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Abstract: This study investigated the relationship between Metabolic Syndrome (MetS), sleep dis-
orders, the consumption of some nutrients, and social development factors, focusing on gender
differences in an unbalanced dataset from a Mexico City cohort. We used data balancing techniques
like SMOTE and ADASYN after employing machine learning models like random forest and RPART
to predict MetS. Random forest excelled, achieving significant, balanced accuracy, indicating its ro-
bustness in predicting MetS and achieving a balanced accuracy of approximately 87%. Key predictors
for men included body mass index and family history of gout, while waist circumference and glucose
levels were most significant for women. In relation to diet, sleep quality, and social development,
metabolic syndrome in men was associated with high lactose and carbohydrate intake, educational
lag, living with a partner without marrying, and lack of durable goods, whereas in women, best
predictors in these dimensions include protein, fructose, and cholesterol intake, copper metabolites,
snoring, sobbing, drowsiness, sanitary adequacy, and anxiety. These findings underscore the need for
personalized approaches in managing MetS and point to a promising direction for future research
into the interplay between social factors, sleep disorders, and metabolic health, which mainly depend
on nutrient consumption by region.

Keywords: poor quality sleep; social development index; nutrients; machine learning; features
selection; balancing methods; Mexico City; Tlalpan 2020 cohort

1. Introduction

Metabolic Syndrome (MetS) is a condition that increases the risk of developing or
worsening several serious health conditions such as diabetes, heart disease, and stroke, as
well as cognitive decline and dementia [1]. Sleep disturbances such as insomnia, apnea,
and snoring, linked to MetS, can exacerbate these health risks [2,3]. In 2017, the National
Health and Nutrition Survey of Mexico [4] estimated the prevalence of sleep disorders in
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Mexicans using a sample of 8649 people older than 18 years old. The results showed a
prevalence of snoring while sleeping of 48.5%, difficulty sleeping of 36.9%, and tiredness or
fatigue during the day of 32.4%; likewise, insomnia was 18.8% more prevalent in women.
Regarding apnea, the results indicated that 23.7% had a higher risk of presenting apnea,
especially the populations of those who were overweight and obese, hypertensive, and
those over 40 years of age. In another study [5], the prevalence of insomnia was 36.7%, being
more common among women (with a prevalence of 41.9%) than men (with a prevalence of
36.7%). Effective treatment for sleep disorders hinges on identifying their specific type and
underlying causes, highlighting the ongoing need for improved diagnosis and treatment
strategies.

The prevalence data on sleep disorders underscore the importance of understanding
their impact on conditions like MetS. This underscores the necessity of employing tools
such as the Medical Outcomes Study Sleep Scale (MOS) [6] in research to assess sleep
quality and its influence on health. Its widespread use in diverse research studies [7–9] has
deepened studies of how sleep disorders affect various health conditions and populations,
thanks to its ability to measure multiple sleep-related aspects.

Similarly, nutrition and specific nutrients play crucial roles in developing and man-
aging MetS [10]. MetS is a cluster of conditions that includes abdominal obesity, insulin
resistance, dyslipidemia, and hypertension. Poor dietary choices and other lifestyle fac-
tors can contribute to developing and exacerbating these risk factors [11,12]. Excessive
caloric intake, especially from high-fat and high-sugar diets, contributes to obesity; in
consequence, it can contribute to insulin resistance, which is a key feature of metabolic
syndrome. Low consumption of dietary fiber, commonly found in fruits, vegetables, and
whole grains, is associated with insulin resistance. Diets high in saturated and trans fats
can lead to dyslipidemia, which is characterized by elevated levels of triglycerides and
low-density lipoprotein cholesterol and decreased high-density lipoprotein cholesterol.
This lipid profile is a risk factor for cardiovascular diseases associated with metabolic
syndrome. In contrast, omega-3 fatty acids, found in fatty fish, flax seeds, and walnuts,
have been associated with favorable lipid profiles and may have a protective effect against
metabolic syndrome [13–16]. As expected, nutrition and dietary habits are associated with
MetS; various research has found the contributions of nutrients through applying diverse
statistical models on the increasing or decreasing risk [17–19].

In the same way, another factor significantly associated with MetS is the social develop-
ment index (SDI) [20], which is a composite measure of social and economic development.
The SDI serves as a metric to evaluate the well-being and social progress in Mexico. Orig-
inating in the early 2000s and modeled after the Human Development Index (HDI), the
SDI categorizes the level of social development in territorial units. These units correspond,
for instance, to the subdivision of municipal geostatistical areas in Mexico City. The SDI
employs a methodology established by the National Council for the Evaluation of Social
Development Policy (Consejo Nacional de Evaluación de la Política de Desarrollo Social,
CONEVAL) for its calculation (refer to Methods for further details on the SDI) [21].

Countries with higher SDI scores tend to have better health outcomes, including lower
rates of MetS [22], and an additional study connects the risk of MetS with economic and
social vulnerability as well as inappropriate nutrition profiles [23]. The evidence suggests a
close association between the SDI and sleep disturbances, which is a relationship influenced
by socioeconomic factors such as income level and education. These factors directly affect
access to health services and lifestyle habits, such as diet and physical activity, which
are essential for maintaining optimal sleep quality. Analyzing how the SDI and sleep
disturbances interact with MetS is crucial to unravel the social and economic determinants
that shape these complex interconnections. Understanding these dynamics will not only
facilitate the identification of the types of sleep disorders that increase the prevalence of
MetS but will also contribute to developing more effective strategies for its prevention
and treatment, thus improving overall health and well-being. For this reason, developing
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automated methods for diagnosing sleep disorders, identifying the determinants of the
SDI, and predicting MetS have become fields of significant research interest.

In the case of sleep disruption, machine learning has shown promise in improving the
accuracy and efficiency of the diagnosis process. The work of Mencar et al. [24] presents
the application of five machine learning models to predict the severity of obstructive sleep
apnea syndrome (OSAS) using polysomnography data, where the random forest model
obtained the highest accuracy (90.91%) and relevant features such as respiratory rate and
oxygen saturation were extracted. Another study [25] applies a machine learning model
to predict the presence of OSAS using clinical and demographic data. The random forest
model performed best, achieving an accuracy of 87.1%. The most important predictors
were body mass index (BMI), age, and gender, as well as additional predictors such as neck
circumference and smoking.

In another study by Eyvazlou et al. [26], an ANN model was developed to predict
MetS based on sleep quality and work-related risk factors. The results showed that the
ANN model could identify individuals at risk of MetS with a sensitivity of 74.1% and a
specificity of 76.2%. Moreover, other studies [27,28] have also applied machine learning to
understand the social determinants that affect and influence the health of individuals.

However, despite the excellent results described in previous studies, one of the most
common challenges in medical diagnoses is the issue of class imbalance. This problem
significantly impacts the performance of classifiers, as they tend to exhibit a bias towards the
majority class, resulting in skewed outcomes. In this context, authors such as Kim et al. [29]
propose a prediction model that utilizes balancing techniques to identify middle-aged
Korean individuals at a high risk of MetS. The dataset used in their study comprises age,
gender, anthropometric data, sleep quality, and blood indicators of 1991 individuals. The
results showed that XGBoost (using Scikit-learn library in Python ver. 3.8.5), employing
SMOTE, achieved an AUC of 85.1%.

