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Abstract: Autism spectrum disorder (ASD) is a neuropsychiatric condition characterized by impaired
social interactions and repetitive stereotyped behaviors. Growing evidence highlights an important
role of the gut–brain–microbiome axis in the pathogenesis of ASD. Research indicates an abnormal
composition of the gut microbiome and the potential involvement of bacterial molecules in neu-
roinflammation and brain development disruptions. Concurrently, attention is directed towards
the role of short-chain fatty acids (SCFAs) and impaired intestinal tightness. This comprehensive
review emphasizes the potential impact of maternal gut microbiota changes on the development of
autism in children, especially considering maternal immune activation (MIA). The following paper
evaluates the impact of the birth route on the colonization of the child with bacteria in the first weeks
of life. Furthermore, it explores the role of pro-inflammatory cytokines, such as IL-6 and IL-17a
and mother’s obesity as potentially environmental factors of ASD. The purpose of this review is to
advance our understanding of ASD pathogenesis, while also searching for the positive implications
of the latest therapies, such as probiotics, prebiotics or fecal microbiota transplantation, targeting the
gut microbiota and reducing inflammation. This review aims to provide valuable insights that could
instruct future studies and treatments for individuals affected by ASD.

Keywords: autism spectrum disorders; gut microbiota; brain–gut axis; maternal immune activation
(MIA); gastrointestinal; delivery; dysbiosis; neurodevelopment; microglia; short-chain fatty acids (SCFA)

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental condition defined by early
deficits in social interaction/communication and repetitive stereotyped behaviors [1]. The
multifactorial etiology of ASD includes both genetics and environmental factors. Genetic
mutations, maternal immune activation, and environmental triggers such as toxicants,
insecticides, infections, and medications are involved [2]. ASD consists of frequent gastroin-
testinal (GI) symptoms with variable prevalence, including chronic diarrhea, constipation,
abdominal bloating, and discomfort [3].

Correlations between GI dysfunction and worsened behavioral symptoms have be-
come evidence of brain–gut axis pathophysiology in ASD patients and suggest the intestinal
microbiome as a significant factor. Researchers observed changes in the ASD gut micro-
biome compared to typically developed children; however, they can result from differences
in diet, medical comorbidities, and geographic location [4]. Thus, further work is needed
to better understand the concept of the microbiota–gut–brain axis. The gut microbiome is
shaped from the earliest years of life and regulates important processes such as digestion
and immune response [5].

The number of intestinal bacteria exceeds the number of human cells and genes [6].
Therefore, there is no doubt that its role is crucial in the proper functioning of the human
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body. Changes in the mother’s microbiome influence offspring gut microbial structure and
composition [7]. Many data confirm the interaction of microbiota in pregnancy and the
prenatal and newborn period [8].

Infections or injuries during pregnancy can induce inflammation, subsequently im-
pacting fetal brain development [9]. Maternal immune activation (MIA) is considered to
be a disease primer, making offspring more susceptible to other risk factors, like genetic
and environmental ones [10]. Pregnant women exposed to MIA have been shown to
have pathological activation of specific interleukins, which promotes abnormal cortical
development and ASD-like phenotypes in the offspring [11].

In this review, we will compile the results of the numerous articles and studies to
examine the role of the gut microbiome in developing ASD via the gut–brain axis. We will
focus especially on the mother’s microflora and its influence on prenatal brain development.

2. Methods

The PubMed and Web of Science databases were searched using the following key
words: “autism spectrum disorder”, “ASD”, “gut microbiota”, “dysbiosis”, “brain–gut
axis”, “leaky gut”, “SCFA”, “maternal immune activation”, “MIA”, “neuroinflammation”,
“microglia”, “IL-6”, “IL-17a”, “obesity”, “high-fat diet”, “maternal factors”, “therapy”,
“delivery”, “gastrointestinal”, “prebiotics”, “probiotics”, and “fecal microbiota transplan-
tation”, as well as combinations of these terms. We included relevant articles to assess
the potential correlation of changes in maternal microflora with a child’s risk of develop-
ing autism.

3. The Mode of Delivery and Microbiota Transfer

Proper human development is an intricate process involving numerous genetic and en-
vironmental factors [12]. The gut microbiome has emerged as one of the crucial components
due to its undoubted influence on health throughout the entire life [13].

