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Abstract: This study delves into the complex interrelations among nutrient intake, environmental
exposures (particularly to heavy metals), and metabolic syndrome. Utilizing data from the Korea
National Health and Nutrition Examination Survey (KNHANES), machine learning techniques
were applied to analyze associations in a cohort of 5719 participants, categorized into four distinct
nutrient intake phenotypes. Our findings reveal that different nutrient intake patterns are associated
with varying levels of heavy metal exposure and metabolic health outcomes. Key findings include
significant variations in metal levels (Pb, Hg, Cd, Ni) across the clusters, with certain clusters showing
heightened levels of specific metals. These variations were associated with distinct metabolic health
profiles, including differences in obesity, diabetes prevalence, hypertension, and cholesterol levels.
Notably, Cluster 3, characterized by high-energy and nutrient-rich diets, showed the highest levels
of Pb and Hg exposure and had the most concerning metabolic health indicators. Moreover, the
study highlights the significant impact of lifestyle habits, such as smoking and eating out, on nutrient
intake phenotypes and associated health risks. Physical activity emerged as a critical factor, with
its absence linked to imbalanced nutrient intake in certain clusters. In conclusion, our research
underscores the intricate connections among diet, environmental factors, and metabolic health.
The findings emphasize the need for tailored health interventions and policies that consider these
complex interplays, potentially informing future strategies to combat metabolic syndrome and related
health issues.

Keywords: nutrient intake; environmental exposures; heavy metals; machine learning; phenotypes;
metabolic syndrome

1. Introduction

Metabolic syndrome, encompassing a myriad of interrelated conditions, stands as
a significant global health threat [1]. This cluster of conditions, which includes elevated
blood pressure, heightened blood sugar, abdominal obesity, elevated triglyceride levels,
and reduced high-density lipoprotein (HDL) cholesterol levels, presents more than just
isolated health issues [2,3]. When viewed collectively, these conditions escalate the risks
for severe health complications such as heart disease, stroke, and type 2 diabetes [4]. As
individual health concerns, they require rigorous surveillance, but their combined presence
indicates potentially dire health trajectories.

The global rise of metabolic syndrome has garnered the attention of significant health
organizations, necessitating urgent interventions. The World Health Organization (WHO)
and various leading health institutions have documented the escalating prevalence of
this syndrome, especially in countries undergoing swift urbanization and experiencing
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consequential lifestyle shifts [5,6]. This is particularly concerning given the syndrome’s
links to chronic diseases, such as heart disease and diabetes, both of which rank highly
among global mortality causes [7,8].

Despite the multifaceted origins of metabolic syndrome, ranging from genetics to
age-related factors, this research focuses on a more specialized domain: the nexus among
dietary patterns and external environmental influences, especially emphasizing the role
of heavy metal exposure. Numerous studies have identified a significant association
between heavy metals, such as cadmium, mercury, lead, and nickel, and their impacts on
nutrient absorption and metabolism [9–12]. Concurrently, environmental factors, from
economic dynamics to individual lifestyle choices like tobacco use and physical activity,
have been documented to considerably shape nutritional behaviors and the resultant health
outcomes [13–15].

The cornerstone of this investigation lies in the exhaustive data provided by the
Korea National Health and Nutrition Examination Survey (KNHANES). By leveraging
this vast dataset, our intent is to elucidate the multifaceted intersections among dietary
habits, environmental variables, and metabolic health. What sets our study apart is our
commitment to employing machine learning techniques. Our reliance on machine learning
promises a nuanced understanding of dietary and environmental interplays with metabolic
syndrome, potentially highlighting correlations that may be understated using conventional
research methodologies [16–19].

This research represents a pivotal exploration into the intricate web of nutrition,
environmental factors, and metabolic health. Our approach, combining intensive data
scrutiny with state-of-the-art machine learning tools, aspires to furnish insights pivotal for
shaping future health interventions and policy-making endeavors.

2. Methods
2.1. Data Source

Leveraging the vast repository of the Eighth KNHANES, the study aims to delve into
the intricate nexus among dietary practices, environmental factors, and metabolic syndrome
within the Korean demographic [20]. Renowned for its meticulous aggregation and diverse
representation, the KNHANES offers unparalleled insights into Koreans’ evolving health
and nutritional paradigms. Its wealth of variables provides granular details on health
metrics, nutritional nuances, and ensuing health outcomes, cutting across demographic
divisions like age, socio-economic strata, and urban-rural gradients [21]. This breadth
ensures an all-encompassing vantage, rendering the dataset indispensable for in-depth
public health studies. Tailoring our research focus, we have selectively mined this data,
emphasizing variables associated with nutrient intake, heavy metal exposure, and pertinent
environmental factors. This pivot is informed by emergent studies indicating potential
interconnections among dietary habits, environmental interplay, and metabolic syndrome
ramifications [22,23]. Therefore, by harnessing the depth of the KNHANES dataset, we aim
to illuminate the intricate interplay between dietary practices, environmental influences,
and metabolic health in Korea.

2.2. Data Preprocessing

Associations were analyzed using machine learning techniques on data from the
KNHANES. This analysis was conducted on a cohort of 5719 participants who were cat-
egorized into four distinct nutrient intake phenotypes (Figure 1). To enhance the fidelity
of the Eighth KNHANES for our machine learning analysis, we embarked on a rigorous
preprocessing journey. Recognizing the pitfalls of missing data, we employed advanced
imputation techniques grounded in probabilistic frameworks to ensure coherent value re-
placement [24]. Outliers, which can jeopardize model accuracy, were identified and rectified
using robust statistical methodologies such as the IQR method and Z-score method [25–30].
Furthermore, given the sensitivity of machine learning algorithms to feature scales, normal-
ization processes like Min–Max scaling and Z-score normalization were utilized, ensuring
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consistent interpretability and optimization across all variables [31,32]. This meticulous
refinement transformed the KNHANES dataset into a precision-primed resource, poised to
provide robust and insightful analytical outputs.

KNHANES VIII: 2019

( n = 513,044 )

n = 357,952

Excluded

-

-

Excluded

-

( n = 5719 )

Cluster 1: Cluster 3: -Cluster 2: - Cluster 4: 

Figure 1. Flowchart that depicts the selection process of study participants.

2.3. Machine Learning Approach

Harnessing the power of machine learning in this analytical exploration, the study
primarily relied on the K-means clustering algorithm—an unsupervised learning technique
celebrated for its precision in parsing multivariate datasets [33,34]. In the expansive realm
of nutrition, profiling and categorization can be daunting given the myriad nutritional
variables at play. With the KNHANES dataset, this challenge was accentuated, presenting
a dense matrix of 25 nutrient dimensions. However, K-means clustering’s adaptability
and efficiency proved invaluable, enabling us to succinctly categorize individuals into
four distinct nutrient intake profiles or clusters [35,36]. Beyond mere categorization, the
application of K-means on this dataset illuminated intrinsic patterns, teasing out the
subtle interactions among different nutrient intake, ambient environmental factors, and
the resultant metabolic health markers. This clustering exercise further underscored the
premise that dietary habits, when viewed through the lens of data-driven algorithms like
K-means, can shed light on broader metabolic health trajectories, thereby deepening our
understanding of the factors exacerbating or mitigating metabolic syndrome risks [37,38].