The present study examines the connection between the SDI, sleep disturbances, types
of nutrients consumed, and MetS within a cohort from Mexico City. We aim to identify
critical factors that may be key to reducing MetS incidence or severity by applying machine
learning algorithms. Additionally, we will use data balancing techniques to improve the
predictive performance of our models and enhance feature selection. By incorporating
these methods, we aim to uncover valuable insights and contribute to developing more
accurate and practical approaches for addressing MetS.

2. Materials and Methods
2.1. Data

Data for this study were derived from the baseline assessment of a cohort called
Tlalpan 2020 from the National Institute of Cardiology Ignacio Chávez in Mexico City [30].
This project was authorized by the Institutional Ethics Committee of the National Institute
of Cardiology Ignacio Chavez under code 13-802. The dataset used in this investigation
includes data from 3156 volunteers (all of them were informed of the research purposes
and signed a letter of informed consent) about their anthropometric measurements, con-
sumption of alcohol and tobacco, level of physical activity, level of economic income, level
of education, anxiety, family history health, biomedical evaluation, quality of sleep, and
the amount of nutrients consumed.

2.1.1. Quality of Sleep

The sleep quality was measured using MOS [6], a self-report for assessing sleep quality
and quantity. This questionnaire includes 12 items about sleep disruption, snoring, sleep
shortness of breath or headache, sleep adequacy, and sleep somnolence; it additionally
measures the number of hours of sleep per day over the previous four weeks. The MOS has
been used in several studies, such as discriminating the quality of sleep among a Spanish
postmenopausal population [9], diagnosing cases of apnea [7,8], and identifying sleep
disturbance in patients with rheumatoid arthritis [31], among others.
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2.1.2. Clinical and Anthropometric Parameters

Clinical and anthropometric data such as systolic blood pressure (SBP) and diastolic
blood pressure (DBP) (measured according to standard procedure [32]) were collected, as
well as waist circumference (WC), height and weight (measured according to ISAK [33])
for calculationof BMI, and the height–waist index (WHtR). These were calculated from
primary measurement data.

2.1.3. Biochemical Evaluation

The following laboratory test measurements corresponding to blood samples were
included: glucose (GLU), triglycerides (TRIG), HDL cholesterol (HDL), LDL cholesterol
(LDL), uric acid (URIC), atherogenic index (IAT), and sodium (NA).

2.1.4. Social Development Index

Comprising key dimensions associated with education, health, and housing, the
SDI incorporates specific indicators for the evaluation of each dimension. The weight
assigned to each indicator varies based on its significance in the overall assessment of
social development. The resulting scores are aggregated to yield a score for each dimension.
The SDI value facilitates the ordering of territorial units based on their achieved levels of
development, classified as Very Low, Low, Medium, and High [34,35].

The SDI indicators (as reported in reference [21]) are briefly described below:

• Quality and available space in the home (QUA_HOUS): The quality of housing is
measured by the type of flooring, and the amount of living space is indicated by the
number of people per bedroom, with two being the standard.

• Educational access (EDULAG): This indicator measures the proportion of people aged
18–59 who have completed secondary school or have received 13 years of schooling,
which is considered a minimum standard for well-being.

• Access to social security and/or Medical Service (HEALTHAC): This indicator mea-
sures the coverage of any of the Mexican health systems.

• Durable goods (DURAB): This indicator measures possession of material goods whose
value is equal to or greater than USD 17.81, or possession of at least three items such
as a television, gas stove, computer, refrigerator, or washing machine.

• Sanitary adequacy (SANITRY): This indicator measures the availability of a water
supply, toilet facilities, and access to a drainage system.

• Electricity access (ENER_AD): This indicator measures whether or not there is ade-
quate access to electricity.

2.1.5. Habits and Factors Associated with Lifestyle

Furthermore, habit data were also collected, such as habitual smoking, alcohol con-
sumption, and physical activity (calculated based on the International Physical Activity
Questionnaire, IPAQ, Ref. [36] by metabolic equivalent minutes/week, which are classified
in the following categories: low, moderate, and high).

Education level was collected and classified into three categories: primary school, high
school, and university studies, as well as postgraduate school. Similarly, we collected the
level of economic income, which was classified into three categories based on the Mexican
peso income paid monthly: low (MXN 1.00 to MXN 6600.00), medium (MXN 6601.00 to
MXN MXN 11,000.00), and high (more than MXN11,000.00).

2.1.6. Psychological Stress Level

We used the State-Trait Anxiety Inventory (STAI) to collect data about psychological
stress levels, which were categorized into five categories: high (>65), moderate (56–65),
medium (46–55), minor (36–45), and low (<35) [37,38].
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2.1.7. Dietary Information

To gather information about the frequency of food consumption and other dietary
products, we utilized a software tool called the “Evaluation of Nutritional Habits and
Nutrient Consumption System“ from the National Institute of Public Health [39]. This
system examines the meals individuals have consumed over a day within the previous
year and computes the quantity of nutrients ingested.

All data mentioned in this section are presented in the Table 1.

Table 1. Dataset variables.

Name Variable Description Type

AGE age Continuous
WEIGHT weight Continuous
HEIGHT height Continuous
BMI body mass index Continuous
WC waist Continuous
SBP systolic blood pressure Continuous
DBP diastolic blood pressure Continuous
LIV_TOG common-law marriage Dichotomous
MARRIED married Dichotomous
SINGLE single Dichotomous
DIVORC divorced Dichotomous
VALUE social development index by value Continuous
STRATUM socioeconomic stratum Continuous
QUA_HOUS quality and living space Continuous
HEALTHAC access to healthcare and social security Continuous
EDULAG educational lag Continuous
DURAB durable goods Continuous
SANITRY sanitary adequacy Continuous
ENER_AD energy efficiency Continuous
ED_LEVEL educational level in the neighborhood Continuous
SEC_SCHOOL secondary school Dichotomous
DOCTORATE doctorate Dichotomous
MASTER master Dichotomous
SCHOOL school Dichotomous
BACHELORS bachelor’s degree Dichotomous
HIGH_SCHOOL high school Dichotomous
TECH_SCHOOL technical school Dichotomous
NONE no academic degree Dichotomous
TOTMET metabolic equivalent of task Continuous
STAT_ANX state anxiety Dichotomous
TRAIT_ANX trait anxiety Dichotomous
SLPNOTQ sleep was not quiet Continuous
BREATH waking up with shortness of breath Continuous
DROWSY feeling drowsy or sleepy Continuous
TROBLS trouble falling asleep Continuous
AWAKEN awakens during your sleep time Continuous
STYAWKE trouble staying awake Continuous
TAKENAP takes naps of 5 min or longer Continuous
SLPD4 sleep disturbances Continuous
SLPSNR1 snores during sleep Continuous
SLPSOB1 sleep short (headache) Continuous
SLPA2 sleep adequacy Continuous
SLPS3 somnolence Continuous
SLPS6 sleep problems (Index I [40]) Continuous
SLPS9 sleep problems (Index II [40]) Continuous
SLPQRAW sleep quantity Continuous
SLPOP1 sleep quality Dichotomous
SMOKING smoking practice Dichotomous
CURRENT current smoker Dichotomous
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Table 1. Cont.