The impaired balance of the gut flora in infancy is linked to an increased risk of
numerous diseases, especially of immunological origins, like asthma [14] and allergies [15].
Moreover, disruptions in this balance have been associated with a range of mental and
neurological disorders, such as depression [16,17], anxiety [18], schizophrenia [19,20],
Parkinson’s disease [21], Alzheimer’s disease [22], and autism [23].

According to the well-established doctrine, microbiota acquisition begins at birth, as a
result of exposition to the maternal birth canal environment [23]. However, this statement
has recently been reassessed by a limited number of studies confirming the presence of
microorganisms in the placenta [24–26]. These results are still the subject of debate in the
scientific community, and there is no clear conclusion [27].

Kennedy et al. conducted a multidisciplinary evaluation of similar studies supporting
the evidence of microbial presence in prenatal intrauterine locations. Based on their find-
ings, it is more likely that the observed microbial signals were the effect of contamination
during the collection and processing of samples and data, rather than genuine microbial
colonization. Analyzed studies frequently indicate the presence of microorganisms, widely
known as common contaminants such as Bradyrhizobium and Micrococcus. The researchers
emphasize the challenge of distinguishing relevant microbial signals from contaminating
noise in low-biomass samples, which can lead to misconceptions about tissue sterility.
Therefore, they highlight the importance of following a trans-disciplinary approach, con-
sidering biological, ecological, and mechanistic explanations, when studying low-biomass
samples. This approach should facilitate the proper interpretation of findings and address
the challenges posed by contamination [28].

A characteristic microbiome has been identified in the placenta, the amniotic fluid,
and the fetus in healthy pregnancies [24]. Nonetheless, it is unclear when the first fetal
exposition to bacteria is and where they come from [8]. Modification in placental micro-
biota may be related to infections, including urinary tract infections resulting in placental
enrichment of Streptococcus, Arthrobacter, Klebsiella, and Acinetobacter [24].
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3.1. The Mode of Delivery and Microbiota Transmission

After birth, the diversity of microbiota changes due to the contribution of multiple
factors such as skin-to-skin contact [29], breastfeeding [30], diet [31], antibiotic administra-
tion [32], and other environmental exposures [33–35]. Nevertheless, the mode of delivery
is considered one of the most significant determinants influencing the heterogeneity of gut
microorganisms in early life [36].

The majority of the studies show numerous differences between vaginal (VD) and
cesarean section (CS) babies in terms of composition, amount, and maturation onset of
gut microbiota [23,36–41]. CS children are more likely to be inhabited by bacterial species
similar to the mother’s skin surface (e.g., Staphylococcus, Corynebacterium, and Propionibac-
terium spp.) [23]. Their microbiota is more abundant in potentially pathogenic species like
Enterococcus, Enterobacter, and Klebsiella, usually associated with hospital units [37,38].

On the other hand, VD children inherit microbiota closely resembling the mother’s
vaginal environment [23]. Such neonates have more prevalent and diverse communities
of Lactobacillus and Bifidobacterium taxa [36,39], known for their positive impact on
infant’s health (29). Moreover, the microbiota composition (at the genus and phylum levels)
remains stable during VD children’s development as opposed to CS [40]. Over time, those
differences diminish and become less noticeable in 6–8 weeks after birth [39,42]. This
brief period is crucial for proper neurodevelopment. It overlaps with the initiation of the
most significant elongation of axons and dendrite branching, alongside the beginning of
accelerated synaptogenesis [43].

3.2. Changes in Gut Microflora in Autism

Gut dysbiosis is a health complication with greater prevalence in ASD patients com-
pared to neurotypical individuals [44]. ASD-diagnosed individuals have less diverse
gut microbiota, with the main components consisting of Bacteroidetes, Parabacteroides, Fae-
calibacterium, Phascolarctobacterium, Lactobacillus, Clostridioides, Desulfovibrio, Caloramator,
and Sarcina compared to the control group [45–47]. Additionally, decreased levels of
Coprococcus and Bifidobacterium were discovered [46]. Another data analysis revealed a
reduction in Prevotella, Coprococcus, Enterococcus, Lactobacillus, Streptococcus, Lactococcus,
Staphylococcus, Ruminococcus, and Bifidobacterium species and higher levels of Clostridia and
Desulfovibrio [48]. Nonetheless, not all studies confirm this relationship, i.e., research on
ASD patients and their neurotypical siblings indicated no significant differences in gut
microbiota diversity [49].

