for which the significance is uncertain. (B) Differentially abundant taxa
calculated using linear discriminant analysis and LDA effect size algorithm (LEfSe) with cut-off for
LDA score set at 2. Pink colour presents the differentially abundant taxa for Alopecia Areata, while
with blue colour for the Healthy.
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Figure 4. (A) Overall ordination of the samples (AA and HI) accounting for both components
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component. Colours indicate the class (pathology) in which the variable has the maximum level of
expression. Orange colour denotes healthy individuals (HI), and blue colour denotes Alopecia Areata
(AA) patients.
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4. Discussion

In recent years, there has been increasing interest in studying the impact of genetic
and environmental factors on the gut microbiota and its role in human health. Alopecia
Areata is a type of autoimmune disease (AID) that is challenging to manage, while the
focus of treatment is primarily lying on, controlling its symptoms and associated comor-
bidities. Recently, some evidence has suggested a relationship between the gut microbiome
and AA [23,29,36–38]. However, the complex correlations between microbial groups and
metabolites that could be responsible for disease development/persistence have not yet
been clarified. We studied a cohort of eighteen healthy Italian adults and twenty-four
adults affected by AA. The composition of the gut microbiota was examined through se-
quencing the 16S rRNA bacterial gene using Illumina MiSeq technology. We also performed
metabolite analysis of volatile organic compounds using urine and faecal samples.

The microbiota composition on phylum level was concordant with the composition of
a healthy human gut microbiome (e.g., Firmicutes, Actinobacteriota, and Bacteroidota) [39].
An imbalance in the abundance of such naturally occurring taxa could result in “gut dys-
biosis” [40], but that was not observed in our case. Since the intestinal microbiota on
the phylum level was considered relatively stable over time, the core microbiome was
established at genus level, which consisted by Blautia, Faecalibacterium, Bifidobacterium, [Eu-
bacterium] halii group, Bacteroides, Subdoligranum, Dorea, Agathobacter, and Ruminococcus for
both AA and HI. The presence of these genera has been documented in several large metage-
nomic studies which tried to establish a common adult healthy gut microbiome [41–43]. The
composition of the gut microbiome did not exhibit significant differences between groups.
However, when considering the intra-individual variability, as measured by alpha diversity
metrics, notable distinctions were found, particularly in relation to factors such as age
range, gender, and pathology status. This aligns with previous research findings [44–46].
Pathology status (AA vs. HI) was the most significant factor explaining 20–30% of variance,
with significantly reduced species richness and evenness for AA individuals.

Decreased alpha diversity has been repeatedly found in the microbiota composi-
tion of patients with AIDs, such as rheumatoid arthritis [47], but also recently in AA
patients [48]. Regardless, beta diversity showed no differences as described in several prior
studies [23,29,49]. Differentially abundant taxa analysis cumulatively showed that Firmi-
cutes, Lachnospirales, Lachnospiraceae, Clostridia, and Blautia were biomarkers for AA, while
Coprococcus was a biomarker for HI. Within the Lachnospiraceae family, Blautia is a genus
that was previously identified as biomarker of AA with increased abundances compared
to the HI [23,38]. Further, Blautia has been found to be associated with other disorders
such as epilepsy [50], schizophrenia [51], Hashimoto [52], and irritable bowel syndrome,
which indicates the high possibility that it is a marker of an “imbalance” in the gut [53].
Imbalances in the gut microbiota can influence intestinal permeability (leaky gut) and even
though evidence is scarce, there is a strong link between the induction and progression
of AA and gastrointestinal disorders (IBS-like symptoms) [54]. On the other hand, under
our experimental conditions, Coprococcus was the sole biomarker for HI. Coprococcus is
known for its capacity to produce butyrate, and the combined literature on Coprococcus
and the gut microbiota–brain axis points towards enhanced butyrate production and the
reduced colonisation of pathogenic clades as factors explaining its association with health
effects [55]. Its reduced prevalence has also been associated with AA [23] and has been
correlated with reduced amounts of beneficial SCFAs and increased pro-inflammatory
proteins [28].

