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Abstract: Preeclampsia is a primary placental disorder, with impaired placental vascularization
leading to uteroplacental hypoperfusion. We aimed to investigate differences in metal and metalloid
content between the placentas of women with preeclampsia and healthy controls. This was a
case–control study in 63 women with preeclampsia and 113 healthy women. Clinical data were
obtained from medical records. Inductively coupled plasma mass spectrometry (ICP-MS) was
used to measure the placental metals and metalloids content. Compared with healthy control
subjects, preeclampsia was associated with a significantly lower concentration of essential elements
(magnesium, calcium, iron, copper, zinc, and selenium) in the placental tissue. After multivariable
adjustment, an interquartile range (IQR) increase in selenium concentration was associated with a
reduced risk of preeclampsia with an OR of 0.50 (95% CI: 0.33–0.77). The joint effects of multiple
selected metals and metalloids were associated with a reduced risk of preeclampsia. The lower
placental magnesium, chromium, iron, zinc, and selenium concentrations of preeclampsia cases
indicate a potential link to its pathogenesis. It also provides an intriguing avenue for future research
in revealing the underlying mechanisms and potential intervention strategies for preeclampsia.

Keywords: case–control; preeclampsia; pregnancy hypertension; metal and metalloid; placenta;
selenium; essential elements

1. Introduction

Preeclampsia (PE) is a serious condition that can have detrimental effects on both the
mother and fetus during pregnancy. It is characterized by hypertension and proteinuria or
other signs of end organ damage after 20 weeks of gestation, and it is considered a pregnancy-
specific disorder caused by the placenta and cured only by delivery [1,2]. Preeclampsia
is associated with an elevated risk of adverse maternal and neonatal outcomes, including
maternal eclampsia, preterm birth, small for gestational age (SGA), fetal growth restriction,
and perinatal mortality [3,4]. One proposed mechanism is the overproduction of reactive
oxygen species (ROS) by an ischemic or stressed placenta, which may lead to endothelial cell
dysfunction, hypertension, and clinical manifestations of preeclampsia [5]. There are several
risk factors associated with an increased likelihood of developing preeclampsia. These include
pre-pregnancy obesity and nutrient deficiencies [6–9]. Certain metals and metalloids, such as
magnesium (Mg), calcium (Ca), iron (Fe), copper (Cu), zinc (Zn), and selenium (Se), play
important roles in various biochemical reactions and metabolic pathways [10]. One of their
key functions is to serve as a cofactor, aiding enzymes in catalyzing chemical reactions.
During pregnancy, these metals and metalloids are particularly crucial for fetal growth and
development [11,12].

Ca is an important physiological element that is abundant in the human body and
acts as a cofactor for numerous enzymes, facilitating their catalytic processes [13]. Mg is
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an essential element in the human body that plays a crucial role in numerous enzymatic
reactions [14]. Mg supplementation has been shown to be beneficial in preventing seizures
associated with preeclampsia [15,16]. Additionally, Mg is also a Ca antagonist; both Ca and
Mg play important roles in maintaining blood pressure [17–19]. Fe requirement increases
dramatically during pregnancy due to the expansion of maternal plasma and blood vol-
umes, as well as the growth and development of the fetus. Cells with high metabolic rates
require more iron and are at greater risk of dysfunction during Fe deficiency [20].

During pregnancy, essential elements such as chromium (Cr), manganese (Mn), cobalt
(Co), copper (Cu), zinc (Zn), and selenium (Se) are essential for various physiological
processes [21]. For example, matrix metalloproteinases (MMPs) are a family of zinc- and
calcium-dependent endopeptidases involved in cytotrophoblast migration and invasion
of the uterine wall and in the remodeling of the spiral arteries [22]. Se is an important
component of antioxidant selenoproteins and plays a critical role in regulating antioxidant
status [23]. Poor Se status has been associated with an increased incidence of preeclamp-
sia [24]. Mohammad Safiqul et al. found considerably lower circulating levels of Zn,
Cu, Mn, and Fe in serum of preeclampsia patients in comparison to the control group.
Imbalances or deficiencies in these elements may disrupt element homeostasis and con-
tribute to the development of the condition [25]. Furthermore, exposure to certain pollutant
metallic and metalloid elements, such as cadmium (Cd), lead (Pb), and arsenic (As), may
increase the risk of preeclampsia. These elements can induce oxidative stress, endothelial
dysfunction, and immune abnormalities [26–28].