However, microbiota disturbances are still frequently linked to ASD. For example,
intensive antibiotic therapy, repeatedly used in ASD-diagnosed children might result in
the overgrowth of Desulfovibrio bacteria [50]. The involvement of Desulfovibrio in ASD
pathogenesis is underscored through its production of Lipopolysaccharide (LPS) and its
known role in promoting inflammation [50]. Tomova et al. in a study involving a small
group of ASD-diagnosed children demonstrated a significant association between autism
severity and the abundance of Desulfovibrio spp. [51].

Moreover, ASD patients typically exhibit decreased levels of Lactobacillus spp. [52].
It is worth noticing that attempts at recolonization with Lactobacillus reuteri have shown
partial alleviation of intestine inflammation caused by LPS. Additionally, supplementation
with Bacteroides fragilis has been found to reduce gut permeability [53].

The gut microbiota not only encompasses bacteria but also includes fungi. A good
example is Candida spp., which has been proclaimed to take part in ASD pathogenesis [54].
Elevated concentrations of Candida yeasts have been observed in fecal samples from in-
dividuals with ASD [55]. Maintaining an appropriate concentration of Lactobacillus spp.
prevents the overgrowth of Candida; however, autistic individuals exhibit reduced num-
bers of Lactobacillus spp. [56]. Additionally, an excessive Candida population impedes
re-establishment with commensal microorganisms [57]. The proliferation of Candida yeasts
results in an increased production of ammonia and toxins, which studies have linked to the
exacerbation of autistic behaviors [58]. Furthermore, Candida overgrowth may lead to the
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malabsorption of minerals and carbohydrates [57]. Therefore, addressing the balance of gut
microbiota, particularly managing Candida levels and promoting the presence of beneficial
bacteria, becomes essential research interest in the context of ASD.

Research on microbiome changes in autism is inconclusive. Differences may be in-
fluenced by individual variation in microflora composition, different ages and genders
of subjects, severe eating restriction, food selectivity, disparities in the diet used or un-
known factors.

4. Mode of Delivery and Autism Correlation

As the mode of delivery influences microbiota composition in early life, researchers
focused on verifying its impact on the risk of autism.

Yip et al. analyzed records from the International Collaboration for Autism Registry
Epidemiology (iCARE) database. Their study cohort consisted of 4,987,390 children born
in 5 different countries (Norway, Sweden, Denmark, Finland, and Western Australia) and
comprised 71,646 C-section deliveries. They ascertained that both—elective and emergency
CS are associated with a higher risk of ASD in comparison to vaginal delivery [59]. Those
findings were confirmed by more recent studies [60,61].

Furthermore, works by Chien et al., Huberman Samuel et al., and Yang et al. indicate
that only CS performed under general anesthesia (GA) noticeably increases the risk of
ASD. CS under regional anesthesia (RA) brought only an insignificantly higher risk than
VD [62–64]. This might suggest that GA is a major factor contributing to the link between
the mode of delivery and autism. However, those findings should be taken with caution
due to several limitations of evaluated studies such as the omission of confounding factors,
limited statistical power, and lack of sibling analysis. Moreover, the reason responsible
for this phenomenon remains indistinct. Research based on human and animal models
suggests that the administration of GA in early life might be the cause of neurotoxicity,
which disturbs postpartum neurodevelopment [65]. These toxic effects might impact
regions of synaptogenesis, which is especially accelerated in the first 6 months of life [43]
and can be the cause of disruptions and delays in the subsequent development of other
areas of the brain [66].

In addition, studies show that the general correlation between delivery mode and ASD
might be related to confounding variables such as unknown genetic and environmental
conditions. Curran et al. analyzed a large cohort of 2,697,315 children. Even though the
general analysis proved that CS children are approximately 20% more likely to develop
ASD after adjusting for sibling controls the association disappeared. Weaknesses of this
study include the inability to verify the authenticity of the analyzed cases and determine
whether the origin of confounding is a genetic or external factor. Furthermore, the sample
size of the sibling control was significantly lower than the general study population [67].