To deepen the investigation of relevant biomarkers, DIABLO was used. DIABLO is a
method of discriminant analysis that reduces the dimensionality of multivariate data. It
was developed to identify highly correlated and biologically relevant signatures from dif-
ferent OMICs techniques [35]. The key predictors relevant to the microbiome dataset were
similar to those found by differential abundant analysis, with the exception of Holdemania,
Acetanaerobacterium, Eybacterium, and Erysipelotrichaceae UCG-003 among the ones related to
AA. The family of Erysipelotrichaceae and the species of Holdemania were previously found
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as differentially abundant taxa for AA patients [29]. Eubacterium is a major butyrate and
propionate producer in the gut and its species, like E. hallii and E. rectale, have been widely
associated with beneficial health effects. However, defining the genus Eubacterium can be
a complex task, since a number of species originally categorized under this genus have
since been reclassified into either pre-existing or new genera [56], possibly affecting the
accuracy of taxonomic assignment by the marker gene. The genus Acetanaerobacterium
is not very well documented in gut microbiome studies. Nevertheless, high prevalence
of Acetanaerobacterium has been associated with type 2 diabetes [57] and prostate cancer
patients [58]. Even though DIABLO is meant to identify coherent patterns between datasets
that change with respect to different phenotypes with high accuracy and biological rel-
evance compared to other methods, this model requires test validation [35]. Due to our
small sample size, data could not be split and used as training set for the validation. Small
sampling sizes are sometimes unavoidable in clinical research, and in our case, it was due
to unsuccessful recruitment within a time period of one year and further time constrains to
complete the project. Studies conducted with small sample sizes have their limitations but
also their advantages when interpreted with caution [59,60]. Acknowledging the fact, we
used three different approaches for the microbiome data interpretation. The concordance
of microbiome biomarkers between DIABLO and the other methods partially validates the
model’s accuracy of prediction. Another limitation of the study could be ascribed to the
amplicon-based metagenomics analysis targeting 16S rRNA region. Although this is the
most widely used technique to reveal the complexity of human gut microbial consortium,
an inherent limitation of the amplicon sequencing method is its compositional information
in terms of the relative abundances of the individual members of the community (OTUs,
amplicon sequence variants [ASVs], and taxa) [61]. To limit this effect, we conducted all
microbiome data analyses based on a compositional data processing workflow [62].

The gut microbiota and associated microbial metabolites can be altered by both diet
and host physiology. Diet acts as a key factor of this bidirectional relationship, which can
either promote the growth of beneficial bacteria or contribute to the proliferation of poten-
tially harmful microbes [63]. The gut microbiota, through metabolite production, modulates
signalling pathways involved in the homeostasis of intestinal mucosa. Through DIABLO
analyses, the esters of branched chain fatty acids (BCFAs) (butanoic acid, 2-methyl-, ethyl
ester and butanoic acid, 3-methyl-, butyl ester) and branched chain amino acids (BCAA)
(i.e., valine, leucine) were identified as predictors of AA subjects in faecal VOC and the
nutrition dataset, respectively. It is known that BCFAs are mainly produced during the
fermentation of BCAA (valine, leucine, and isoleucine) by the intestinal microbiota [64].
BCFAs have been proposed as markers of colonic protein fermentation, a process that leads
to the concomitant production of other protein fermentation products such as ammonia,
phenol, p-cresol, or biogenic amines; molecules that can cause cell damage on the intestinal
environment [65]. High levels of 3-methylbutanoic acid in faeces have been related to
human depression and cortisol levels, and more recently, the role of BCFA on the regulation
of glucose and lipid metabolism has been also examined [64]. An increased production of
BCFA esters in AA could be also referred to oxidative stress, which promotes lipid peroxi-
dation downstream. More precisely, the production of alcohols and carboxylic acids in the
presence of oxygen-reactive species (radical-mediated lipid peroxidation) leads to esters
formation [66]. Oxidative stress (OS), an unbalance between the oxidation and antioxidant
defence systems, is believed to be associated with AA and may trigger the collapse of hair
follicle-immune privilege [67].