Name Variable Description Type

EXSMOKER ex-smoker Dichotomous
SMO_PASS smoker passive Dichotomous
ALCOHOL alcohol consumption Dichotomous
ENERGYDRK energy drinks Dichotomous
MOTHEROB maternal obesity history Dichotomous
FATHEROB paternal obesity history Dichotomous
MOTHERDB maternal diabetic history Dichotomous
FATHERDB paternal diabetic history Dichotomous
MOTHERHT maternal hypertension history Dichotomous
FATHERHT paternal hypertension history Dichotomous
MOTHERDL maternal dyslipidemia history Dichotomous
FATHERDL paternal dyslipidemia history Dichotomous
MOTHERGT maternal gout history Dichotomous
FATHERGT paternal gout history Dichotomous
URIC uric acid Continuous
CREA creatinine Continuous
HDLCO high-density lipoprotein Continuous
LDLCO low-density lipoprotein Continuous
GLU blood glucose Continuous
IAT atherogenic index Continuous
CHOL_ANT cholesterol Continuous
TRIG triglycerides Continuous
NA sodium Continuous
CALOR energy Continuous
PROTEI total proteins Continuous
APROT proteins of animal origin Continuous
CARBO carbohydrates Continuous
SUCR sucrose Continuous
FRUCT fructose Continuous
LACT lactose Continuous
ST starch Continuous
MALT maltose Continuous
GLU_1 glucose levels based on the dietary survey Continuous
CRUDE crude fiber Continuous
SOLFB soluble dietary fiber Continuous
INSFB insoluble dietary fiber Continuous
HEMCL hemicellulose Continuous
CALC calcium Continuous
IRON total iron Continuous
MAGN magnesium Continuous
PH phosphorus Continuous
K potassium Continuous
SODIUM sodium levels based on the dietary survey Continuous
ZN zinc Continuous
CU copper Continuous
MN manganese Continuous
SE iodine Continuous
VITC vitamin C Continuous
B1 thiamine Continuous
B2 riboflavin Continuous
B6 vitamin B6 Continuous
B12 vitamin B12 Continuous
VITK vitamin K Continuous
RETINOL retinol Continuous
VITD vitamin D Continuous
VITE vitamin E Continuous
CHOL_SN cholesterol levels based on the dietary survey Continuous
ALCO alcohol levels based on the dietary survey Continuous
CAFF caffeine Continuous
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Table 1. Cont.

Name Variable Description Type

AFAT animal fat Continuous
VFAT vegetable fat Continuous
TFATAV total fat: animal + vegetable Continuous
SATFAT saturated fat Continuous
MONFAT monounsaturated fat Continuous
POLY polyunsaturated fat Continuous
MS MetS Dichotomous

2.2. Methods
2.2.1. Feature Selection

Feature selection is essential to identify and establish the most critical variables.
In this study, we employed logistic regression to measure the relationship between vari-

ables and class alongside machine learning algorithms to discern the most significant fea-
tures. The algorithms used were RF and RPART (see Machine Learning Modelsbelow), apply-
ing the mean decrease accuracy for calculating variable importance, which can be expressed
as follows:

MDIi = ∑
all nodes

((Imp(node)− Weight.Imp(node))/NS.N) (1)

where MDIi is the mean decrease impurity of the ith variable; Imp(node) is the impurity
of the node before the split; Weight.Imp(node) is the weighted impurity of the child nodes
resulting from the split; and NS.N is the number of samples in the node before the split.

2.2.2. Balancing Methods

Balancing methods such as SMOTE and ADASYN have helped address the class imbalance
issue within our dataset.

ADASYN (Adaptive Synthetic Sampling), which is part of the UBL R package, takes a
unique approach by generating synthetic samples based on the local density of minority
class instances, with a focus on instances that are more challenging to learn. In this method,
the β parameter controls the desired balance rate between the minority and majority
classes during the generation of synthetic samples. When β is set to a value greater than
1, a proportionally larger number of synthetic samples will be generated relative to the
instances of the minority class. This further increases the ratio between the minority and
majority classes.

The second method, SMOTE (Synthetic Minority Oversampling Technique) of the
performanceEstimation R package (Version: 1.1.0), generates synthetic samples for the
minority class. In SMOTE, the k parameter determines the number of nearest neighbors used
to generate synthetic samples. A small value of k can lead to an excessive generation of
synthetic samples that may be too close together, resulting in model overfitting. Moreover,
if k is too large, synthetic samples may be less representative of the minority class and fail
to capture data variability adequately.

2.2.3. Machine Learning Models

To build the models, we applied two machine learning algorithms, RF [41,42] and
RPART [43,44], as well as PCA [45,46]. RF, introduced by Breiman [47], is a machine learning
algorithm combining multiple decision trees to create a model with the highest accuracy.
Rpart (Recursive Partitioning and Regression Trees), by Breiman [48], works by recursively
partitioning the input data based on predictor variables to create a tree-like structure. This
algorithm aims to find the optimal splits in the data that maximize the homogeneity or
purity of the resulting subgroups. Principal component analysis (PCA) is a data analy-
sis technique used to simplify the complexity of data by reducing their dimensionality,
facilitating visualization and analysis.



Nutrients 2024, 16, 612 8 of 25

2.3. Performance Measures

We used sensitivity, specificity, and balanced accuracy (B.ACC) to evaluate model
performance. These metrics provide a fair assessment of the model’s performance across
all classes, considering the issue of class imbalance.

SENS =
TP

TP + FN
(2)

SPC =
TN

FP + TN
(3)

B.ACC =

(
1
2

)(
TP
P

+
TN
N

)
(4)

where P = Positive, N = Negative, TP = True Positive, FN = False Negative, TN = True Negative,
and FP = False Positive, respectively.

3. Statistical Analysis and Development of Prediction Models

All experiments were performed using the R programming language (3.6.1) [49].
Min-max was used to normalize continuous variables, and dichotomous variables were
represented as numbers. Figure 1 provides a general overview of the experimental process
described in this section. To develop predictive models, it was necessary to process the
data and implement a balancing technique. The minority class was oversampled, taking
into account the majority class. As a first step, SMOTE was applied, and it was necessary to
determine the best value of k (number of nearest neighbors), so experiments were conducted
by varying k (here, we present k = 1, k = 5, and k = 9). In this process, the dataset was
randomly divided into 70% for training and 30% for testing. To accomplish this task, we
applied two machine learning algorithms, RF and RPART. In the case of RF, we varied the
mtry parameter from 1 to 10 and considered ntree values of 100, 300, 500, and 1000 for each
model.

Additionally, a subset of features was extracted in each created model using the
variable importance (VarImp) of RF, and a 10-fold cross-validation was performed. Similarly,
in the case of RPART, parameter tuning was conducted by considering cp = 0, cp = 0.05, and
cp = 0.005, using a 10-fold cross-validation. Likewise, a subset of features was extracted in
each created model.

Once the feature subsets were obtained, along with the optimal value for each cor-
responding parameter of each algorithm and data balancing technique, we tested the
generated feature subsets using RF and RPART. This was accomplished by conducting
30 runs with different seeds to assess the performance of each model. In all experiments, a
minimum of 30 independent runs were conducted for each algorithm using 30 different
seeds. The mean and standard deviation of the performance measures were calculated for
each of these runs.
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Figure 1. Experimental process.