2.4. Statistical Analyses

Utilizing the robust SAS software (Version 9.4, SAS Institute Inc., Cary, NC, USA),
each variable from the Eighth KNHANES was systematically processed using the complex
sample design data analysis method, factoring in the survey’s inherent clustering, stratifi-
cation variables, and weights. Initial descriptive analyses yielded statistics such as means,
frequencies, and standard deviations for age and BMI, stratified by nutrient intake clus-
ters. The chi-square test addressed categorical variables, while the analysis of covariance
(ANCOVA) was deployed for continuous ones. Furthermore, to identify associations with
nutrient intake clusters, we employed univariate logistic regression and expanded upon
this with a multiple logistic regression analysis, concentrating on the relationships between
participants’ daily dietary nutrient intake and their respective nutrient intake clusters. We
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maintained a rigorous quality threshold, designating a p-value of less than 0.05 as our
benchmark for statistical significance.

3. Results
3.1. General Characteristics of Participants and Their Nutrient Intake Phenotypes

Table 1 provides a comprehensive breakdown of participants by nutrient intake phe-
notype, offering insights into demographic distribution, health metrics, lifestyle habits,
self-reported health status, and education levels. Each cluster presents a unique profile,
indicating the diversity and range of characteristics among the participants.

Out of a total of 5719 participants, the average age was 45.70 ± 16.42 years. The distri-
bution among the different nutrient intake phenotype clusters revealed distinct patterns.
Cluster 1, consisting of 1581 participants, had an average age of 49.40 ± 16.75 years. Cluster
2 (n = 1229) had an average age of 44.77 ± 17.19 years. Cluster 3 (n = 501) had the youngest
participants with an average age of 41.75 ± 14.49 years, and Cluster 4 (n = 2408) had an
average age of 44.56 ± 15.76 years. Regarding gender distribution, males represented
39.41% of the total participants, while females represented 60.59%. Gender distribution
varied significantly among the clusters.

Metal levels, such as Pb, Hg, Cd, and Ni, were recorded for each participant. The
average Pb level was 1.56 ± 0.68 µg/dL for the entire cohort. Cluster-wise, Cluster 3
showed the highest Pb level (1.82 ± 0.29 µg/dL), while Clusters 1, 2, and 4 showed values
of 1.44 ± 0.85, 1.46 ± 0.52, and 1.65 ± 0.67 µg/dL, respectively. Similar patterns were
observed for Hg, Cd, and Ni.

Health metrics revealed substantial differences among clusters. For obesity, Cluster
3 had the highest proportion of obese participants at 59.48%, whereas Cluster 2 had the
lowest at 3.25%. For diabetes, Cluster 3 again had the highest prevalence at 31.54%, while
Cluster 4 had the lowest at 4.44%. The distribution for high blood cholesterol, high blood
pressure, high fasting blood glucose, and high blood triglyceride followed similar patterns.

Regarding lifestyle habits, there was a notable variance among clusters. For instance,
Cluster 3 had the highest proportion of participants eating out daily (77.64%). Cluster 4
had the highest percentage of participants who consume dietary supplements in a year
(74.79%). Smoking prevalence was highest in Cluster 4 (16.28%), while Cluster 3 had no
current smokers.

Self-reported health and education: Self-reported health status varied among clusters,
with Cluster 1 having the most participants reporting good health at 65.46%. On the other
hand, Cluster 2 had the highest proportion of participants reporting average or poor health
(80.55%). In terms of education, the majority of the participants in Cluster 1 (73.75%) had a
high school or lower education.
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Table 1. General characteristics of participants by nutrient intake phenotypes.

Variables

Nutrient Intake Phenotypes

Total Cluster 1 (1) Cluster 2 (2) Cluster 3 (3) Cluster 4 (4)

(n = 5719) (n = 1581) (n = 1229) (n = 501) (n = 2408)

n (%) p n (%) p n (%) p n (%) p n (%) p

Age (yrs.) (5) 45.70 ± 16.42 <0.0001 49.40 ± 16.75 <0.0001 44.77 ± 17.19 <0.0001 41.75 ± 14.49 <0.0001 44.56 ± 15.76 <0.0001

Sex <0.0001 0.0528 <0.0001 <0.0001 <0.0001

Male 2254 (39.41%) 752 (47.56%) 133 (10.82%) 443 (88.42%) 926 (38.46%)

Female 3465 (60.59%) 829 (52.44%) 1096 (89.18%) 58 (11.58%) 1482 (61.54%)

Pb (µg/dL) (5) 1.56 ± 0.68 <0.0001 1.44 ± 0.85 <0.0001 1.46 ± 0.52 <0.0001 1.82 ± 0.29 <0.0001 1.65 ± 0.67 <0.0001

Hg (µg/L) (5) 3.27 ± 2.23 <0.0001 3.16 ± 2.69 <0.0001 2.71 ± 1.92 <0.0001 3.77 ± 1.55 <0.0001 3.53 ± 2.09 <0.0001

Cd (µg/L) (5) 0.87 ± 0.56 <0.0001 0.99 ± 0.68 <0.0001 0.84 ± 0.45 <0.0001 0.57 ± 0.51 <0.0001 0.86 ± 0.51 <0.0001

Ni (µg/L) (5) 0.33 ± 0.07 <0.0001 0.32 ± 0.09 <0.0001 0.33 ± 0.06 <0.0001 0.30 ± 0.06 <0.0001 0.35 ± 0.07 <0.0001

Obese <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Yes 1194 (20.88%) 573 (36.24%) 40 (3.25%) 298 (59.48%) 283 (11.75%)

No 4525 (79.12%) 1008 (63.76%) 1189 (96.75%) 203 (40.52%) 2125 (88.25%)

Diabetes <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Yes 646 (11.30%) 276 (17.46%) 105 (8.54%) 158 (31.54%) 107 (4.44%)

No 5073 (88.70%) 1305 (82.54%) 1124 (91.46%) 343 (68.46%) 2301 (95.56%)

High blood cholesterol <0.0001 <0.0001 <0.0001 0.0006 <0.0001

Yes 1715 (29.99%) 473 (29.92%) 293 (23.84%) 212 (42.32%) 737 (30.61%)

No 4004 (70.01%) 1108 (70.08%) 936 (76.16%) 289 (57.68%) 1671 (69.39%)

High blood pressure <0.0001 <0.0001 <0.0001 0.0006 <0.0001

Yes 1369 (23.94%) 293 (18.53%) 80 (6.51%) 212 (42.32%) 784 (32.56%)

No 4350 (76.06%) 1288 (81.47%) 1149 (93.49%) 289 (57.68%) 1624 (67.44%)

High Fasting
blood glucose <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Yes 2485 (43.45%) 1007 (63.69%) 388 (31.57%) 331 (66.07%) 759 (31.52%)

No 3234 (56.55%) 574 (36.31%) 841 (68.43%) 170 (33.93%) 1649 (68.48%)

High blood TG (6) <0.0001 <0.0001 <0.0001 0.8934 <0.0001

Yes 1672 (29.24%) 413 (26.12%) 108 (8.79%) 249 (49.70%) 902 (37.46%)

No 4047 (70.76%) 1168 (73.88%) 1121 (91.21%) 252 (50.30%) 1506 (62.54%)
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Table 1. Cont.