A recent meta-analysis has suggested that certain essential elements, e.g., Ca, Se, Zn,
and Mn, are found at lower levels in serum of women with preeclampsia [29]. However,
due to the accumulation effect of metals and metalloids, only evaluating the concentration
of metals and metalloids in the blood cannot reflect the actual exposure level in placental
tissue during pregnancy. Given that severe preeclampsia is characterized by placental hy-
poperfusion and ischemia, it is crucial to examine the distribution of metals and metalloids
in placental tissue and their potential for bioaccumulation. Understanding these factors
is essential for comprehending the mechanisms of intrauterine exposure associated with
preeclampsia [30,31].

Thus, this study aims to determine the distribution of metals and metalloids in
preeclampsia and healthy control placentas and investigate the association between placen-
tal metals and metalloids exposure and preeclampsia. This research could provide valuable
information on the role of metals and metalloids in the development of preeclampsia and
potentially help identify preventive strategies or interventions.

2. Materials and Methods
2.1. Study Design and Study Participants

This study had a case–control design and included 63 women with preeclampsia and
113 healthy control women with similar sociodemographic characteristics and an equivalent
distribution of offspring genders between the two groups. All participants were Shanghai
residents of Han ethnicity with singleton pregnancies. The placenta samples were collected
at the biobank of the International Peace Maternity and Child Health Hospital (IPMCH)
Shanghai, China, from 2016 to 2018. Exclusion criteria for participation in this study
included multiple pregnancies, conceived by in vitro fertilization, recorded pre-existing
hypertension, or pre-existing chronic hypertension or heart disease, diabetes, cancer, or
renal failure before pregnancy.

We reviewed outpatient charts for blood pressure (systolic blood pressure
(SBP) ≥140 mmHg or diastolic blood pressure (DBP) ≥90 mmHg on two clinically measured
occasions) and development of proteinuria after 20 weeks of gestation, and we additionally
reviewed inpatient hospital charts for women who had a diagnosis or discharge code
indicating preeclampsia. Preeclampsia was defined according to the International Society
for the Study of Hypertension in Pregnancy, and hypertensive disorders of pregnancy
(HDP) included gestational hypertension, preeclampsia, chronic hypertension (essential or
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secondary), or preeclampsia superimposed on chronic hypertension. Women diagnosed
with chronic hypertension before pregnancy were excluded. Healthy control subjects
were women with no pregnancy complications or adverse birth outcomes, matched to the
preeclampsia group for maternal educational level, gravidity, parity, and mode of delivery.
The sociodemographic characteristics, medical history, and birth outcomes of neonates
were collected from the hospital information system. We calculated maternal pre-pregnancy
body mass index (BMI) as weight in kilograms divided by height in meters squared. Ma-
ternal BMIs were categorized into three groups recommended by the Working Group on
Obesity in China, and a BMI cutoff of 24.0 kg/m2 was used to define overweight [32].

This study was approved by the Institutional Review Board (IRB) of the IPMCH
affiliated with the School of Medicine, Shanghai Jiao Tong University (GKLW2023-006 and
date of approval 7 February 2023). Eligible women signed informed consent forms prior to
donating their biospecimens to the biobank of IPMCH. Further informed consents were
waived in this study as approved by the IRB.

2.2. Assay of Metal and Metalloid in Placenta

Placentas were collected promptly following delivery or termination of pregnancy, as-
signed codes, frozen, and stored in −80 ◦C freezers at the biobank of IPMCH until analysis.
Subsequently, all placental samples were sent in a batch to the assessment laboratory at
Fudan University for determination using inductively coupled plasma mass spectrometry
(ICP-MS, NexION 300X, PerkinElmer, Norwalk, MA, USA) [28]. The operators were blind
to the groups of samples. Before measurement, placentas were defrosted at 4 ◦C and rinsed
with deionized water to remove residual blood, and subsequently dried using filter paper.
Approximately 0.5 g of wet weight was weighed on an analytical balance and placed in a
polytetrafluoroethylene digestion vessel; then, 5 mL of concentrated nitric acid (70% ultra-
pure nitric acid from BASF, Ludwigshafen, Germany) was added. Microwave digestion
(CEM MARS, Charlotte, NC, USA) was performed until complete dissolution, followed
by dilution with deionized water for analysis (the detailed parameters are shown in the
Supporting File online). The standard solutions used for the analysis were purchased from
PerkinElmer (standard solution, PerkinElmer mixed standard 3, 10 µg/mL, 5% nitric acid).