4. Results

Understanding how MetS, nutrition, sleep disturbances, and SDI relate in men and
women can have important clinical and public health implications. In this study, we used
logistic regression before dataset balancing to pinpoint the critical variables associated with
MetS in both sexes. Table 2 presents the results of the features and their corresponding
values obtained.
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Table 2. Features and values obtained through logistic regression for men and women.

Women Men

Variable Coefficient p_Value Variable Coefficient p_Value

GLU 4.61438598 6.24 × 10−59 GLU 3.94711748 2.45 × 10−39

TRIG 3.63418178 1.18 × 10−37 TRIG 2.98165065 3.25 × 10−24

WC 1.75532078 2.86 × 10−9 WC 2.53131848 1.02 × 10−9

BMI 1.60919304 1.05 × 10−6 IAT 2.06238741 5.13 × 10−11

SBP 1.40299133 1.15 × 10−12 SBP 1.53063308 1.31 × 10−11

PROTEI 0.90748897 0.08529715 B12 1.41903991 0.00880359
FRUCT 0.73077934 0.23874313 BMI 1.40229014 0.00087404
CHOL_SN 0.72037259 0.06868106 LACT 1.29691863 0.00581383
URIC 0.65547784 0.01333401 CARBO 1.18935354 0.0886463
CU 0.64813271 0.17111299 GLU_1 1.1674073 0.10024746

Analyzing the data, in men, the top 10 variables most related to MetS are GLU, TRIG,
WC, IAT, SBP, vitamin B12 (B12), BMI, lactose (LACT), carbohydrates (CARBO), and high
glucose levels based on the dietary survey (GLU_1). Conversely, in women, the ten most
relevant variables include GLU, TRIG, WC, BMI, SBP, total proteins (PROTEI), fructose
(FRUCT), high cholesterol total based on the dietary survey (CHOL_SN), URIC, and copper
(CU). To achieve a more effective visualization of these prominent features from the logistic
regression for both men and women, Figure 2 is presented. Red square symbols represent
the most substantial variables for women, while blue triangles represent those for men. A
cautionary note must be made for the seemingly outlier behavior of blood glucose and
triglycerides with very high coefficients. Let us recall that these features are closely related
to the very definition of MetS. Such variables were included in our models only for the
sake of database completeness and comprehensiveness. Detailed results for women can
be found in Supplementary Table S1, and those for men are available in Supplementary
Table S2.

Figure 2. The most important variables obtained through logistic regression for men and women
before data balancing.

Subsequently, we employed SMOTE and ADASYN with RF and RPART to reassess the
most influential features associated with MetS prediction within a now balanced dataset.
Following this, with the data balancing techniques effectively applied and their parameters
fine-tuned, we extract feature subsets by utilizing RPART and RF for both women and men.
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Extracting features related to MetS in a balanced dataset improves model generalization
(conducting training more evenly and accurately), optimizing performance, and reducing
overfitting. Considering the challenges associated with including all variables in a model,
such as noise, redundancy, and overfitting, we extracted the 17 variables with the highest
values obtained in each model of RF and RPART after applying SMOTE and ADASYN.

The extracted feature subsets, along with their respective values, are presented in
Tables 3–6. These tables also detail the employed balancing technique for each set of
variables and their corresponding parameters ranging from 1 to 5. Each subset was adjusted
for its corresponding parameter, B for ADASYN and k for SMOTE, considering values of 1 and 5.

Similarly, Table 7 showcases the performance achieved by the RF algorithm, while
Table 8 presents the performance of the RPART algorithm. In both tables, the Value column
provides information regarding the relative importance of each feature.

Table 3. Features of men obtained using RF with ADASYN and SMOTE applied.

ADASYN, B = 1 ADASYN, B = 5 SMOTE, K = 1 SMOTE, K = 5

Features Value Features Value Features Value Features Value

BMI 92.9499 ENER_AD 130.906694 MOTHERDL 204.657628 BMI 289.868211
WEIGHT 49.4782 BMI 104.213511 ALCOHOL 199.602686 MOTHERDL 172.071267
ENER_AD 48.8887 WEIGHT 81.5087781 BMI 198.579371 WEIGHT 169.929592
EDULAG 45.2797 EDULAG 67.7406035 SLPSOB1 111.323472 ALCOHOL 131.283664
LIV_TOG 33.3601 ALCOHOL 62.4379604 CURRENT 95.3509822 IAT 93.2909179
DURAB 31.5583 STRATUM 57.134903 BREATH 80.8262246 CHOL_ANT 63.4703128
MOTHERGT 27.5583 ED_LEVEL 55.578244 SLPD4 70.1756789 NA 49.2933568
IAT 25.7470 NONE 38.1101529 CAFF 68.9892898 CREA 45.8846962
HEALTHAC 23.4522 DURAB 36.4129389 SLP6 60.2949079 SINGLE 44.6897663
DIVORC 20.1163 VALUE 36.0130176 WEIGHT 56.9297661 SLPSNR1 35.672622
QUA_HOUS 17.4925 DIVORC 35.8243538 TOTMET 52.4806201 MOTHERDB 35.21356
STRATUM 16.1269 FATHERGT 33.7033121 ALCO 45.7609412 ENERGYDRK 34.0359073
FATHERGT 14.5872 MASTER 29.8751736 AWAKEN 39.0795326 URIC 31.8268793
NONE 14.0213 PRIMARIA 28.3852397 IAT 38.042823 AGE 27.9839119
MARRIED 13.9584 SLPSNR1 27.9671847 TROBLS 36.7528999 MARRIED 27.8864259
VALUE 13.8059 AGE 24.3706018 STYAWKE 36.2387269 DOCTORATE 24.4733499
URIC 13.7930 IAT 22.0506592 MALT 34.3472852 DIVORC 24.142464
SANITRY 13.5609 SANITRY 21.924077 BACHELORS 33.7934562 SLPOP1 23.8868609
SINGLE 13.4148 SINGLE 21.7818986 MARRIED 32.6228111 SEC_SCHOOL 22.755325
ALCOHOL 12.9798 DOCTORATE 19.8069099 SLP9 31.0845509 SLPQRAW 20.666244

Table 4. Features of men obtained using RPART with ADASYN and SMOTE applied.

ADASYN, B = 1 ADASYN, B = 5 SMOTE, K = 1 SMOTE, K = 5

Features Value Features Value Features Value Features Value

LIV_TOG 447.069761 BMI 683.735277 BMI 185.940586 BMI 164.086828
BMI 402.975487 ENER_AD 619.998675 WEIGHT 131.361866 WEIGHT 132.276557
ENER_AD 338.664389 EDULAG 565.325738 FATHERGT 115.496204 IAT 131.937059
EDULAG 325.498647 ALCOHOL 355.970533 MOTHERDL 96.1708037 SINGLE 83.6531675
DURAB 285.861702 WEIGHT 295.254303 IAT 67.2839991 MOTHERDL 71.6947353
SLP6 64.2112969 DIVORC 214.489844 AGE 40.9532174 APROT 47.2274885
WEIGHT 33.1175418 NONE 200.599299 LACT 28.7681412 TFATAV 22.4867652
IAT 27.5407406 MOTHERGT 178.450647 MOTHERHT 25.3414479 ST 20.7519258
FATHEROB 14.5734264 PROTEI 14.5865884 HEALTHAC 19.7752349
SLPSNR1 13.7361635 CAFF 14.1658755 SATFAT 17.5962564

ZN 12.4515539 HEIGHT 16.3718359
MN 12.20696 CHOL_ANT 15.4222905
IRON 10.5317678 MONFAT 13.9908309
VALUE 10.2017285 CREA 13.6358167
STYAWKE 10.1887194 URIC 11.0085972
MONFAT 10.0410598 AGE 10.5421496
CHOL_ANT 9.78675973 CALC 10.0034374
ST 9.41791645 SMOKING 9.53883547
SINGLE 9.40405705 LACT 9.34161011
SOLFB 7.74765092 TOTMET 9.09355989
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Table 5. Features of women obtained using RF with ADASYN and SMOTE applied.