Variables

Nutrient Intake Phenotypes

Total Cluster 1 (1) Cluster 2 (2) Cluster 3 (3) Cluster 4 (4)

(n = 5719) (n = 1581) (n = 1229) (n = 501) (n = 2408)

n (%) p n (%) p n (%) p n (%) p n (%) p

Central obesity <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Yes 1060 (18.53%) 321 (20.30%) 310 (25.22%) 61 (12.18%) 368 (15.28%)

No 4659 (81.47%) 1260 (79.70%) 919 (74.78%) 440 (87.82%) 2040 (84.72%)

Low HDL (7) cholesterol <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Yes 989 (17.29%) 265 (16.76%) 87 (7.08%) 61 (12.18%) 576 (23.92%)

No 4730 (82.71%) 1316 (83.24%) 1142 (92.92%) 440 (87.82%) 1832 (76.08%)

Number of MetS (8)

risk factors <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

0 1896 (33.15%) 233 (14.74%) 531 (43.21%) 140 (27.94%) 992 (41.20%)

1 1375 (24.04%) 561 (35.48%) 437 (35.56%) 88 (17.56%) 289 (12.00%)

2 1261 (22.05%) 623 (39.41%) 247 (20.10%) 54 (10.78%) 337 (14.00%)

3 1098 (19.20%) 164 (10.37%) 14 (1.14%) 158 (31.54%) 762 (31.64%)

4 61 (1.07%) 0 (0.00%) 0 (0.00%) 61 (12.18%) 0 (0.00%)

5 28 (0.49%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 28 (1.16%)

Heavy drinking <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Yes 627 (10.96%) 116 (7.34%) 95 (7.73%) 84 (16.77%) 332 (13.79%)

No 5092 (89.04%) 1465 (92.66%) 1134 (92.27%) 417 (83.23%) 2076 (86.21%)

Current smoking <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Yes 653 (11.42%) 247 (15.62%) 14 (1.14%) 0 (0.00%) 392 (16.28%)

No 5066 (88.58%) 1334 (84.38%) 1215 (98.86%) 501 (100.00%) 2016 (83.72%)

Eating out <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

≥1 time/d 1526 (26.68%) 495 (31.31%) 374 (30.43%) 389 (77.64%) 268 (11.13%)

≥1 time/w 3113 (54.43%) 690 (43.64%) 670 (54.52%) 54 (10.78%) 1699 (70.56%)

<1 time/w 1080 (18.88%) 396 (25.05%) 185 (15.05%) 58 (11.58%) 441 (18.31%)
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Table 1. Cont.

Variables

Nutrient Intake Phenotypes

Total Cluster 1 (1) Cluster 2 (2) Cluster 3 (3) Cluster 4 (4)

(n = 5719) (n = 1581) (n = 1229) (n = 501) (n = 2408)

n (%) p n (%) p n (%) p n (%) p n (%) p

Eating breakfast <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

5–7 times/w 3526 (61.65%) 1093 (69.13%) 605 (49.23%) 270 (53.89%) 1558 (64.70%)

3–4 times/w 416 (7.27%) 193 (12.21%) 56 (4.56%) 30 (5.99%) 137 (5.69%)

1–2 times/w 789 (13.80%) 39 (2.47%) 355 (28.89%) 67 (13.37%) 328 (13.62%)

0 times/w 988 (17.28%) 256 (16.19%) 213 (17.33%) 134 (26.75%) 385 (15.99%)

Diet therapy <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Yes 1550 (27.10%) 559 (35.56%) 119 (9.68%) 188 (37.52%) 684 (28.41%)

No 4169 (72.90%) 1022 (64.64%) 1110 (90.32%) 313 (62.48%) 1724 (71.59%)

Eating dietary supplements
in a year <0.0001 0.5974 <0.0001 0.6876 <0.0001

Yes 3331 (58.24%) 801 (50.66%) 483 (39.30%) 246 (49.10%) 1801 (74.79%)

No 2388 (41.76%) 780 (49.34%) 746 (60.70%) 255 (50.90%) 607 (25.21%)

Self-reported health status <0.0001 <0.0001 <0.0001 0.0049 <0.0001

Good 2100 (36.72%) 1035 (65.46%) 239 (19.45%) 282 (56.29%) 544 (22.59%)

Average or poor 3619 (63.28%) 546 (34.54%) 990 (80.55%) 219 (43.71%) 1864 (77.41%)

Education level <0.0001 <0.0001 <0.0001 0.0814 <0.0001

High school or lower 3225 (56.39%) 1166 (73.75%) 696 (56.63%) 270 (53.89%) 1093 (45.39%)

College or higher 2494 (43.61%) 415 (26.25%) 533 (43.37%) 231 (46.11%) 1315 (54.61%)

Household income level <0.0001 0.0009 <0.0001 <0.0001 <0.0001

Low or mid-low 1636 (28.61%) 557 (35.23%) 494 (40.20%) 67 (13.37%) 518 (21.51%)

Mid-high 2349 (41.07%) 457 (28.91%) 482 (39.22%) 373 (74.45%) 1037 (43.06%)

High 1734 (30.32%) 567 (35.86%) 253 (20.59%) 61 (12.18%) 853 (35.42%)

Economic activity <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Yes 3728 (65.19%) 1121 (70.90%) 710 (57.77%) 417 (83.23%) 1480 (61.46%)

No 1991 (34.81%) 460 (29.10%) 519 (42.23%) 84 (16.77%) 928 (38.54%)

Stress awareness <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Low 4430 (77.46%) 1399 (88.49%) 865 (70.38%) 434 (86.63%) 1732 (71.93%)

High 1289 (22.54%) 182 (11.51%) 364 (29.62%) 67 (13.37%) 676 (28.07%)
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Table 1. Cont.