2.3. Statistical Analysis

Continuous variables that followed a normal distribution were reported as the mean
(±standard deviation) and compared by using an independent samples t-test. For variables
that did not follow a normal distribution, the median (interquartile range, IQR) was
reported and compared using the Wilcoxon–Mann–Whitney test. The chi-square test was
used for categorical variables. Correlations between the quantified metal and metalloid
were analyzed with Spearman’s rank correlation (α = 0.05).

Associations between metal (or metalloid) exposure and the odds of preeclampsia
diagnosis were examined by using one-pollutant models. To assess confounding, we began
with an unadjusted model and then added the confounders (adjusted model) defined
as covariates known to be associated with exposure and outcomes but not in the causal
pathway. Confounding factors included maternal age, education level (high school or below,
college or above), parity (primiparous, multiparous), pre-pregnancy BMI (categorized into
3 groups: underweight (<18.5), normal weight (18.5–23.9), overweight and obesity (≥24)),
and gestational age at delivery. We calculated ORs and 95% CIs with logistic regression to
estimate increases in odds of preeclampsia per IQR increase in placental metal (or metalloid)
concentration.

Considering that both insufficient and excessive levels of metal (or metalloid) in the
body can lead to adverse health effects and multiple metals (or metalloids) coexisting
simultaneously, we employed a Bayesian Kernel Machine Regression (BKMR) model to
examine the overall correlation between measured metal (or metalloid) exposure and
preeclampsia risk. The BKMR is a nonparametric statistical approach for estimating the
joint health effects of multiple concurrent exposures [33,34]. We evaluated the joint effects
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of metals and metalloids on preeclampsia by using BKMR with a probit link function. This
model was adjusted for the same set of confounders used in the logistic analysis, including
maternal age, pre-pregnancy BMI, and gestational age at delivery.

The BKMR analyses and plotting were conducted by using the “bkmr”, “ggplot2”,
and “corrplot” packages in R software (version 3.5.2). The remaining statistical analyses
were conducted in SAS 9.4.

3. Results
3.1. Characteristics of the Study Participants

In total, 63 women with preeclampsia and 113 healthy women were included in the
final analysis (Figure 1). Demographic characteristics for all participants are shown in
Table 1. Women in the preeclampsia group were more likely to be overweight or obese in
the pre-pregnancy stage (30.2% vs. 12.4%, p = 0.01) compared with healthy controls who
delivered full-term without pregnancy complications. And the fetal outcomes were worse
among this group, including 14 infants (22.2%) that were born with fetal growth restriction
(FGR), 28 (44.4%) that had low birth weight, and 30 (47.6%) that experienced premature
birth at less than 37 weeks of gestation. Newborns of mothers with preeclampsia also had
a shorter gestational age, averaging at 36.0 ± 3.0 weeks, compared to newborns in the
healthy control group, with a gestational age of 39.2 ± 0.9 weeks.

Figure 1. Participant flow chart.

Table 1. Descriptive characteristics of mothers and children in healthy control and preeclampsia group.

Healthy Controls
(n = 113)

Preeclampsia
(n = 63) p-Value

Maternal age, mean ± SD 30.5 ± 3.5 31.7 ± 4.4 0.061
n (%)

20–24 y 5 (4.4%) 2 (3.2) 0.218
25–29 y 47 (41.6) 24 (38.1)
30–34 y 49 (43.4) 23 (36.5)
≥35 y 12 (10.6) 14 (22.2)
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Table 1. Cont.