ADASYN, B = 1 ADASYN, B = 5 SMOTE, K = 1 SMOTE, K = 5

Features Value Features Value Features Value Features Value

BMI 208.269603 ENER_AD 344.249674 WEIGHT 321.316267 BMI 484.307061
IAT 151.849516 BMI 210.90055 IAT 294.958989 IAT 481.475021
WEIGHT 98.3094923 IAT 173.895403 BMI 253.281611 WEIGHT 339.174822
EDULAG 98.0933243 ALCOHOL 146.230976 EXSMOKER 246.78181 URIC 142.754087
LIV_TOG 82.4204188 DURAB 142.91494 MASTER 241.332636 SLPSNR1 92.0496746
ENER_AD 80.7154997 EDULAG 142.817907 FATHERDL 211.443455 CHOL_ANT 74.3706077
URIC 60.4722703 WEIGHT 128.038926 CREA 170.195583 AGE 72.769531
VALUE 53.5122927 VALUE 80.989846 MOTHERHT 125.867318 SLPSOB1 70.1959444
DURAB 48.2486067 NONE 76.4699068 SLPSOB1 125.384246 BREATH 60.3028803
QUA_HOUS 37.8080123 QUA_HOUS 62.8303545 SMO_PASS 86.2763209 TRAIT_ANX 56.4099594
SLPSNR1 31.399627 BACHELORS 56.0706757 BREATH 83.1176663 SMO_PASS 50.8288614
HEALTHAC 30.6724986 SANITRY 52.5802813 CHOL_ANT 78.8668934 SANITRY 50.3648334
SANITRY 24.2597947 HEALTHAC 45.9188536 SMOKING 57.7946015 MOTHERDL 50.0567677
ALCOHOL 24.2064626 URIC 43.8531276 TRAIT_ANX 57.3909833 DROWSY 44.564559
AGE 21.594859 SINGLE 39.5694722 SLPSNR1 51.1574483 SMOKING 44.5264858
SINGLE 18.0193809 DIVORC 37.3860944 NA 50.3156936 SINGLE 41.993735
HIGH_SCHOOL 17.1684616 AGE 33.8392029 MARRIED 48.4664641 EXSMOKER 38.9120379
SLP6 16.0530682 TECH_SCHOOL 32.4092154 SLPOP1 48.3006717 SEC_SCHOOL 38.4719692
SOLFB 14.4271683 SCHOOL 28.2955057 SLPNOTQ 35.6761924
FATHERGT 13.8839264 MARRIED 27.6425229

Table 6. Features of women obtained using RPART with ADASYN and SMOTE applied.

ADASYN, B = 1 ADASYN, B = 5 SMOTE, K = 1 SMOTE, K = 5

Features Value Features Value Features Value Features Value

BMI 664.323812 BMI 1164.1686 BMI 427.45413 IAT 483.233069
LIV_TOG 535.392713 DURAB 1117.88127 IAT 363.893488 BMI 410.367827
ENER_AD 507.53479 ENER_AD 1090.27197 SLPSNR1 259.475806 WEIGHT 409.777127
EDULAG 505.45874 EDULAG 772.049538 SLPS3 259.475806 URIC 278.65513
IAT 468.310602 ALCOHOL 655.016952 EXSMOKER 217.54026 SLPSNR1 86.0218576

NONE 533.217568 SMOKING 31.3976405
IAT 380.443927 SLPS3 30.5201011
WEIGHT 366.577281 SODIUM 15.7251124
VALUE 104.231729 ALCOHOL 12.4735987
TECH_SCHOOL 92.1094015 SATFAT 12.1523683

MONFAT 12.1446951
NA 11.2712045
VITE 10.3455105
CHOL_ANT 9.04441276
FATHERDB 8.09870623
SUCR 7.16739885
MARRIED 6.39473684
FRUCT 4.94398493
MALT 4.8372105

Table 7. Results of the random forest models applying ADASYN and SMOTE in men and women.

Sex Subset Parameters B.ACC (%) Sensitivity (%) Specificity (%)

Men ADASYN, B = 1 Mtry = 9 86.22 90.93 81.50
Ntree = 200 ± 0.26 ± 0.60 ± 0.41

Men ADASYN, B = 5 Mtry = 8 85.56 87.85 83.26
Ntree = 200 ± 0.34 ± 0.49 ± 0.55

Men SMOTE, K = 1 Mtry = 10 82.86 91.51 74.21
Ntree = 200 ± 1.66 ± 0.68 ± 3.45

Men SMOTE, K = 5 Mtry = 10 75.43 90.48 60.39
Ntree = 100 ± 1.29 ± 0.95 ± 2.50

Women ADASYN, B = 1 Mtry = 10 87.12 91.10 83.15
Ntree = 200 ± 0.25 ± 0.40 ± 0.29

Women ADASYN, B = 5 Mtry = 10 86.73 88.62 84.84
Ntree = 300 ± 0.20 ± 0.24 ± 0.36

Women SMOTE, K = 1 Mtry = 10 82.55 90.48 74.62
Ntree = 300 ± 0.71 ± 0.39 ± 1.46

Women SMOTE, K = 5 Mtry = 10 88.50 91.91 85.10
Ntree = 300 ± 0.40 ± 0.42 ± 0.75
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Table 8. Results of the RPART models applying ADASYN and SMOTE in men and women.

Sex Subset Parameters B.ACC (%) Sensitivity (%) Specificity (%)

Men ADASYN, B = 1 cp = 0.05 82.14 81.57 82.71
± 1.75 ± 3.38 ± 2.07

Men ADASYN, B = 5 cp = 0.05 82.32 82.87 81.77
± 0.99 ± 4.67 ± 5.02

Men SMOTE, K = 1 cp = 0.001 75.41 73.09 77.73
± 2.78 ± 4.07 ± 5.36

Men SMOTE, K = 5 cp = 0.002 74.67 71.96 77.38
± 2.78 ± 4.07 ± 5.36

Women ADASYN, B = 1 cp = 0.05 78.90 69.96 87.84
± 0.31 ± 0.00 ± 0.62

Women ADASYN, B = 5 cp = 0.05 78.90 69.96 87.84
± 0.31 ± 0.00 ± 0.62

Women SMOTE, K = 1 cp = 0.001 80.86 79.85 81.87
± 1.91 ± 3.79 ± 3.57

Women SMOTE, K = 5 cp = 0.005 84.49 84.20 84.79
± 1.43 ± 3.01 ± 2.51

4.1. Best Features for Men Using RF and ADASYN/SMOTE

Specifically, Table 3 exhibits four feature subsets obtained from male data using
random forest with ADASYN and SMOTE. According to Table 7, the most effective subset was
obtained by applying ADASYN with B = 1 with a balanced accuracy of 86.22% and a deviation
standard of 0.26%.