In conclusion, most of the studies confirm that children delivered by cesarean section
are more prone to the development of ASD. Additionally, the use of GA turned out to be
one of the most feasible risk factors. Nevertheless, those findings must be taken cautiously
as all confounders connected with CS should be considered.

5. Microbiota Disruption and Its Potential Implications for ASD Development

Altered gut microbiota might impact brain development due to the existence of the
gut–brain axis, which links the enteric and central nervous system (CNS) [68].

5.1. Bacteria as Producers of Short-Chain Fatty Acids (SCFAs)

It has been discovered that a lack of proper microbiota results in immature and mal-
functioning microglia [69]. One of the crucial reasons might be the fact that gut bacteria
produce short-chain fatty acids (SCFAs), e.g., butyrate, propionate, acetate, and valer-
ate, in the process of colonic fermentation [70]. Recognized as the primary signaling
molecules between gut bacteria and the host, SCFAs exert their influence by binding to
G-protein coupled receptors such as free fatty acid receptors (FFAR) [71]. SCFAs exhibit
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anti-inflammatory and anti-carcinogenic properties, regulate energy metabolism, hormonal
secretion, and fortify the integrity of the gut barrier [72]. While normal levels of SCFAs
regulate immune function in the gut, an overproduction can disrupt the gut balance and
induce inflammation (Figure 1) [56].
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Figure 1. Diagram of the effect of overproduction of short-chain fatty acids (SCFAs). I—Increased
production of one of the SCFAs, propionate (PPA), inhibits oxidative phosphorylation in the mito-
chondrion, increases propionyl-coenzyme A levels and causes carnitine sequestration. All of this can
result in impaired SCFA oxidation, increasing sensitivity to oxidative stress and disrupting enterocyte
function. The result can be gut dysmobility, manifested as constipation. II—Larger amounts of PPA
can cross the intestinal–blood barrier and then the blood–brain barrier (BBB). Once across the barrier,
they can be captured by microglia and alter its function, and bind to Toll like receptors TLR4 and
activate the inflammatory response.
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SCFAs are associated with alterations in mitochondria function and epigenetic mod-
ulation of genes associated with ASD [73]. Moreover, they serve as substrates for energy
production within mitochondria [74]. Elevated levels of propionic acid (PPA) may inhibit
oxidative phosphorylation, increase levels of propionyl coenzyme A, and contribute to
the sequestration of carnitine. These alterations can disrupt SCFA oxidation and heighten
sensitivity to oxidative stress [75]. ASD-diagnosed individuals have been observed to
exhibit mitochondrial dysfunction, potentially leading to disorganized enterocyte function
and gut dysmotility [76]. These disturbances may manifest as constipation, a frequently
reported issue among ASD patients [56].

One hypothesis of ASD pathogenesis underlines the crucial role of the spore-forming
bacteria, particularly Clostridioides [77]. Toxins released by certain Clostridioides species
can induce a proinflammatory response. These bacteria-origin toxins circulate in the
bloodstream reaching the CNS and contributing to altered behaviors [78]. Antibiotic
therapy has been suggested as a potential approach for enhancing the well-being of autistic
patients [79].

In an environment abundant in sugar and carbohydrates coming from the diet, Clostrid-
ioides bacteria produce excessive amounts of SCFAs, especially propionic acid (PPA) [80].
PPA can cross the gut–blood barrier, but also the blood–brain barrier. Once in the CNS,
PPA may be captured by glial cells, influencing physiological processes, health, and be-
havior [81]. Shultz et al. in a study performed on rats demonstrated that the intracere-
broventricular injections of PPA resulted in behavioral changes similar to those observed
in patients diagnosed with ASD [82]. Furthermore, SCFAs binding to Toll-like receptor 4
(TLR-4) influence the CNS and activate an inflammatory response [83].

Moreover, particularly one of the SCFAs—acetate—plays a critical role in microglia
maturation [84]. Additionally, butyrate impacts the function of microglial cells—the im-
mune cells of the CNS and participates in the regulation of neuroinflammation [85].