Healthy Controls
(n = 113)

Preeclampsia
(n = 63) p-Value

Prepregnancy BMI
Category 1, n (%) 0.01

<18.5 22 (19.5) 7 (11.1)
18.5–23.9 77 (68.1) 37 (58.7)

≥24 14 (12.4) 19 (30.2)
Educational level, n (%) 0.949
High school and lower 40 (35.4) 22 (34.9)

College and higher 73 (64.6) 41 (65.1)
Gravidity, n (%) 0.438

1 60 (53.1) 31 (49.2)
≥2 53 (46.9) 32 (50.8)

Parity, n (%) 0.939
Nulliparous 92 (81.4) 51 (80.9)
Multiparous 21 (18.6) 12 (19.1)

Mode of delivery, n (%) 0.152
Vaginal birth 91 (80.5) 56 (88.9)

Cesarean section 22 (19.5) 7 (11.1)
Fetal Growth Restriction, n (%) <0.001

YES 0 14 (22.2)
NO 113 (100) 49 (77.8)

Gestational Diabetes Mellitus, n (%) <0.001
YES 0 13 (20.6)
NO 113 (100) 50 (79.4)

Child Characteristics
Boy, n (%) 44(38.9) 24(38.1) 0.912

Gestational age, mean± SD, wk 39.2 ± 0.9 36.0 ± 3.0 <0.001
Preterm birth, n (%) 0 30 (47.6) <0.001

Birth weight category, n (%) <0.001
<2500 g 0 28 (44.4)

2500–3999 g 106 (93.8) 32 (50.8)
≥4000 g 7 (6.2) 3 (4.8)

1 BMI, body mass index (calculated as weight in kilograms divided by height in meters squared).

3.2. Metal and Metalloid in Placenta

Placental concentrations of Mg, Ca, Cr, Mn, Fe, Cu, Zn, Se, and As in the preeclamp-
sia group were significantly lower than those in the healthy group (Table 2). Of all the
minerals detected, Ca, Mg, Fe, and Zn were the most abundant in the placental tissue.
The median concentration of Ca in placental tissues was highest in both the preeclampsia
group (3341.57 µg/L) and the healthy control group (2355.98 µg/L). In addition to Ca, Mg
demonstrated the second highest median concentration in both the preeclampsia group
(1809.58 µg/L) and the healthy control group (1457.59 µg/L).

Table 2. Median (IQR) concentrations (µg/L) of placental metals and metalloids measured in healthy
control and preeclampsia group.

Healthy Controls
(n = 113)

Preeclampsia
(n = 63) p-Value

Mg 1809.58 (1500.01, 2340.72) 1457.59 (1163.36,1833.15) <0.001

Ca 3341.57 (2208.47, 6907.35) 2355.98 (1249.65,3142.29) <0.001

Cr 18.65 (10.65, 22.65) 9.47 (7.25,15.02) <0.001

Mn 2.51 (1.7, 3.09) 1.89 (1.25,2.51) <0.001

Fe 1554.66 (1239.73, 1960.29) 966.88 (827.89,1377.96) <0.001

Co 4.83 (0.13, 6.98) 4.26 (2.49,6.18) 0.376

Cu 13.69 (11.29, 17.04) 11.33 (9.86,13.51) <0.001
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Table 2. Cont.

Healthy Controls
(n = 113)

Preeclampsia
(n = 63) p-Value

Zn 165.31 (141.18, 199.22) 118.1 (97.75,139.53) <0.001

Se 3.21 (2.56, 4.15) 2.46 (2.08,2.84) <0.001

Cd 0.24 (0.17,0.36) 0.21 (0.15,2.35) 0.397

As 0.34 (0.29,0.39) 0.24 (0.19,0.28) <0.001
Values are presented as median (P25, P75), p value was based on the Wilcoxon–Mann–Whitney test. Abbreviations:
As: arsenic; Ca: calcium; Cd: cadmium; Co: cobalt; Cr: chromium; Cu: copper; Fe: iron; Mg: magnesium; Mn:
manganese; Se: selenium; Zn: zinc.

A further comparison was conducted within the preeclampsia group. The data showed
that in the subgroup of preeclampsia with FGR, there were lower levels of placental essential
elements. Specifically, placental Fe showed a significantly lower concentration in the FGR-
complicated subgroup (1055.93 µg/L vs. 806.10 µg/L, p < 0.001) (Table 3).

Table 3. Median concentrations (µg/L) of metal and metalloid subgroups by fetal growth restriction
(FGR) in preeclampsia group (n = 63).