The most influential factor within this subset was BMI, which had a significant impor-
tance value of 92.9499. This was followed by WEIGHT and energy efficiency (ENER_AD),
with importance values of 49.4782 and 48.8887, respectively. Other factors such as educa-
tional lag (EDULAG), common-law marriage (LIV_TOG), durable goods (DURAB), and
maternal gout history (MOTHERGT) also contributed to the model, albeit to a lesser extent.

4.2. Best Features for Men Using RPART and ADASYN/SMOTE

In the case of features obtained by RPART (see Table 4), using both SMOTE and
ADASYN, the results were slightly worse than those obtained with RF (Table 3). In this
scenario, the best subset was achieved by the subset with the parameter ADASYN = 5,
which achieved an 82.32% balanced accuracy metric with a standard deviation of 0.99%
(see Table 8).

Switching gears to the outcomes yielded by random forest with ADASYN using
a B value of 5, BMI takes center stage with a substantial value of 683.74, signifying its
paramount role in predicting the outcomes related to the examined condition. Following
closely in significance are ENERGY_AD and EDULAG, boasting values of 619.99 and 565.33,
respectively, both making substantial contributions to predictive capability. ALCOHOL and
WEIGHT also exhibit noteworthy importance with values of 355.97 and 295.25, underlining
their relevance within the model. Moreover, features like divorce (DIVORC), no academic
degree (NONE), and MOTHERGT, while exerting a comparatively lower influence, still
contribute to the model’s predictive capacity, as indicated by their respective values.

4.3. Best Features for Women Using RF and ADASYN/SMOTE

The random forest model using SMOTE with k = 5 achieved the best performance for
women, reaching an 88.50% accuracy with a standard deviation of 0.40% (see Table 7). In
this case, Table 5 reveals that BMI was identified as the primary predictor, with a notable
value of 484.31, clearly highlighting the critical importance of BMI in predicting MetS in this
particular context. Additionally, IAT (481.48) and WEIGHT (339.17) also showed significant
associations, further emphasizing the relevance of weight-related measurements.

Including sleep disturbances (SLPSNR1, SLPSOB1, BREATH, DROWSY, and SLP-
NOTQ) and even cholesterol levels (CHOL_ANT) among the influential variables under-
scores their pivotal contributions to MetS prediction in women. The importance of AGE
and SDI parameters like sanitary adequacy (SANITRY) is also noteworthy. It is essential
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to highlight that psychological factors such as trait anxiety (TRAIT_ANX) were included,
accounting for the potential influence of mental health aspects in MetS prediction.

4.4. Best Features for Women Using RPART and ADASYN/SMOTE

In this instance, SMOTE with k = 5, combined with RPART, achieved the best perfor-
mance, attaining a balanced accuracy of 84.49% with a standard deviation of 1.43% (see
Table 8). The results of the corresponding subset (RPART applied to women’s data using
SMOTE with a parameter value, k = 5) shown in Table 6 reveal that the most influential
feature was IAT, with a value of 483.23, followed closely by BMI and WEIGHT, which
have values of 410.37 and 409.78, respectively. Features like URIC, snores during sleep
(SLPSNR1), somnolence (SLPS3), SODIUM, vitamin E consumption (VITE), and habitual
smoking (SMOKING) also exhibit noticeable influence, indicating their relevance in un-
derstanding the targeted phenomenon. Conversely, some nutrients like sucrose (SUCR),
maltose (MALT), and FRUCT have relatively lower values; however, they can provide
valuable information about dietary habits, nutritional deficiencies, or behaviors related
to MetS.

This study’s results, employing random forest and RPART algorithms and SMOTE and
ADASYN techniques for both genders, offer valuable insights. These results underscore
the importance of health and lifestyle elements in MetS prediction, encompassing sleep
disturbances, cholesterol levels, age, psychological factors, and SDI parameters.

4.5. Analyzing the Best Features Using PCA

Based on the results of the features obtained in the best models, we used PCA to
visually and graphically analyze the top features for men and women to explore potential
correlations and latent patterns among these influential factors and reduce dimensionality
to the greatest possible extent.

In the case of men, we considered feature subsets obtained from the random forest
model using ADASYN with B = 1 and RPART with ADASYN and B = 5. The subsequent features
were integrated: BMI, WEIGHT, ENER_AD, EDULAG, LIV_TOG, DURAB, MOTHERGT,
IAT, HEALTHAC, DIVORC, QUA_HOUS, STRATUM, FATHERGT, NONE, MARRIED,
VALUE, URIC, SANITRY, SINGLE, and ALCOHOL.

For women, we considered feature subsets obtained from the random forest model
with SMOTE and k = 5 and the RPART model with SMOTE and k = 5. These models are re-
garded because they achieved the highest performance (see Tables 7 and 8 where extremely
small percentage uncertainty values in Table 8 are shown rounded down to 0.00 for clearer
presentation). The following features were included: BMI, IAT, WEIGHT, URIC, SLPSNR1,
CHOL_ANT, AGE, SLPSOB1, BREATH, TRAIT_ANX, SMO_PASS, SANITRY, MOTHERDL,
DROWSY, SMOKING, SINGLE, EXSMOKER, SEC_SCHOOL, SLPNOTQ, SLPS3, SODIUM,
ALCOHOL, SATFAT, MONFAT, NA, VITE, FATHERDB, SUCR, MARRIED, FRUCT, ZN,
and MALT.

The PCA analysis, as shown in Figure 3, revealed the relative importance of features
concerning MetS in men. The first principal component (PC1) was more influenced by
features such as WEIGHT, BMI, and SDI by value (VALUE), suggesting that these vari-
ables significantly contributed to the observed variability in the data. On the other hand,
the second principal component (PC2) was more affected by features like EDULAG and
socioeconomic stratum (STRATUM). These findings indicated that weight and BMI were
prominent factors in the context of MetS, as well as education and socioeconomic stratum.
In this case, PC1 was considered the most significant component, as it had a magnitude of
0.508501, capturing most of the variability, while PC2 had a magnitude of 0.499809.
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Figure 3. PCA of features of men for metabolic syndrome with clusters.

On the other hand, in the case of women (see Figure 4), features associated with the
variability of MetS along PC1 were sodium levels based on the dietary survey (SODIUM),
saturated fat (SATFAT), and monosaturated fat (MONFAT), which exhibit significant magni-
tudes in PC1. Furthermore, BMI significantly influences PC1, indicating its association with
this variability. Conversely, variables like short sleep duration (SLPSOB1) and waking up
with shortness of breath (BREATH) demonstrate significant magnitudes in PC2. Similarly,
TRAIT_ANX and feeling drowsy or sleepy (DROWSY) are associated with variability in
PC2. Therefore, considering the magnitudes in the principal components, the features in
women associated with the risk of MetS include SODIUM, SATFAT, and MONFAT from
PC1, as well as SLPNOTQ and SLPSOB1 from PC2.
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Figure 4. PCA of features of women for metabolic syndrome with clusters.