5.2. Microglia Dysregulation

Microglia contribute to the maintenance of brain tissue homeostasis. They are regu-
lated by various factors, such as cytokines, neurotrophic factors, complement factors, and
neurotransmitters [86,87]. Microglia are responsible for synaptic pruning in the developing
brain [88]. They also have a key role in neural circuit formation, neuronal differentia-
tion, and maturation [89] (Figure 2). This is why its proper formation and activation are
considered pivotal factors in neurogenesis.

Dysregulation of microglia activity is often suspected to be one of the potential mecha-
nisms taking part in the development of ASD [90]. A post-mortem study by Vargas et al.
observed that the brains of autistic patients could be characterized by increased microglial
activation associated with neuroinflammation and expressed by elevated levels of cytokines
such as Macrophage Chemoattractant Protein 1 (MCP-1) and Transforming growth fac-
tor beta 1 (TGF-1). Analysis showed that the microglial reaction was mainly spread out
throughout cortical and subcortical regions and its presence was especially expressed in the
cerebellum. Further, scientists observed areas with the formation of microglial nodules and
clusters. According to the study, similar responses can be observed in neurodegenerative
conditions such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) [91].

Bifidobacterium and Lactobacillus are some of the major producers of SCFAs [92–94],
which regulate microglia homeostasis [84,95]. Taking that into consideration, the decreased
abundance of those microorganisms connected with CS [36,39] might be a cause of im-
paired microglia maturation and function, leading to a defective neuroimmunological
response [84,95].
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Figure 2. Diagram showing the role of microglia in brain formation. Microglia is regulated by
cytokines, neurotropic factors, complement factors, neurotransmitters and short-chain fatty acids
(SCFAs). Microglia: eliminate synaptic connections (synaptic pruning), influence morphological,
electrophysiological and molecular characteristics of neurons (neuronal maturation) and they are
responsible for neural circuit formation by synapse formation between neurons.

Zhan et al. discovered that insufficient microglial-mediated synaptic pruning, which
relies on the targeted elimination of synapses, might be linked with autism-related behav-
iors [96]. Moreover, the study by Kim et al. confirms that mice with autophagy-deficient
microglia present similar symptoms [97].

On the other hand, Seki et al. interlock Klebsiella overgrowth with disturbances of the
gut–brain axis. According to the analysis, this phenomenon relates to the development of a
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specific composition of microorganisms promoting severe brain damage. They observed a
negative correlation between increased levels of Klebsiella and neuroprotective factors such
as BDNF and BDGF-BB [98]. Moreover, in the study by Lin et al. Klebsiella presented the
ability to activate microglia, which released proinflammatory cytokines in response [99].

The link between microbiota, neurodevelopment, and ASD is still not well explored.
Microglial development and synaptic forming stand out as the most promising mechanisms
that might be linked with impaired delivery-acquired microbiota and the formation of
autistic behaviors. Nevertheless, further research is required on this topic, focused on
humans in addition to murine development.

6. The Gut–Brain Axis in ASD Patients

The gut–brain axis is a dynamic, bidirectional communication pathway connecting
the central nervous system (CNS), consisting of the brain and the spinal cord, with the
enteric nervous system (ENS), a complex network of neurons, interconnected small ganglia,
submucosal and myenteric neuronal plexuses [100]. Often referred to as the “second
brain”, the ENS can operate autonomously from the CNS to regulate gastrointestinal (GI)
homeostasis [101].

Several underlying mechanisms, including neuronal, immune, and enteroendocrine
pathways implement the link between the gastrointestinal tract and the brain [102]. Growing
evidence indicates the existence of the gut–brain axis but also highlights the presence of the
microbiota–gut–brain axis. Moreover, research has revealed that gut microbes can communi-
cate with the brain [103]. Disturbances in the gut–brain axis play an important role in ASD
pathogenesis and mainly include dysbiosis, increased permeability of the gut barrier, changes
in neurotransmitters concentration, immune dysregulation, and neuroinflammation.