Preeclampsia without FGR *
n = 49

Preeclampsia with FGR *
n = 14 p-Value

Mg 1496.13 (1199.6, 1897.06) 1278.40 (923.33, 1703.87) 0.079

Ca 2419.17 (1399.99, 3369.36) 1648.74 (762.83, 2363.44) 0.055

Cr 9.59 (7.51, 16.37) 8.42 (6.74, 11.79) 0.209

Mn 1.95 (1.35, 2.51) 1.82 (1.15, 2.43) 0.608

Fe 1055.93 (883.22, 1435.87) 806.10 (647.66, 894.21) <0.001

Co 4.26 (2.28, 6.69) 4.21 (3.11, 5.71) 0.869

Cu 11.37 (10, 13.3) 10.77 (8.42, 13.54) 0.418

Zn 118.39 (98.69, 142.76) 109.96 (76.45, 128.68) 0.150

Se 2.47 (2.18, 2.84) 2.25 (1.59, 2.74) 0.203

Cd 0.22 (0.15, 2.35) 0.20 (0.17, 1.38) 0.647

As 0.23 (0.19, 0.29) 0.25 (0.19, 0.28) 0.504
* Values are presented as median (P25, P75), p values was based on the Wilcoxon–Mann–Whitney test for the
comparison between subgroups of preeclampsia with or without FGR. Abbreviations: As: arsenic; Ca: calcium;
Cd: cadmium; Co: cobalt; Cr: chromium; Cu: copper; Fe: iron; Mg: magnesium; Mn: manganese; Se: selenium;
Zn: zinc.

According to gestational age, the preeclampsia group was divided into three sub-
groups: an extremely preterm group (delivery before 28 weeks), a preterm group (ges-
tational age >28 weeks but <37 weeks), and term preeclampsia. In the three subgroups,
no consistent pattern was observed among the levels of placental essential elements. For
example, the placental Mg was lowest in the preeclampsia without the preterm delivery
group, while placental Fe showed a significant gradual increase from the extremely preterm
group (826.86 µg/L) to the preterm group (923.98 µg/L) and finally to the full-term group
(1064.32 µg/L), with a significant difference among the subgroups (p = 0.032) (Table 4).

Table 4. Median concentrations (µg/L) of metal and metalloid subgroups by gestational age in
preeclampsia group (n = 63).

Term Preeclampsia
n = 33

Preterm Preeclampsia *
n = 20

Extremely Preterm
Preeclampsia *

n = 10
p-Value

Mg 1437.01 (1166.51, 1757.01) 1645.19 (1160.97, 1846.6) 1472.48 (1226.08, 1820.85) 0.928

Ca 2457.94 (1687.26, 3598.42) 2006.48 (762.83, 2692.06) 2335.17 (883.41, 2990.36) 0.159

Cr 8.66 (7.22, 13.45) 9.41 (7.32, 17.79) 12.6 (8.46, 19.08) 0.399
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Table 4. Cont.

Term Preeclampsia
n = 33

Preterm Preeclampsia *
n = 20

Extremely Preterm
Preeclampsia *

n = 10
p-Value

Mn 1.89 (1.16, 2.31) 1.91 (1.2, 2.69) 2.36 (1.86, 2.69) 0.342

Fe 1064.32 (894.21, 1453.42) 923.98 (789.85, 1130.09) 826.86 (706.09, 1006.56) 0.032

Co 4.44 (2.28, 6.69) 3.44 (1.39, 5.26) 5.12 (2.93, 5.76) 0.388

Cu 10.82 (9.53, 13.51) 11.48 (10.3, 13.53) 10.15 (9.88, 12.74) 0.699

Zn 115.98 (92.23, 136.54) 126.45 (98.94, 163.39) 123.07 (106.05, 138.17) 0.350

Se 2.46 (2.08, 2.89) 2.45 (2.13, 2.82) 2.48 (1.9, 2.74) 0.895

Cd 0.20 (0.14, 6.94) 0.21 (0.19, 0.95) 0.27 (0.17, 0.28) 0.839

As 0.22 (0.19, 0.27) 0.26 (0.2, 0.3) 0.28 (0.26, 0.31) 0.075
* Preterm, delivery after 28 weeks of gestation and less than 37 weeks of gestation; extremely preterm, delivery
before 28 weeks of gestation. Values are presented as median (P25, P75), p values were based on the Wilcoxon–
Mann–Whitney test for the comparison between subgroups of preeclampsia with or without extremely preterm.
Abbreviations: As: arsenic; Ca: calcium; Cd: cadmium; Co: cobalt; Cr: chromium; Cu: copper; Fe: iron; Mg:
magnesium; Mn: manganese; Se: selenium; Zn: zinc.