Variables

Nutrient Intake Phenotypes

Total Cluster 1 (1) Cluster 2 (2) Cluster 3 (3) Cluster 4 (4)

(n = 5719) (n = 1581) (n = 1229) (n = 501) (n = 2408)

n (%) p n (%) p n (%) p n (%) p n (%) p

Walking <0.0001 <0.0001 <0.0001 <0.0001 0.0035

<5 days 2085 (36.46%) 325 (20.56%) 768 (62.49%) 61 (12.18%) 931 (38.66%)

≥5 days 3634 (63.54%) 1256 (79.44%) 461 (37.51%) 440 (87.82%) 1477 (61.34%)

Moderate intensity
physical activity <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Yes 1628 (28.47%) 497 (31.44%) 131 (10.66%) 67 (13.37%) 933 (38.75%)

No 4091 (71.53%) 1084 (68.56%) 1098 (89.34%) 434 (86.63%) 1475 (61.25%)

Physical activity <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

<5 days, 30 min 2337 (40.86%) 445 (28.15%) 830 (67.53%) 61 (12.18%) 1001 (41.57%)

≥5 days, 30 min 3382 (59.14%) 1136 (71.85%) 399 (32.47%) 440 (87.82%) 1407 (58.43%)

(1) Cluster 1: Diverse Nutrient Intake; (2) Cluster 2: Nutrient-Deficient; (3) Cluster 3: High-Energy & Nutrient-Rich; (4) Cluster 4: Balanced Intake; (5) Data were expressed as mean ± SD;
(6) TG: triglyceride; (7) HDL: high density lipoprotein; (8) MetS: metabolic syndrome.
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3.2. Characteristics of Heavy Metals and Five Metabolic Syndrome Factors According to Nutrient
Intake Level

Diving deep into the multifaceted relationship between heavy metal exposure and
metabolic syndrome indicators, our analysis discerned distinct patterns across four specific
clusters, each uniquely portraying the interplay between environmental heavy metal
exposures and metabolic health outcomes (Table 1 and Figure 2).Figure 2

(A) (B)

Figure 2. Key results related to clusters. (A) Normalized heavy metal concentrations across clusters.
(B) Average metabolic syndrome-related indicators across clusters.

Cluster 1 showcased a moderate inclination towards Pb (Lead) exposure, while Hg
(Mercury) levels stood out distinctly, overshadowed only by Cluster 3. Interestingly, a
spike in cadmium levels was observed here. On the metabolic front, Cluster 1 embod-
ied a moderate hypertension (BP11) level and elevated fasting blood sugar (FBS1)—the
latter being second only to Cluster 3. Interestingly, the waist circumference (WAIST1)
readings in this cluster hinted at reduced concerns of central obesity as compared to most
of its counterparts.

While Cd (Cadmium) exposure echoed patterns seen in Cluster 1, Cluster 2 was
characterized by a notable dip in Hg exposure—the lowest among all clusters. Metabolically,
this cluster presented a dichotomy: while it showcased the lowest hypertension levels,
suggesting better cardiovascular health, it also showed the highest waist circumference
and lowest HDL cholesterol (HDL1) levels, implying potential obesity and cholesterol-
related challenges.

Alarming insights emerged from Cluster 3. Both Pb and Hg exposures hit peak levels,
making this the most exposed cluster. Its metabolic readings resonated with this heightened
exposure, revealing peak hypertension and fasting blood sugar levels, flagging substantial
cardiovascular and potential diabetes-related risks. In a stark juxtaposition, however, the
waist circumference was the lowest.

Cluster 4 reported elevated Pb levels, trailing just behind Cluster 3. Remarkably, this
cluster stood out with the highest Ni (Nickel) exposure. In terms of metabolic health, the
data painted a mixed picture: while elevated hypertension level readings were a cause for
concern, it also showed the peak high-density cholesterol levels, suggesting a relatively
healthier cholesterol profile.
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3.3. Nutrient Intake of Participants across Four Distinct Clusters

In Table 2, each cluster presents distinct dietary patterns, from a diverse nutrient
intake to potential deficiencies, to very high-energy consumptions, and finally to a balanced
dietary profile.

Individuals in Cluster 1 generally had a broad range of nutrient intakes. They had
a significantly higher consumption of energy at 2281.31 kcal, which was above the total
average of 1942.76 kcal. Notably, their intake of water, carbohydrates, protein, and fats were
all higher than the average, suggesting a possible higher total food consumption or choices
dense in these nutrients. The elevated intake of micronutrients like calcium, vitamin A, and
vitamin C indicates a potential varied diet.

Cluster 2 showcased the lowest intake across most nutrients, suggesting a potential
deficiency or a lower overall food consumption. Their average energy intake was consider-
ably lower at 1235.07 kcal. Micronutrients like calcium, vitamin A, and vitamin C were also
consumed in limited amounts. This cluster might be at a nutritional risk and may benefit
from interventions to enhance their nutrient intake.

Individuals in Cluster 3 had a remarkable energy consumption, with an average intake
of 3165.82 kcal—the highest among all clusters. Their nutrient profile also stands out, with
a high intake of proteins, fats, and carbohydrates. The group seemed to prefer diets high in
energy, with nutrients like sodium, potassium, and vitamins (like vitamin A and C) being
consumed in large quantities.

The largest cluster, Cluster 4, exhibited what can be described as a balanced nutrient
intake. Their values generally hovered around the overall averages, suggesting a balanced
and potentially healthier diet. While their energy intake was below the overall average,
they seemed to have a consistent intake of other nutrients, not veering too high or too low.

3.4. Cluster Characteristics across Nutrient Intake Levels

Table 2 provides a breakdown of the average nutrient consumption across four distinct
groups of individuals. Under the category of energy and core macronutrients, the table
details the intake of energy, water, and basic macronutrients like carbohydrates, proteins,
and fats. Specifically, the average caloric intake is represented by the Energy value, where
Cluster 3 had the highest consumption, and Cluster 2 the lowest. Water intake, indicating
hydration from the diet, also shows that Cluster 3 consumed the most, while Cluster 2
consumed the least. As for carbohydrates, proteins, and fats, Cluster 3 led in consumption,
pointing to a high-energy diet.

When considering the types of fat, the table categorizes them into saturated, monoun-
saturated, and polyunsaturated fatty acids, as well as n-3 and n-6 fatty acids. Across all fat
types, Cluster 3 consumed the most, while Cluster 1 consumed the least. The essential fatty
acids, n-3 and n-6, which are vital for heart health and reducing inflammation, were most
consumed by Cluster 3 and least by Cluster 2.

Table 2 further highlights other dietary components like cholesterol and dietary fiber.
Cluster 1 had the highest cholesterol intake, closely followed by Cluster 3, which can be a
potential health concern. On the other hand, dietary fiber, essential for digestion and often
found in whole grains, fruits, and vegetables, was most consumed by Cluster 3. Sugar
intake was highest in Cluster 1.

Lastly, under vitamins and minerals, the table lists several essential minerals and
vitamins. Except for calcium, Cluster 3 consumed the most of these minerals, with Cluster
1 leading in calcium intake. For the vitamins, Cluster 3 also consumed the most, with the
exception of Vitamin C and retinol, where Cluster 1 led.
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Table 2. Nutrient intake of participants by phenotypes.