5. Discussion

MetS is a severe and potentially life-threatening condition that significantly increases
the risk of developing cardiovascular diseases and also increases the severity of diabetes.
Over the years, several consistently highlighted risk factors have been associated with
MetS. Considering imbalanced data, this study analyzed participant data from a cohort to
identify the primary risk factors in both men and women. Subsequently, data balancing
techniques were applied to ascertain whether significant differences exist, contributing to
selecting risk factors for MetS prediction. Using data balancing techniques is crucial in
this context, as it helps ensure a more accurate and unbiased identification of relevant risk
factors, especially when working with unevenly distributed data. In this study, we applied
logistic regression to identify the risk factors in men and women that predict the occurrence
of MetS within an imbalanced data environment.

5.1. Logistic Regression

The logistic regression analysis in women demonstrates (as expected, of course) the
strong connection between MetS and elevated glucose levels, which is in line with prior
research [50,51], emphasizing the crucial role of glucose in MetS. Additionally, uric acid is
also identified as a significant risk factor in women [52–54]. Subsequent findings revealed
other risk factors, including waist circumference, BMI, and systolic blood pressure, which
are all essential components of MetS. WC is an indicator of abdominal obesity closely
linked to insulin resistance, while BMI reflects the relationship between weight and height,
which is a significant obesity-related risk factor for MetS.

Furthermore, Figure 2 highlights additional significant factors derived from dietary
data, including the intake of protein and fructose [55–57]. When these two nutrients
are combined, they have been linked to an elevated risk of MetS [58]. Likewise, copper
consumption is evident, which can impact glucose regulation [3] and liver function, which
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are both crucial components in MetS [59]. These factors underscore the importance of
moderate consumption of these nutrients in preventing MetS.

In the case of men, glucose was identified as the primary factor associated with
MetS, followed by triglycerides, waist circumference, atherogenic index, and systolic
blood pressure. Additionally, the consumption of lactose [60] and carbohydrates [61] was
noted among the nutrients. Elevated glucose, triglycerides, and waist circumference are
critical markers of MetS, while the atherogenic index assesses cardiovascular risk. High
systolic blood pressure is another significant component of this syndrome. Regarding
lactose, it is worth noting that certain dairy products may include added sugars, which can
potentially increase the overall calorie intake [62]. This potentially contributes to obesity
and insulin resistance, which are two critical factors in the onset of MetS. Moreover, high
lactose consumption is associated with a risk factor for developing diabetes, cardiovascular
diseases, and increased cholesterol levels [63,64].

It is possible that when working with unbalanced datasets, machine learning models
like logistic regression tend to be biased towards the majority class. For this reason, data bal-
ancing techniques such as SMOTE and ADASYN were used to enable a more equitable training
of the models to identify more precise relationships between variables and the MetS.

5.2. Use of Machine Learning with Synthetic Data

The most effective machine learning models for women revealed associations with
attributes related to sleep quality, such as snores during sleep [65], short sleep duration
(SLPSOB1) [66], waking up with shortness of breath (BREATH) [67], restless sleep (SLP-
NOTQ) [68], and somnolence (SLPS3). Multiple studies have shown that poor sleep quality
is closely linked to cardiovascular disease [69,70], diabetes [71], and MetS [72], as well as
other adverse health outcomes. In the case of women, an increased likelihood of facing
significant risks related to cardiovascular diseases and sleep problems has been observed,
especially for those in the postmenopausal stage, which, in turn, can contribute to the de-
velopment of risks associated with MetS [73]. Additionally, they highlighted factors related
to anxiety (TRAIT_ANX), despite the association between MetS and anxiety remaining a
subject of debate due to various issues [74], this study, like some others [75–78], identified
anxiety as one of the critical factors that predisposing women to MetS.

In the same way, ex-smokers and current smokers (EXSMOKER, SMOKING) were
found to be relevant features; based on this, it has been observed that both smokers and
former smokers are predisposed to MetS. This finding is supported by various studies
that suggest that smoking can have an adverse impact on blood lipid levels and lead to
metabolic disturbances [79–81].

In women, nutritional components also appeared as relevant features, such as SATFAT,
MONFAT, SUCR, FRUCT, and MALT. Based on this, a study has revealed that fructose,
sucrose, and maltose are critical components of the leading nutrient pattern associated with
a higher risk of MetS [58].

In the case of men, the most effective machine learning models displayed more pro-
nounced associations with features linked to the SDI, encompassing ENER_AD, EDULAG,
durable goods (DURAB, HEALTHHAC), quality and living space (QUA_HOUS), socioe-
conomic stratum (STRATUM), social development index by value (VALUE), and sanitary
adequacy (SANITRY). In studies [22,82–84], a significant association has been observed be-
tween a low socioeconomic level and the prevalence of metabolic syndrome. Furthermore,
these models underscored variables related to parental gout conditions (MOTHERGT,
FATHERGT). This supports research exploring the genetic predisposition to gout and
suggests that a family history of this disease may increase the risk of other family members
developing it [85]. This condition may also be related to metabolic syndrome due to poor
dietary habits that could lead to obesity and insulin resistance [86,87].
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5.3. Principal Component Analysis

Based on the resulting features obtained for men and women via machine learning
models, we applied principal component analysis to identify trends and potential corre-
lations. The PCA conducted using the features obtained for men (Figure 3) showed that
PC1 (the most significant component) revealed a strong association of body-related factors,
specifically WEIGHT, and BMI. PC2 shows a strong correlation among variables related to
the SDI. This indicates that the SDI plays a significant role in the onset of MetS, in addition
to focusing on interventions related to weight and obesity management.

Figure 3 depicts the distribution of participants in clusters, where Cluster 1, highlighted
in green, turned out to be the cluster most predisposed to developing MetS. The arrows
emphasize the contribution of individual features to the principal components.

In the context of MetS in women, the most influential factors in PC1 were factors re-
lated to dietary components such as sodium levels based on the dietary survey (SODIUM),
SATFAT, and monounsaturated fats (MONFAT), sucrose (SUCR), and FRUCT, among oth-
ers. PC2 exhibits a trend towards variables related to poor quality of sleep and anxiety,
as SLPSOB1, TRAIT_ANX, SLPNOTQ, and SLPS3 have significant values in this com-
ponent. Other variables related to smoking and education (SEC_SCHOOL) also notably
influence this component. This suggests that dietary control is crucial in preventing MetS
among women, as well as addressing poor sleep quality and anxiety. Hence, PCA high-
lights relevant differences in the presentation and risk factors of MetS between men and
women [88,89], which is an issue that is progressively gaining relevance in the biomedical
literature [90].

The PCA results for women illustrated in Figure 4 show the distribution of participants
in clusters. Similarly to the men’s analysis, the cluster most predisposed to developing
MetS was Cluster 1, which is depicted by yellow dots.

5.4. Implications for Metabolic Syndrome Surveillance, Risk Factors, and Public Health Policy

The results of this project suggest several key findings related to the diagnosis of
metabolic syndrome:

1. Identification of known risk factors: For both men and women, specific variables were
identified as strongly related to MetS. These included glucose (GLU), triglycerides
(TRIG), waist circumference (WC), body mass index (BMI), and systolic blood pressure
(SBP), among others. Notably, these variables are consistent with established criteria
for diagnosing MetS, reflecting their importance in understanding the condition.