We also compared the concentrations of placental essential elements between the
healthy control group and the preeclampsia subgroup. Except for Co and Cd, there were
significant between-group differences in the concentrations of other types of essential
elements (Tables S1 and S2).

A notable inconsistency in the correlation between the placental Mg concentration and
gestational weeks is illustrated in the healthy control and preeclampsia groups
(Figure 2). Among the three groups of healthy control individuals, categorized based
on pre-pregnancy BMI as normal weight, overweight/obese, or underweight, placental Mg
exhibits an increasing trend with gestational weeks across all weight groups. However, in
the preeclampsia group, there was no significant increase in Mg concentration as gestational
weeks progressed.

In scatter plots of other metals (or metalloids) with gestational weeks, similar distri-
butions and trends were observed. Specifically, in the healthy control group with normal
pre-pregnancy weight, we observed a gradual “cumulative” increase in metal (or metalloid)
concentrations with increasing gestational weeks. However, in the preeclampsia group, the
concentration of metals (or metalloids) in the placenta did not show a significant increase
with increasing gestational age. It is important to note that within the group of healthy
participants, there were variations in the relationships between minerals and gestational
weeks when they were divided into subgroups based on the mother’s pre-pregnancy BMI
(Figures S1–S10). Therefore, in the subsequent multivariate logistic analysis, along with
maternal age, we included gestational age and pre-pregnancy BMI as covariates.

Spearman correlation coefficient matrices for placental metal and metalloid concentra-
tions are given in Figures S11–S13. Significant positive correlations were observed between
multiple metals (or metalloids) in the placental tissues of both healthy controls and the
preeclampsia group. Cu-Se (0.88), Mg-Se (0.88), Mn-Cr (0.85), and As-Zn (0.82) exhibited
strong correlations. In both groups, the correlation between Co and other elements was
the weakest.

3.3. Placental Metals and Metalloids and Preeclampsia Risk

In Table 5, we show unadjusted and multivariable-adjusted associations of metals
and metalloids with preeclampsia risk. In the unadjusted models, all detected metals
and metalloids except for Cd were significantly associated with preeclampsia risk. Even
after adjusting for maternal age, pre-pregnancy BMI, and gestational age at delivery, the
associations between preeclampsia risk and the five elements (Mg, Cr, Fe, Zn, and Se)
remained statistically significant. For example, increment of placental Se (1.38 µg/L) was
associated with a lower risk of preeclampsia in both unadjusted and adjusted models (OR:
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0.78, 95% CI: 0.70–0.86; OR: 0.50, 95% CI: 0.33–0.77, respectively). Marginal associations
with reduced risk of preeclampsia were also observed in placental Mg and Fe (OR = 0.99;
95% CI: 0.99–1.00).

Figure 2. Placental Mg distribution across gestational age (weeks) in the healthy control group and
the preeclampsia (PE) group, categorized by maternal pre-pregnancy body mass index (BMI) groups.
BMI as weight in kilograms divided by height in meters squared. Maternal BMI were categorized
into three groups recommended by the Working Group on Obesity in China: BMI < 18.5 was defined
as Underweight, BMI ≥ 24.0 kg/m2 was defined as overweigh & Obesity.

Table 5. Odds ratio and 95% CI for preeclampsia in relation to a quartile increase in each metal or
metalloid exposure.