Variables

Nutrient Intake Phenotypes

Total Cluster 1 (1) Cluster 2 (2) Cluster 3 (3) Cluster 4 (4)

(n = 5719) (n = 1581) (n = 1229) (n = 501) (n = 2408)

Mean ± SD p Mean ± SD p Mean ± SD p Mean ± SD p Mean ± SD p

Energy 1942.76 ± 635.85 <0.0001 2281.31 ± 362.45 <0.0001 1235.07 ± 330.48 <0.0001 3165.82 ± 421.43 <0.0001 1827.21 ± 354.82 <0.0001
Water 1024.28 ± 425.29 <0.0001 1318.92 ± 352.61 <0.0001 633.97 ± 287.14 <0.0001 1523.31 ± 258.77 <0.0001 926.22 ± 309.54 <0.0001

Carbohydrate 293.73 ± 98.81 <0.0001 342.17 ± 87.59 <0.0001 207.24 ± 65.99 <0.0001 389.02 ± 100.92 <0.0001 286.24 ± 80.70 <0.0001
Protein 73.14 ± 29.63 <0.0001 85.89 ± 13.58 <0.0001 43.36 ± 14.51 <0.0001 139.21 ± 29.91 <0.0001 66.21 ± 12.46 <0.0001

Fat 47.97 ± 25.71 <0.0001 63.33 ± 17.52 <0.0001 23.94 ± 10.94 <0.0001 94.22 ± 24.50 <0.0001 40.53 ± 15.26 <0.0001
SFA 15.19 ± 8.73 <0.0001 20.90 ± 7.97 <0.0001 7.73 ± 5.42 <0.0001 25.00 ± 9.84 <0.0001 13.21 ± 5.51 <0.0001

MUFA 15.23 ± 9.00 <0.0001 19.35 ± 5.93 <0.0001 7.87 ± 4.23 <0.0001 34.01 ± 8.12 <0.0001 12.38 ± 5.13 <0.0001
PUFA 12.82 ± 8.61 <0.0001 16.34 ± 5.83 <0.0001 6.00 ± 2.60 <0.0001 28.00 ± 14.41 <0.0001 10.82 ± 4.82 <0.0001

N3 2.00 ± 1.56 <0.0001 2.45 ± 1.86 <0.0001 1.07 ± 0.64 <0.0001 3.76 ± 2.03 <0.0001 1.81 ± 1.08 <0.0001
N6 10.78 ± 7.67 <0.0001 13.82 ± 5.31 <0.0001 4.88 ± 2.31 <0.0001 24.30 ± 12.88 <0.0001 8.99 ± 4.34 <0.0001

Cholesterol 257.30 ± 197.97 <0.0001 357.41 ± 236.22 <0.0001 120.44 ± 87.06 <0.0001 356.83 ± 121.84 <0.0001 240.72 ± 176.18 <0.0001
Fiber 26.13 ± 10.87 <0.0001 33.71 ± 9.20 <0.0001 15.33 ± 4.73 <0.0001 43.26 ± 9.20 <0.0001 23.10 ± 5.33 <0.0001
Sugar 63.20 ± 36.52 <0.0001 85.82 ± 40.13 <0.0001 40.01 ± 24.30 <0.0001 84.06 ± 37.56 <0.0001 55.85 ± 27.60 <0.0001

Calcium 558.13 ± 267.47 <0.0001 833.62 ± 241.88 <0.0001 297.38 ± 151.46 <0.0001 681.87 ± 153.30 <0.0001 484.59 ± 147.62 <0.0001
Phosphate 1121.26 ± 399.43 <0.0001 1426.54 ± 194.93 <0.0001 652.43 ± 167.82 <0.0001 1843.68 ± 371.05 <0.0001 1009.82 ± 128.86 <0.0001

Iron 11.85 ± 4.29 <0.0001 14.29 ± 3.47 <0.0001 6.88 ± 2.69 <0.0001 17.27 ± 2.84 <0.0001 11.66 ± 2.79 <0.0001
Sodium 3014.86 ± 1237.48 <0.0001 3696.46 ± 1144.95 <0.0001 2091.83 ± 1133.90 <0.0001 4232.85 ± 923.76 <0.0001 2785.04 ± 917.79 <0.0001

Potassium 2992.26 ± 1120.88 <0.0001 3826.90 ± 913.52 <0.0001 1778.61 ± 481.10 <0.0001 4501.70 ± 1241.59 <0.0001 2749.64 ± 505.69 <0.0001
Vitamin A 389.98 ± 214.61 <0.0001 508.49 ± 193.15 <0.0001 205.77 ± 119.16 <0.0001 633.34 ± 230.26 <0.0001 355.54 ± 163.11 <0.0001
Carotene 3135.18 ± 1994.79 <0.0001 3594.08 ± 1749.21 <0.0001 1704.95 ± 1180.96 <0.0001 5729.98 ± 2428.39 <0.0001 3023.99 ± 1706.27 <0.0001
Retinol 127.94 ± 139.69 <0.0001 208.98 ± 206.79 <0.0001 63.69 ± 51.62 <0.0001 155.85 ± 98.71 <0.0001 101.70 ± 87.37 <0.0001

Vitamin B1 1.35 ± 0.70 <0.0001 1.58 ± 0.47 <0.0001 0.77 ± 0.34 <0.0001 2.45 ± 1.22 <0.0001 1.28 ± 0.42 <0.0001
Vitamin B2 1.59 ± 0.68 <0.0001 2.17 ± 0.42 <0.0001 0.82 ± 0.25 <0.0001 2.72 ± 0.28 <0.0001 1.36 ± 0.31 <0.0001

Niacin 14.59 ± 7.01 <0.0001 16.59 ± 5.33 <0.0001 8.61 ± 3.84 <0.0001 29.21 ± 6.70 <0.0001 13.28 ± 3.78 <0.0001
Vitamin C 74.75 ± 69.55 <0.0001 113.04 ± 78.15 <0.0001 37.36 ± 22.52 <0.0001 110.96 ± 71.90 <0.0001 61.16 ± 63.35 <0.0001

(1) Cluster 1: Diverse Nutrient Intake; (2) Cluster 2: Nutrient-Deficient; (3) Cluster 3: High-Energy & Nutrient-Rich; (4) Cluster 4: Balanced Intake.
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3.5. The Relationship between Various Nutrient Intake Phenotypes and Associated Risk Factors

A distinct association was observed between nutrient intake phenotypes and the levels
of various heavy metals (Table 3). The concentration of Pb (µg/dL) showed a significantly
high odds ratio in Cluster 3 and 4, with Cluster 3 having an astounding OR of 47.081 (95%
CI: 23.867–92.874). This suggests that individuals in the “High-Energy & Nutrient-Rich”
cluster may have had higher exposure or retention of lead. Likewise, Hg (µg/L) levels
were significantly elevated across all clusters, with the highest being in Cluster 3 at OR:
1.755 (95% CI: 1.567–1.964). Interestingly, Ni concentrations revealed an OR as low as 0.034
in Cluster 4, pointing to a decreased risk.

Heavy drinking and current smoking patterns were predominantly significant risk
factors across all nutrient intake phenotypes. For heavy drinking, individuals in the “High-
Energy & Nutrient-Rich” cluster (Cluster 3) displayed the least association, with an OR of
0.786. Conversely, individuals in the same cluster who ate out once a day or more were
twice as likely, indicating a positive relationship (OR of 2.085). Furthermore, skipping
breakfast appeared to be a strong determinant in the “Diverse Nutrient Intake” cluster
(Cluster 1), showing a staggering OR of 19.105 for eating breakfast 3–4 times a week.