2. Gender-Specific Influential Factors: This study highlights that certain factors vary
in importance between men and women in predicting MetS. For instance, vitamin
B12, lactose, and carbohydrates were influential in men, while total proteins, fructose,
and copper were significant for women. These gender-specific variations underscore
the complexity of MetS and the need for tailored diagnostic approaches. One cau-
tionary note regarding potential outliers, specifically blood glucose and triglycerides,
emphasizes their close association with the definition of MetS.

3. Influence of Sleep and Dietary Habits: The inclusion of sleep-related variables (sleep
disturbances, breathing issues) and dietary elements (cholesterol levels, nutrients)
underscores their relevance in predicting MetS. These findings suggest that lifestyle
factors and dietary habits are integral components in the diagnostic considerations
for MetS.

4. Potential Role of Psychological Factors: Psychological factors such as trait anxiety
were included in the analysis, emphasizing the potential influence of mental health
aspects in predicting MetS for both men and women.

5. Gender-Specific Dietary Influences: For women, the analysis identified specific dietary
factors like sodium levels, saturated fat, and monounsaturated fat as influential. This
emphasizes the importance of considering gender-specific dietary influences in MetS
diagnosis.
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Understanding the gender-specific variations and influential factors highlighted in
this study can inform targeted interventions that address the unique needs of both men and
women. Public health policies can be crafted to recognize and address the gender-specific
variations in the risk factors for MetS. By tailoring interventions to the specific needs of
each gender, policymakers can enhance the effectiveness of preventive measures. Moreover,
this study underscores the importance of lifestyle factors, including sleep patterns and
dietary habits, in predicting MetS. Public health initiatives can thus prioritize educational
campaigns and interventions promoting healthier sleep practices and balanced diets. En-
couraging regular physical activity, reducing sedentary behaviors, and emphasizing the
significance of maintaining a healthy weight can be integral components of public health
programs aimed at preventing MetS.

Given the inclusion of psychological factors such as trait anxiety in the analysis, public
health policies can integrate mental health considerations into MetS prevention strategies.
Mental health awareness campaigns, stress management programs, and access to mental
health resources can contribute to holistic approaches addressing the interconnectedness
of mental and physical well-being. Public health campaigns can leverage the study’s
findings to engage communities and raise awareness about the risk factors associated
with MetS. Community-based initiatives can offer educational resources, workshops, and
screenings to empower individuals to make informed lifestyle choices. By fostering a
culture of health consciousness and providing accessible information, public health policies
can contribute to the early detection and prevention of MetS. In view of the evolving
nature of health trends and behaviors, public health policies should include mechanisms
for continuous monitoring and adaptation. Regular assessments of the population’s health
status, behavior patterns, and response to interventions can inform policy adjustments. This
dynamic approach ensures that public health strategies remain effective and responsive to
changing circumstances.

5.5. The Role of Social Development Dimensions in Metabolic Syndrome

It is worthwhile to recall that after applying balancing techniques, relevant associations
arise between metabolic syndrome and some SDI dimensions (see Figure 5). These effects
are moderate-to-medium-sized yet statistically significant. Indeed, since some of these
aspects may be modifiable by public policy, it is relevant to consider them. Metabolic
syndrome has been previously reported to be related to social dimensions and inequality,
but also to dietary patterns [91,92]. Interestingly Soofu and coworkers [91] also report
the effect that we found of an association of MetS to housing conditions and ownership
of durable assets. Inadequate housing conditions, in particular, have been discussed to
contribute to an increase in the risk of cardiovascular disease [93]. In fact, local residential
environments may constitute significant risk factors for MetS, which is a fact that needs
to be considered in order to develop environmental interventions to improve population
health [94].

Restricted access to education (referred to as EDULAG in Figure 5) has also been
considered a relevant feature related to MetS [95,96]. Indeed, education levels have been
found to be among the best predictors of metabolic conditions in another Mexico City
cohort [97]. A similar association has been reported with regards to housing (QUA_HOUS
in Figure 5) [98,99]. A study in an urban Korean population found that non-apartment
residents were more likely to have MetS and related phenotypes compared to apartment
residents in a model that was adjusted for confounding variables such as sociodemographic
characteristics, residence area, health behavior, and nutritional information awareness [93].
Sanitary conditions are known to modify both environmental conditions and even intrinsic
factors such as the gut microbiota, affecting the development of MetS [100–102]. All of these
dimensions of social development are related in a non-trivial fashion to the development of
the complex pathophenotypes making up metabolic syndrome as is further evidenced by
our study. However, the actual relationships between these and other risk factors remain to
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be investigated as open questions that must be studied in order to design targeted public
health interventions.

Figure 5. Top features for men and women considering the results of RF and RPART applying
balancing techniques.

6. Conclusions

In this study, logistic regression was initially utilized to identify pivotal factors linked
to MetS across genders, followed by dataset balancing techniques. Our findings indicated
significant variables for men, including high glucose levels, triglycerides, waist circumfer-
ence, systolic blood pressure, vitamin B12, body mass index, high intake of carbohydrates,
and lactose. For women, critical factors were glucose levels, triglycerides, waist circumfer-
ence, body mass index, systolic blood pressure, total protein intake, fructose, cholesterol,
uric acid, and copper levels. Further analysis employing SMOTE and ADASYN with RF
and RPART methods re-evaluated critical features for MetS prediction in a balanced dataset.
This improved model generalization by ensuring more consistent and precise training,
enhancing performance, and minimizing overfitting risks. Notably, the analysis also high-
lighted the relevance of family history of gout as a significant factor, particularly among
men. This finding underscores the potential genetic predisposition to gout, suggesting that
a familial history of the condition might increase the likelihood of MetS in relatives, possibly
due to shared dietary habits contributing to obesity and insulin resistance. These insights
emphasize the need for gender-specific public health strategies and medical interventions,
considering both the common risk factors and those unique to each gender, such as the
family history of gout, to effectively manage and prevent MetS.

Limitations

The current study has some limitations. This research was based on data from a cohort
of relatively healthy adult residents of Mexico City. The regional emphasis of the study
might affect generalizability; therefore, it is advisable to exercise caution when extrapolating
the findings to wider populations. All data on socioeconomic status, lifestyle habits, family
medical history, and macro- and micronutrient intake were self-reported. Although we trust
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the veracity of the information, some details may have been omitted or not remembered
by the participants. Likewise, the instruments applied to evaluate physical activity, state
of anxiety, and sleep quality are practical and easy to apply, but their effectiveness also
depends on the truthfulness of the informants. Another limitation is our reliance on SDI
data published by the Government of Mexico City, requiring trust in the data quality from
this secondary source. Also, it is crucial to note that the cross-sectional design hinders
causal inference, underscoring the need for future longitudinal investigations. Nevertheless,
we were able to provide a comprehensive overview of the associations between metabolic
syndrome, sleep disorders, the consumption of some nutrients, and contextual social
development data such as quality and available space in the home, educational access,
access to social security and/or medical services, durable goods access, sanitary adequacy,
and electricity access. Moreover, as data balancing techniques continue to evolve, a variety
of methods are emerging. However, in this study, we addressed only two of the most
frequently used methods, ADASYN and SMOTE. It is important to highlight that we
conducted only internal validation for our methods, emphasizing the necessity for external
validation in larger populations in future studies.
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