Model 1 * Model 2 †

OR (95% CI) p-Value Adjusted OR (95% CI) p-Value

Mg 0.99 (0.99, 1.00) <0.001 0.99 (0.99, 1.00) <0.001

Ca 0.94 (0.90, 0.98) 0.006 0.99 (0.96,1.03) 0.760

Cr 0.95 (0.93, 0.97) <0.001 0.90 (0.85, 0.95) <0.001

Mn 0.75 (0.66, 0.86) <0.001 0.83 (0.59,1.17) 0.278

Fe 0.99 (0.99, 1.00) <0.001 0.99 (0.99, 1.00) <0.001

Co 0.93 (0.87, 0.98) 0.013 0.99 (0.88, 1.11) 0.821

Cu 0.95 (0.93, 0.97) <0.001 0.92 (0.84, 1.01) 0.088

Zn 0.99 (0.99, 1.00) <0.001 0.98 (0.97, 0.99) <0.001

Se 0.78 (0.70, 0.86) <0.001 0.50 (0.33, 0.77) 0.002

Cd 0.98 (0.89, 1.08) 0.661 1.08 (0.95, 1.23) 0.222

As 0.26 (0.10, 0.68) 0.006 0.66 (0.31, 1.40) 0.276

* Model 1 was an unadjusted model. † Model 2 was adjusted for maternal age, pre-pregnancy BMI, and gestational
age at delivery. Abbreviations: As: arsenic; Ca: calcium; Cd: cadmium; Co: cobalt; Cr: chromium; Cu: copper; Fe:
iron; Mg: magnesium; Mn: manganese; Se: selenium; Zn: zinc.
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Joint effects of the metals and metalloids on preeclampsia by using the BKMR model
indicate that an increase in measured metal and metalloid concentrations corresponded to
a decreased preeclampsia risk (Figure 3).

Figure 3. The potential effects of metal and metalloid mixture on the occurrence of preeclampsia.
All minerals at particular percentiles were compared to all the chemicals at their 50th percentile. Est
can be interpreted as it indicates that an increase in measured metal and metalloid concentrations
corresponded to a decreased preeclampsia risk. The model was adjusted for maternal gestational age,
maternal age, and pre-pregnancy BMI.

4. Discussion

Using a hospital-based case–control study, we measured and compared the levels of
metals and metalloids in placental tissues from women with preeclampsia and healthy
control subjects in the central area of Shanghai, China. The results showed that eight
physiological elements, namely, Mg, Ca, Cr, Mn, Fe, Cu, Zn, and Se, were significantly
lower in preeclampsia placentas. After adjusting for potential covariates, this study found
an inverse association between five of the placental metals and metalloids (Mg, Cr, Fe, Zn,
and Se) and preeclampsia risk. Thus, inadequate estimated metal and metalloid content in
placenta may be associated with the occurrence of preeclampsia.

The traditional placental etiology hypothesis suggests that poor remodeling of the
spiral arteries of the uterus and placenta is associated with early onset preeclampsia and
several other major obstetric syndromes, including fetal growth restriction, placental abrup-
tion, and spontaneous premature rupture of membranes [35]. The processes of trophoblast
fusion, invasion, and the remodeling of the spiral arteries all require extracellular matrix
(ECM) degradation and the participation of certain metal ions as ligands for key enzymes,
such as Zn and Ca for the MMP family [36,37]. Therefore, a deficiency in these ions in the
placenta of preeclamptic cases may impact trophoblast cell function and contribute to the
development of preeclampsia. Our data have identified significantly lower amounts of
placental essential elements in preeclampsia cases. This finding suggests that monitoring
and maintaining appropriate electrolyte levels are essential for ensuring optimal maternal
health and a healthy pregnancy.

Our study revealed a positive correlation between the concentration of metals and
metalloids in the placenta and the duration of pregnancy among healthy control subjects.
However, in cases of preeclampsia, there was no significant increase in placental metal
or metalloid concentration as gestational age advanced. Moreover, upon conducting
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additional subgroup analysis, significant disparities were identified between cases of
preeclampsia and the healthy control group. Notably, cases of preeclampsia with fetal
growth restriction exhibited an even lower metal and metalloid content, particularly in
terms of Fe. These results align with the placental pathology observed in preeclampsia
patients [36]. On the other hand, previous studies have demonstrated that metals like Ca
and Fe undergo a significant transfer to the developing fetus, with the highest concentration
occurring in the third trimester weeks [38,39]. However, due to severe complications,
preeclampsia commonly leads to premature termination of pregnancy. Consequently,
the placental tissue in these cases may not have initiated high-concentration metal and
metalloid transportation. This further leads to a reduction in metal and metalloid content in
the placental tissue of preeclampsia cases. Nevertheless, the precise underlying biological
mechanism of preeclampsia remains to be elucidated. Based on this case–control study,
we were unable to establish a clear causal relationship between mineral exposure and the
risk of developing preeclampsia. Further prospective research, incorporating multiple time
points and diverse sample types, is imperative to gain deeper insights into this matter.