The major role is played by the vagus nerve, which comprises 80% of afferent fibers and
20% of efferent fibers [104]. Microbiota metabolites, gut hormones, and nutrients interact
with the afferent branch of the vagus nerve and conduct signals to the CNS. Subsequently,
the information in the CNS is evaluated and creates a response [105]. Efferent signals from
the brain to the GI tract modulate the physiological functions of the guts and influence
mobility, as well as the secretion of digestive enzymes [106].

Animal studies have shown the significance of the vagus nerve in mediating cerebro-
intestinal communication. Researchers have demonstrated that administering Lactobacillus
rhamnosus induced changes in γ-aminobutyric acid (GABA) receptor expression in mice
and thereby decreased stress-induced corticosterone response, as well as reduced anxiety-
and depressive-related behaviors [107]. Furthermore, this effect was absent in vagotomized
individuals [107,108].

6.1. “Leaky Gut” in ASD

The proper functioning of the gut–brain axis relies fundamentally on the integrity
of the barrier that separates the gut lumen from the tissues of the GI tract. The barrier
comprises epithelial cells, a mucous layer, and tight junctions between cells [109]. These
components prevent the organism from the entrance of harmful pathogens and toxins. A
well-balanced microbiota composition fulfills an important role in maintaining the integrity
of the GI barrier providing intercellular junctions [110]. For instance, Lactobacillus spp.
takes part in maintaining tight junctions between cells and ASD patients are reported with
decreased Lactobacillus spp. component in gut microbiota [55]. Moreover, in ASD brains
studies show a disturbed expression of genes encoding proteins crucial for maintaining
the integrity of the blood–brain barrier and gut barrier [111]. Increased permeability of
the intestinal mucosa impairs the function of the gut barrier. That makes the immune
system more sensitive to exogenous peptides from food or bacteria, toxins, and other
metabolites [112,113]. This phenomenon is often referred to as “leaky gut” and researchers
indicate its role in the complex pathogenesis of ASD [114]. Increased permeability results
in elevated circulation of bacteria-derived lipopolysaccharide (LPS), triggering an inflam-
matory response marked by the expression of pro-inflammatory cytokines such as IL-1,
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IL-6, and IL-8 [91,115]. Furthermore, in ASD patients elevated levels of LPS are commonly
reported [50]. Additionally, in a study performed on rats Kirsten et al. demonstrated
that prenatal exposure to LPS resulted in autistic-like behaviors and hypoactivity of the
dopaminergic system [116].

6.2. Enteroendocrine Cells and Neurotransmiters

Enteroendocrine cells (EECs) are crucial for the functioning of the gut–brain axis by
acting as vital sensors within the GI tract and secreting various signaling molecules in
response to different stimuli [117]. Situated in the intestinal epithelium, EECs intercommu-
nicate with the vagus nerve afferent fibers by releasing serotonin (5-hydroxytryptamine,
5-HT) and activating 5-HT3 receptors [118]. Notably, the brain’s storage of tryptophan, a
5-HT precursor, is limited and more than 90% of 5-HT is stored and released by EECs [119].
Intestinal refilling of tryptophan is possible due to gut microorganisms such as Bifidobac-
terium infantis [120]. Serotonin has been identified in various microorganisms, including
Candida spp., Streptococcus spp., Escherichia spp., and Enterococcus spp. [121].

The exact mechanism association between the disturbances in the serotoninergic
system and occurring ASD is not fully understood. Disruption in the serotoninergic
system during brain development may lead to long-term defects in overall brain function.
Modifications to 5-HT neurons in the brainstem and synaptic and network alterations
induce changes in projection areas linked to social behavior, such as the frontal cortex [122].
Marler et al. in a study performed on 82 children and adolescents with ASD observed
increased whole blood serotonin concentration in 23% of participants [123]. One hypothesis
suggests that an increased serotonin level during brain development might lead to further
compensatory negative feedback, a reduced number of serotonin neurons, and decreased
brain serotonin concentration [124–126]. Serotonin affects not only mood and brain function
but also gastrointestinal secretion and mobility [127]. However, the research did not confirm
the presumed correlation between occurring hiperserotoninemia and constipation in those
patients [123].