Household income levels and education seemed to influence nutrient phenotypes.
Specifically, those with a college or higher education showed an OR of 0.528 in total, empha-
sizing the reduced risk among the educated. In terms of economic activity, individuals in
the Nutrient-Deficient cluster were over three times more likely to be economically active
than the reference group (OR of 2.863).

Physical activity played a pivotal role in shaping nutrient intake. Moderate intensity
physical activity showcased protective effects, especially in Cluster 2 and Cluster 4. Walking
less than 5 days a week was linked to an increased risk in Cluster 4 (OR: 1.531, 95%
CI: 1.317–1.780), emphasizing the importance of regular physical activity for balanced
nutrient intake.
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Table 3. Odds ratio of nutrient intake phenotypes and risk factors of participants.

Variables

Nutrient Intake Phenotypes

Total Cluster 1 (1) Cluster 2 (2) Cluster 3 (3) Cluster 4 (4)

(n = 5719) (n = 1581) (n = 1229) (n = 501) (n = 2408)

OR (95% CI) p OR (95% CI) p OR (95% CI) p OR (95% CI) p OR (95% CI) p

Pb (µg/dL) 3.388 3.140 3.657 <0.0001 2.053 1.826 2.307 <0.0001 3.171 2.565 3.919 <0.0001 47.081 23.867 92.874 <0.0001 6.047 5.294 6.907 <0.0001

Hg (µg/L) 1.23 1.203 1.257 <0.0001 1.144 1.104 1.185 <0.0001 0.867 0.819 0.918 <0.0001 1.755 1.567 1.964 <0.0001 1.464 1.407 1.523 <0.0001

Cd (µg/L) 1.03 0.948 1.119 0.4875 2.149 1.867 2.474 <0.0001 1.388 1.099 1.752 0.0059 1.705 1.249 2.327 0.0008 0.56 0.483 0.650 <0.0001

Ni (µg/L) 0.087 0.046 0.165 <0.0001 0.734 0.263 2.048 0.5546 - <0.0001 - <0.0001 0.034 0.012 0.100 <0.0001

Heavy drinking <0.0001 <0.0001 <0.0001 0.2614 <0.0001

Yes 2.680 2.306 3.116 2.307 1.618 3.288 2.771 1.878 4.087 0.786 0.516 1.196 3.673 2.934 4.597

No 1 1 1 1 1

Current smoking <0.0001 0.0939 <0.0001

Yes 2.367 2.043 2.742 1.238 0.964 1.590 - - 2.712 2.213 3.325

No 1 1 1 1 1

Eating out <0.0001 <0.0001 <0.0001 0.3581 <0.0001

≥1 time/d 0.349 0.303 0.402 0.377 0.292 0.486 0.068 0.046 0.101 2.085 1.263 3.443 0.12 0.089 0.162

≥1 time/w 0.393 0.346 0.445 0.175 0.137 0.224 1.312 0.968 1.777 1.859 0.953 3.626 0.213 0.172 0.262

<1 time/w 1 1 1 1 1

Eating breakfast 0.0354 <0.0001 <0.0001 0.9332 <0.0001

5–7 times/w 1 1 1 1 1

3–4 times/w 1.151 0.960 1.380 2.73 2.034 3.664 19.105 9.568 38.15 0.255 0.128 0.508 0.532 0.385 0.737

1–2 times/w 0.329 0.284 0.380 0.586 0.325 1.058 0.39 0.303 0.502 - 0.446 0.356 0.558

0 times/w 0.625 0.550 0.710 19.905 14.52 27.288 0.079 0.053 0.117 0.461 0.317 0.671 0.37 0.298 0.459

Diet therapy 0.0472 <0.0001 <0.0001 0.7242 0.0097

Yes 1.112 1.001 1.234 0.415 0.342 0.503 3.589 2.515 5.123 1.06 0.767 1.465 1.238 1.053 1.456

No 1 1 1 1 1

Eating dietary supplements in a year <0.0001 <0.0001 0.0247 <0.0001 <0.0001

Yes 1.486 1.351 1.634 0.266 0.219 0.323 0.782 0.632 0.969 3.684 2.647 5.127 3.921 3.254 4.724

No 1 1 1 1 1

Self-reported health status

Good 1 0.7804 1 <0.0001 1 0.3500 1 1 0.0008

Average
or poor 1.014 0.921 1.117 0.502 0.414 0.609 0.883 0.679 1.147 - 1.354 1.135 1.616
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Table 3. Cont.

Variables

Nutrient Intake Phenotypes

Total Cluster 1 (1) Cluster 2 (2) Cluster 3 (3) Cluster 4 (4)

(n = 5719) (n = 1581) (n = 1229) (n = 501) (n = 2408)

OR (95% CI) p OR (95% CI) p OR (95% CI) p OR (95% CI) p OR (95% CI) p

Education level <0.0001 <0.0001 <0.0001 0.0038 <0.0001

High school or lower 1 1 1 1 1

College or higher 0.528 0.48 0.581 0.294 0.237 0.364 0.118 0.092 0.151 1.596 1.164 2.190 0.619 0.534 0.717

Household income level <0.0001 <0.0001 <0.0001

Low or mid-low 1 <0.0001 1 1 1 1

Mid-high 0.447 0.399 0.502 0.469 0.371 0.592 0.048 0.035 0.065 - 0.380 0.312 0.464

High 0.992 0.879 1.119 0.172 0.137 0.218 0.094 0.068 0.131 - 1.776 1.454 2.170

Economic activity 0.1310 <0.0001 <0.0001 0.2614 <0.0001

Yes 1.078 0.978 1.189 3.312 2.681 4.092 2.863 2.305 3.556 0.786 0.516 1.196 0.712 0.612 0.828

No 1 1 1 1 1

Stress awareness 0.0274 0.6566 <0.0001 <0.0001

Low 1 1 1 1 1

High 1.133 1.014 1.266 1.066 0.803 1.416 0.520 0.411 0.657 - 2.847 2.409 3.365

Walking 0.0225 <0.0001 <0.0001 <0.0001

<5 days 0.894 0.811 0.984 0.222 0.175 0.282 1.777 1.427 2.212 - 1.531 1.317 1.780

≥5 days 1 1 1 1 1

Moderate intensity physical activity 0.0092 <0.0001 <0.0001 <0.0001

Yes 0.872 0.786 0.967 2.144 1.756 2.619 0.295 0.201 0.433 - 0.736 0.633 0.856

No 1 1 1 1 1

Physical activity 0.0214 <0.0001 <0.0001 <0.0001

<5 days, 30 min 1 1 1 1 1

≥5 days, 30 min 1.118 1.017 1.229 3.813 3.083 4.716 0.433 0.343 0.545 - 0.681 0.587 0.790