Bacterial metabolites might modulate immune responses [68], like SCFAs (butanoic
and pentanoic acid) and BCAA (butanoic acid, 2-methyl), which were identified as markers
of urine VOC in AA. The biochemical interpretation of these results is hampered by the
difficulty of assessing the origin of SCFAs and BCAAs in urine due to the possibility of
their generation by microbial activity in other parts of the body. However, SCFAs interact
with G-protein-coupled receptors (i.e., GPR43) and modulate inflammation by reducing
proinflammatory cytokines (i.e., TNFα and IFNγ) and increasing the production of anti-
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inflammatory cytokines (e.g., IL-10). Nonetheless, a previous work showed an association
between the SCFA urinary profiles and the disease status of patients with ulcerative colitis,
where higher butyrate levels in patients at remission were observed, and it was suggested
that the urinary output could reflect the levels of butyrate produced in the gut [69]. The
increase in pentanoic and butanoic acid in AA patients (urine samples) found in our study
could be attributed to homeostasis.

Further, we found phenol-2,4-bis(1,1-dimethylethyl)(2,4-DTBP) and furan as urine
predictors in AA subjects. 2,4-DTBP is a major component of essential oils and can be ob-
tained from various groups of organisms (e.g., bacteria, plants, fungi, flowering plants) [70],
and it exhibits antioxidant properties and demonstrates potential as an anticancer, anti-
fungal, and antibacterial agent [71]. Moreover, 2,4-DTBP is a synthetic antioxidant used
in polyethylene cross-polymer (PEX) water distribution pipes and food-related plastics
as a valuable stabilizer preventing material degradation and disintegration. Notably, 2,4-
DTBP utilized for the durability and endurance of plastics can leach from these materials
and has been found in breast milk, cord blood, and placental tissue [72]. Interestingly,
2,4-DTBP has been implicated in causing depigmentation after occupational exposure and
has resulted in a variety of systemic abnormalities, including thyroid, liver, and/or splenic
changes after exposure. Based on these observations, they suggested that 2,4-DTBP may
be capable of inducing inflammation in organs beyond the skin [73]. In a prior investi-
gation, a robust association was established between detectable urinary furan levels and
γ-glutamyltranspeptidase (γ-GT), a recognized marker for liver damage. The presence of
furan in a wide array of heat-processed foods has raised significant concern, given its classi-
fication as a “possible carcinogenic compound to humans”. Given furan’s genotoxic nature,
elevated exposure levels may signify a health risk [74]. Therefore, further exploration is
essential to understanding metabolic pathways and the potential toxicity of dietary furan
in humans.

5. Conclusions

In this study, DIABLO was used to identify microbial and metabolite biomarkers
associated with Alopecia Areata (AA). The metabolome predictors highlighted potential
bioactive intestinal and microbial metabolites linked to host disease aetiology. The evalua-
tion of faecal and urinary volatile organic compounds (VOCs) suggested a non-invasive
approach for identifying proinflammatory metabolites associated with low-grade inflam-
mation [75], including AA. While the gut microbiome composition aligned with previous
studies, microbiome biomarkers between AA and healthy individuals were consistent
across three analysis methods. However, the limitations of such as a small sample size
hindered data splitting for model validation. Despite this, the concordance of microbiome
biomarkers partly validated their predictive accuracy. Amplicon-based metagenomics
analysis targeted the 16S rRNA region, and while widely used, has limitations in provid-
ing compositional information about the relative abundances of individual community
members. We addressed this using a compositional data workflow (log-ratio transforma-
tion) [62]. This study lays groundwork for future investigations into disease pathogenic
mechanisms, including exploring specific genera’s roles in AA onset and the interaction
between AA patients’ metabolomes and their immune systems. However, our approach
does not definitively establish causality between changes in microbiota and metabolome
and AA development or progression, necessitating validation experiments with individuals
affected by AA from symptom onset.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu16060858/s1. Figure S1: Pseudo-heat map showing nutritional
intake, macro- and micronutrients of healthy individuals (HI, n = 18), and Alopecia Areata (AA,
n = 24) patients. Cluster analysis was carried out by correlation and linkage criterion of the average
distance for both clustering rows and columns; Figure S2: Core microbiome at the genus level of
bacteria present in more than 50% of the samples detected in various abundance levels with the
lowest set at 0.01%. Core microbiome was determined for 18 healthy individuals (HI) and 24 Alopecia
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Areata (AA) patients; Table S1: Analysis of variance (ANOVA) significant terms and explained alpha
diversity indexes variance (%); Table S2: Permutational multivariate ANOVA (PERMANOVA) and
significant variables and their R2 (%) on microbiome data from 18 healthy individuals (HI) and
24 Alopecia Areata (AA) patients.
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