The gut microbiome can provide neurochemicals and neuropeptides for the host
that can diffuse throughout the mucous layer of the intestine [128]. For instance, GABA
can be released by Lactobacillus spp. and Bifidobacterium spp. [129]. Moreover, autistic
children exhibit increased levels of gamma-amino-butyric acid (GABA), an inhibitory
neurotransmitter [130]. Autistic brains are shown to demonstrate excitatory-inhibitory (E-I)
imbalance. Disruptions in GABA activity in neurons are hypothesized to contribute to the
pathogenesis of the disease [131].

6.3. HPA Axis

The hypothalamus–pituitary–adrenal (HPA) axis is a critical component of the neuroen-
docrine system and plays a significant role in the body’s stress response [132]. The process
initiates with the hypothalamus releasing corticotropin-releasing hormone (CRH) and
stimulating the anterior pituitary gland to release adrenocorticotropic hormone (ACTH).
In the bloodstream, ACTH reaches the adrenal cortex which stimulates the secretion of
glucocorticoids, predominantly cortisol [133]. The HPA axis action on the caudal-intestinal
axis is bidirectional [103]. While acute stress, mediated by cortisol might temporarily
impact gut mobility and secretion, chronic stress may cause changes in the gut microbiota
composition, modulate the immune response, and increase the permeability of the intestinal
barrier [134]. Moreover, stress-related factors, including dysbiosis, can potentially activate
and dysregulate the HPA axis function, thereby inducing stress response and anxiety-like
behavior [135].

6.4. GALT

The immune system plays a significant role in maintaining homeostasis between its
defensive role, protecting the organism from externally derived pathogens, and simul-
taneously tolerating beneficial commensal organisms [136]. This is a crucial aspect as
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gut microbes actively contribute to the maturation of the immune response [23]. Addi-
tionally, emerging studies propose a link between gut bacteria, neurodevelopment, and
neuroplasticity [137]. This connection is based on a delicate balance of pro-inflammatory
and anti-inflammatory responses. Gut-associated lymphoid tissue (GALT) samples bac-
terial antigens and communicates with the ENS through signaling molecules, including
cytokines and chemokines [138]. Bacterial products such as lipopolysaccharides (LPS) and
peptidoglycans (PGNs) mediate the immune response through Toll-like receptors (TLRs)
and deliver the information to the ENS [139]. The dysregulation of immune activation
in the intestine, including those caused by dysbiosis, holds the potential for systemic in-
flammation, potentially influencing the CNS and consequently the mood, behavior, and
cognitive function [85]. Furthermore, the anti-inflammatory effect of the probiotics might
be expressed through the secretion of IL-10 by T regulatory cells [140]. Considering all
this, the immune system’s multifaceted role in the gut–brain axis has implications for both
physical and mental well-being (Figure 3).
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Figure 3. Diagram showing the link between gut bacteria and neuroinflammation. (A). Dysbiosis
causes the release of lipopolysaccharide (LPS) and peptidoglycans (PGNs) (1). The molecules bind
to Toll like receptors (TLRs) (2). Gut-associated lymphoid tissue (GALT) activation occurs (3). This
leads to increased production of pro-inflammatory cytokines (4) and inflammation (5). Information
is transmitted to the enteric nervous system (ENS) (6) and to the central nervous system (CNS).
(B). Probiotics also secrete molecules that bind to TLRs (1), which affects the activation of regulatory
T cells (Tregs) (2), secreting IL-10 (3), reducing inflammation (4) and transmitting the information to
the ENS (5) and then the CNS.
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7. Gastrointestinal Challenges in ASD Patients
7.1. Gastrointestinal Symptoms in ASD

Numerous studies highlight a higher prevalence (between 17% and 86%) of gastroin-
testinal (GI) symptoms in individuals diagnosed with autism spectrum disorder (ASD)
compared to those with typical neurodevelopment [57,141]. The predominant symptoms
occurring in ASD patients are diarrhea and constipation [141,142]. Additionally, individu-
als with ASD more frequently experience abdominal pain, vomiting, bloating, and gastric
reflux [143]. However, presently the diagnostic and treatment approaches for gastrointesti-
nal disorders are analogous to those in patients without ASD [144]. Nevertheless, certain
studies do not point to differences in occurring GI symptoms between ASD patients and the
control groups [145,146]. Some authors suggest that the lack of uniformity in findings might
be a result of the existence of different phenotypes in the population of ASD patients [147].