(1) Cluster 1: Diverse Nutrient Intake; (2) Cluster 2: Nutrient-Deficient; (3) Cluster 3: High-Energy & Nutrient-Rich; (4) Cluster 4: Balanced Intake.
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4. Discussion
4.1. Nutrient Level Cluster Analysis

This endeavor to demystify nutrient intake and its ramifications on health outcomes
required a nuanced approach, given the intricacy of the data spanning 25 diverse nutrient
categories. This led us to harness the powers of unsupervised machine learning, precisely,
the K-means clustering algorithm [39], which adeptly categorized the data into four dis-
cernible nutritional profiles (Figure 3 and Supplementary Figures S1 and S2). Cluster 1
radiated nutritional affluence, endorsing an eclectic array of nutrients. This cohort mani-
fested enhanced levels of energy, fat, saturated fatty acids, cholesterol, dietary fiber, calcium,
Vitamin A, and Vitamin C, evocative of a diet dense in fruits, vegetables, dairy, and meats.
The salutary effects of such a diverse nutrient palette were echoed by English et al. [40],
elucidating the multitude of health boons accompanying such nutritional heterogeneity.
Cluster 2 projected nutritional austerity, with conspicuous deficiencies spanning almost all
nutrient spectrums. The alarming paucity of energy, fats, carbohydrates, proteins, and an
array of vitamins and minerals implies potential malnourishment or a diet predominantly
reliant on nutritionally sterile foods. A sustained adherence to such a diet paves the way
for a gamut of health pitfalls, a sentiment mirrored by Wang et al. [41]. In Cluster 3, the
nutrition profile exudes abundance. Energy, carbohydrates, proteins, varied fatty acids,
and a slew of vitamins and minerals flourish in this cluster. While the richness in nutrients
promises a slew of health merits, the surging energy content casts shadows of escalating
caloric intake. Such surpluses, if not counterbalanced with commensurate physical exertion,
can brew health adversities, a notion championed by James Stubbs et al. [42]. Emanat-
ing nutritional equilibrium, Cluster 4 shows a balanced act across all nutrients. Unlike
its counterparts that exhibited stark nutrient polarities, this group harmoniously aligns
moderate nutrient intakes, potentially hinting at a health-optimized diet. The secret lies in
striking a balance between portion sizes and ensuring a spectrum of dietary ingredients.
Miller et al. [43] accentuate the myriad health dividends sprouting from such balanced
indulgences. In essence, these clusters accentuate the complex situation of nutritional
intake and underscore the paramountcy of dietary choices in sculpting health destinies.

Figure 3
Cluster 1: Diverse Nutrient Intake

Cluster 2: Nutrient-Deficient

Cluster 3: High-Energy & Nutrient-Rich

Cluster 4: Balanced Intake

Figure 3. Cluster visualization. This figure showcases the results using the K-means clustering
algorithm, which adeptly categorized the data into four discernible nutritional profiles.
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4.2. Analysis of Risk Factors Related to Metabolic Syndrome Using Machine Learning

This deep dive into the nexus among heavy metal exposures, environmental variables,
and their repercussions on metabolic syndrome crystallized the data into four distinct
nutrient intake clusters. The PyCaret 3.1.0 package, epitomizing automated machine learn-
ing, streamlined the methodological strides in this study. Among the vast spectrum of
14 classifiers, we gravitated towards five due to their stellar performance (Figure 4 and
Supplementary Figure S3). Our choice found its resonance in the seminal work by Kelleher
et al. [16], which advocates for uncompromising accuracy and reliability in machine learn-
ing tools, particularly when broaching critical health dimensions. Housing participants
with a rich and diverse nutrient intake, Cluster 1 registered elevated levels of Cadmium
(Cd) and Mercury (Hg). Mehouel and Fowler [44] had earlier walked this path, illuminating
the potential dietary origins of such metal exposures. This underscores that while nutrient
diversity champions health, it might unwittingly invite heavy metals, thereby mingling
benefits with risks. Hallmarked by subpar nutrient intake, Cluster 2 interestingly flagged
frequent dining out as a significant behavioral vector. This propensity towards external
food sources possibly spells compromised food choices, echoing Chen et al. [45], who
espoused the link between certain dining behaviors and nutrient paucity. The recurrent
consumption of outside food might inadvertently affect the nutrient equilibrium. The par-
ticipants in Cluster 3 enjoy energy-laden yet nutrient-rich diets. Their intriguing association
with Nickel (Ni) might suggest their exposure to specific foods or environments [46,47].
Aslam et al. [48] have shed light on this interplay, where calorie-rich foods can sometimes
be clandestine carriers of heavy metals. This underscores the imperativeness of scrupulous
dietary choices even within the realms of nutrient-dense diets. However, the exemplar of
dietary equilibrium, Cluster 4, displayed conspicuous Lead (Pb) and Mercury (Hg) levels.
Noger-Huet et al. [49] extolled balanced diets without risking potential metal exposures.
This observation pivots attention towards the roots of so-called “balanced” diets, raising the
question as to whether they inadvertently double as conduits for heavy metal infiltration.
These revelations reinforce those diets while being health compasses, and are also cryptic
chroniclers of environmental and lifestyle narratives. Each bite not only nourishes but also
narrates tales of its origin, travel, and exposures. This encourages a 360-degree purview of
diets, embracing their advantages and disadvantages alike. Furthermore, our mathematical
modeling, elucidating the significance of classifier outcomes, unraveled a complex set of
circumstances binding health, lifestyle markers, and metabolic syndrome. It accentuates
the imperativeness of a panoramic view, incorporating both prevention and intervention,
in our health journeys. This investigation, in essence, is a clarion call, beckoning a deeper
dive into the intriguing interplay of diet, environment, and metabolic health.
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Figure 4

Cluster 1

Cluster 4Cluster 3

Cluster 2

Figure 4. In-depth analysis of the association between heavy metal exposure, environmental variables
and their impact on metabolic syndrome. This figure sorts the data into four distinct nutrient intake
clusters using the PyCaret 3.1.0 package, an exemplar of automated machine learning. In the figure,
different colors represent varying data ranges: red indicates values greater than or equal to 0.7; green
shows values between 0.3 and less than 0.7; red (SUM) denotes summed values equal to or exceeding
3; and green (SUM) refers to summed values ranging from 2 to less than 3.