Previous investigations into the impact of metal exposure and its association with
preeclampsia primarily relied on human biomonitoring samples, specifically monitoring
metal concentrations in maternal blood or urine [6,7,25,40,41]. For example, an analysis
conducted by Liu et al. utilizing the Boston Birth Cohort found that Mn levels in the
red blood cells of pregnant women had a protective effect against the development of
preeclampsia; however, no protective effect was found for Se [6]. Another case–control
study, conducted in Bangladesh, found significantly lower serum levels of Fe and Zn in
preeclampsia patients compared to healthy pregnant women [25]. Similarly, a retrospective
cohort study involving 2186 women in Guangdong, China, reported that elevated levels of
blood Mg during mid-term pregnancy were associated with a decreased risk of developing
preeclampsia [40]. Furthermore, a recent meta-analysis comparing Se levels in women with
preeclampsia and normotensive controls found a significant correlation between low Se
levels and preeclampsia [42]. In our present study, we also discovered a positive correlation
between Mg, Fe, Zn, and Se levels in placental tissue and a reduced risk of preeclampsia,
which is consistent with previous studies.

In a study conducted by Aleksandar et al., examining the distribution of trace elements
in placental tissue among 105 healthy Caucasian women, the median concentrations of
trace elements were reported as follows: Cu at 858 ng/g (approximately 0.85 µg/L), Se at
140 ng/g (approximately 0.14 µg/L), Mn at 91.3 ng/g (approximately 0.09 µg/L), and Cr at
9.69 ng/g (approximately 0.01 µg/L) [43]. Another study, which focused on Cr accumula-
tion or burden in 50 healthy women who were residents of Michigan, reported that Cr was
found in all human placenta samples, ranging from 0.02 to 1.2 ppm (µg/L) [44]. However,
our present study revealed a different order of these four trace elements in placental tissue
within the healthy control group, specifically Cr, Cu, Se, and Mn. Furthermore, the metal
levels observed in our study were comparatively higher. In addition, as the placental Cr
was higher in the healthy control group compared to the preeclampsia case group, the pla-
cental Cr appears to have a “protective” effect against the risk of developing preeclampsia.
Nonetheless, research investigating the association between preeclampsia and placental
metals remains limited. The divergent findings across studies may be attributed to the
differences in specimens, dietary habits, environmental factors, and genetic susceptibilities
among different study populations.

The placenta plays a pivotal role as an interface for the exchange of maternal physio-
logical and environmental signals with the developing fetus. As such, it holds significant
potential in assessing prenatal exposures within the framework of developmental origins
of health and disease (DOHaD) [45,46]. It is crucial to acknowledge that the accurate assess-
ment of maternal absorbed metals and metalloids necessitates considering not only their
concentration in maternal blood and retention within the placenta but also the quantity
transferred to the fetus. By simultaneously collecting samples of maternal blood, placen-
tal tissue, and umbilical cord blood during delivery, we can enhance our understanding
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of preeclampsia and facilitate the development of more targeted approaches for both its
prevention and treatment, addressing the associated conditions more effectively.

This study does have certain limitations that should be acknowledged. Firstly, we
were unable to differentiate between various speciation and oxidation states of metal ions
within the placental tissue samples. These variations are crucial factors that can impact
the physiological effects and toxicity of these metals [10]. Secondly, our analysis primarily
focused on the examination of placental tissue, which may limit our understanding of
the comprehensive distribution of metals and metalloids among the mother, offspring,
and placenta. Lastly, the relatively small sample size during the follow-up period may
introduce potential selection bias, highlighting the need for further replication in larger
cohort studies to validate the findings obtained from this study.

5. Conclusions

Our study revealed notable variations in the median concentrations of metals and
metalloids within placental tissue between the preeclampsia and healthy control groups.
The lower median concentrations of Mg, Cr, Fe, Zn, and Se in the placental tissue may be
associated with the development of preeclampsia. However, it is important to recognize
that the pathophysiology of preeclampsia is multifaceted, and further investigation is
necessary to explore the underlying mechanisms and the impact of essential elements
imbalances on the pathophysiology of preeclampsia.
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