4.3. Nutrient and Lifestyle Clustering

The meticulous establishment of dietary clusters—“Diverse Nutrient Intake”, “Nutrient-
Deficient”, “High-Energy & Nutrient-Rich”, and “Balanced Intake”—unmasked the nu-
anced interplay between dietary patterns and lifestyle choices. “Diverse Nutrient Intake”
mirrors a broad nutritional spectrum, but with potential exposure risks—a sentiment shared
by Li et al. [50]. “Nutrient-Deficient” underscores the gaps many face, with their shad-
owed health ramifications highlighted by Miller et al. [51]. “High-Energy & Nutrient-Rich”
presents an opulence of nutrients but with the hidden danger of excess, resonating with
the findings of Lachat et al. [52]. Lastly, “Balanced Intake”, celebrated for its moderation,
raises questions about its sources and potential contaminants—an insight explored by
Mozaffarian and Rimm [53]. These clusters, enriched by the pioneering work of Algur
et al. [54], serve not only as dietary compartments but also as illuminative insights into
the multifaceted interplay of diet, lifestyle, and health. As elucidated, it is not just about
the nutrient profile but the broader context, emphasizing that nutrition’s realm is gov-
erned by a careful balance and an understanding of both its gifts and potential pitfalls.
Furthermore, the pivotal study by Lind et al. [55] has underscored the potency of such
advanced clustering techniques. Their rigorous research accentuates the invaluable role of
these techniques in unveiling the complexities of nutrient profiles and their intertwined
relationships with metabolic outcomes. Drawing from their insights, it becomes evident
that a nuanced understanding of these clusters can be paramount in the development and
implementation of precise public health strategies, especially when addressing multifaceted
challenges related to metabolic syndrome and associated pathologies.

4.4. Underlying Themes in Clusters

The undeniable prominence of heavy metals in all nutritional clusters underscores an
omnipresent concern in contemporary nutrition. Whether one’s dietary inclinations lean
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toward “Diverse Nutrient Intake” or veer toward the “Nutrient-Deficient”, heavy metals
have manifested themselves as unyielding components in these dietary categorizations.
This all-encompassing significance poses profound questions about the state of our global
food chains and offers a stark reminder of the imperatives of monitoring and mitigating
heavy metal exposures. The intricate interplay between dietary choices and socio-economic
contours emerges as another compelling theme. Specifically, education and income—two
crucial pillars of socio-economic status—appear to wield substantial influence over dietary
patterns. This correlation implies that individuals’ nutritional choices and the associated
risks or benefits might be less about individual discretion and more about broader socio-
economic determinants. The frequency of dining out, another lifestyle determinant, surfaces
as a critical variable in this narrative. Martins et al. [7] delve deep into this very paradigm,
shedding light on the intertwined nature of socio-economic factors, lifestyle choices, and
the risk of heavy metal exposures. Such intricate relationships reiterate the necessity for
a holistic perspective on nutrition—one that goes beyond mere dietary components and
investigates the broader socio-economic and environmental circumstances that shape our
food choices.

4.5. Implications for Metabolic Syndrome

In our attempt to understand the complexities surrounding metabolic syndrome, the
capabilities of machine learning models have proven invaluable. By affording us the
ability to parse vast amounts of data and identify intricate patterns, these models have
brought forth distinct insights, particularly concerning the omnipresence of certain heavy
metals across various nutritional profiles. Whether one’s diet is teeming with nutrients or is
conspicuously deficient, the pervasiveness of these metals remains a constant. This ubiquity
not only points to the possible health implications of heavy metal exposure but also raises
pressing concerns about our larger food supply chain and environment. Such revelations
beckon an imperative: the need for an exhaustive investigation into where our foods come
from, how they are processed, and what external factors might be contaminating them.
This holistic understanding is paramount to framing preventive and therapeutic measures
against metabolic syndrome effectively. Deng et al. [56] accentuate this very sentiment. By
underscoring the potential of machine learning in elucidating dietary risks for metabolic
syndrome, they also touch upon the intertwined nature of nutrition, environment, and the
broader societal structures that impact health outcomes. The onus, thus, lies not just in
individual dietary choices but in a collective, comprehensive approach to nutrition—one
that incorporates technological prowess with traditional nutritional wisdom to ensure
holistic health outcomes.

4.6. Limitations

In the analysis of the Eighth KNHANES Data, several limitations are acknowledged.
One of the key limitations of this study is that while it provides interesting data on the
effects of high versus low exposure to metals, it does not establish specific cut-off points for
identifying a risk threshold for heavy metal exposure. This highlights the need for future
research to define precise risk thresholds that can guide public health recommendations
and interventions. Additionally, the study contends with recall bias due to reliance on
participants’ self-reported dietary intakes and exposure to environmental factors. The
cross-sectional nature of the study captures only a snapshot in time, making it difficult to
infer causality among nutrient intake, heavy metal exposure, and metabolic syndrome risk.
There is also potential for overfitting in the machine learning models used for analysis,
which might limit their generalizability to other populations or datasets. Moreover, the
focus on heavy metals might not encompass all influential environmental factors impacting
metabolic syndrome. Finally, significant inter-individual variability, influenced by factors
such as genetics and gut microbiota, means that metabolic responses to both nutrients and
heavy metals can substantially differ among individuals. Acknowledging these limitations
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is crucial for accurately assessing the health risks associated with varying levels of heavy
metal exposure in the diet and for guiding the interpretation of the study’s insights.

4.7. Recommendations and Future Directions

This research, utilizing machine learning in conjunction with epidemiological data,
offers pivotal insights for healthcare professionals and policymakers. Delving into these
intricate patterns presents an irrefutable need for further empirical exploration. Healthcare
practitioners can harness these insights to devise personalized nutritional and lifestyle
interventions, ensuring that strategies are more attuned to individual health profiles and
needs. Peña-Jorquera et al. [57] underscore the importance of such individualized interven-
tions, arguing for a future in public health that leans heavily on data-informed, tailored
approaches.

On the policy front, the consistent presence of heavy metals across different nutri-
tional clusters signals a broader systemic issue extending beyond mere dietary choices.
Policymakers, informed by such findings, face a pressing mandate to draft regulations
that address these environmental contaminants in our food supply. As this study inter-
twines advanced machine learning techniques with public health revelations, it not only
deepens our current understanding but also sets the stage for future research and policy
direction. As we navigate this complex interplay of data, nutrition, and health, it is evident
that integrated, multi-disciplinary research approaches are paramount in our pursuit of
safeguarding public health.

5. Conclusions

In conclusion, our study has provided important insights into the relationships among
nutrient intake, environmental exposure to heavy metals, and the risk of metabolic syn-
drome. The consistent presence of heavy metals across different nutritional clusters in-
dicates a systemic issue that transcends individual dietary choices, pointing to a broader
concern within the food supply chain. Our findings highlight the critical need for policy-
makers to consider regulations that address environmental contaminants in our food supply.
Additionally, this study underscores the value of integrating advanced machine learning
techniques with epidemiological data to uncover complex relationships in public health
research. As we move forward, it is clear that an integrated, multi-disciplinary approach to
research is essential in our continued efforts to safeguard public health. This study not only
deepens our current understanding of these complex interplays but also sets the stage for
future research and policy directions in the field of nutrition and environmental health.
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www.mdpi.com/article/10.3390/nu16050724/s1, Figure S1: Numerical Significance Between Clusters
Related to Nutrient Variables. This figure provides visual confirmation through a heatmap; Figure S2:
Mean Scaled Nutrient Values Across Clusters; Figure S3: Training of Machine Learning Models. The
Importance Score (IS), representing the importance of the factors calculated by the model by ISMM,
was determined.
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