It is worth noticing that some of the behavior problems, such as self-harm, aggression,
sleep disturbances, and irritability might be a result of GI discomfort, especially since
patients have trouble with verbal communication [113]. Speech disorders and intellec-
tual impairment make it particularly troublesome to communicate abnormalities in GI
physiology, which often results in numerous undiagnosed patients [148].

Alterations in gut bacteria composition may cause gastrointestinal discomfort, consti-
pation, and diarrhea [48]. Dysbiosis may result from a selective and nutritionally inadequate
diet with low fiber content. Children affected by ASD demonstrate various feeding dis-
orders and are often described as “picky eaters”, representing food refusal and various
dietary preferences [149,150]. Food selectivity manifests as texture, appearance, taste, smell,
and temperature aversion [149,151]. Additionally, children with ASD manifest a strong
preference for high-calorie snacks, and processed foods. Rejection of fruits and vegetables
results in insufficient dietary fiber intake and often leads to constipation [152,153].

7.2. Malnutrition

Improper diet results in health issues (e.g., malnutrition) and nutrient deficiencies,
but also excessive body weight due to consumption of calorie-dense products [153]. What
is more, inadequate intake of micronutrients (e.g., iron, calcium, vitamin E, and vitamin
D) is common among these patients [154]. Some feeding disturbances are associated with
poor oral intake [155]. Fastidious diet is one of the possible reasons for the previously
mentioned lowered concentration of Lactobacillus spp., and consequently disturbances in
forming tight junctions and maintaining the integrity of the gut barrier [55]. However, it is
not fully discovered if nourishment difficulties cause dysbiosis and GI symptoms or if they
are an additional factor influencing pre-existing dysbiosis.

7.3. Gastrointestinal Diseases

The higher incidence of gut dysbiosis and gastrointestinal symptoms in ASD patients
raised a question about the increased prevalence of other GI diseases. Wang et al. in a
study performed on children with autism indicated a higher prevalence of small intestinal
bacterial overgrowth (SIBO) compared to children with typical neurodevelopment (31.0%
compared to 9.3%). Additionally, the incidence of SIBO was associated with the severity
of autism symptoms evaluated with the Autism Treatment Evaluation Checklist (ATEC)
score [156]. This evidence needs further research; however, it suggests an influence of GI
microflora on symptomatology and severity of ASD.

Due to common fundamentals in the pathogenesis of ASD and Inflammatory Bowel
Disease (IBD) and the involvement of the microbiota–gut–brain axis, this subject became
a research interest. In a retrospective case–cohort study conducted by Lee et al. on
48,762 autistic children and 243,810 controls in the United States, it was demonstrated
that children with ASD have a greater probability of meeting the diagnostic criteria for
subtypes of IBD, specifically Crohn’s disease (CD) and ulcerative colitis (UC), compared to
healthy controls [157].
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Researchers also considered the correlation between parental irritable bowel syndrome
(IBS) and the occurrence of autism in their offspring. Sadik et al. in a nationwide population-
based cohort study using Swedish registers represented evidence linking parental IBS with
ASD diagnosis in children [158]. Moreover, this association was significantly stronger for
maternal than paternal IBS diagnosis. Nonetheless, Andersen et al. in a registry-based
nationwide cohort study including 1,005,330 children in Denmark did not find evidence of
increased ASD prevalence among offspring of IBS-diagnosed parents [159]. Similar results
emerged from the study performed by Yeh et al. in which researchers did not prove the
association mentioned above [160]. Future research is required to strengthen the association
between ASD and IBD and to better understand the role of the gut–brain axis.

7.4. Conclusions

Key information on gastroenterological problems in ASD patients is summarized in
Table 1.

Table 1. Autism spectrum disorder (ASD) and gastrointestinal problems.

Frequency Symptoms Gastrointestinal Disorders

between 17% and 86% of
gastrointestinal symptoms in
individuals diagnosed with

ASD [57,141]

Predominant:
diarrhea and constipation [141,142]

Other:
abdominal pain, vomiting, bloating, and

gastric reflux [143]
feeding disorders—often described as

“picky eaters” [149,156]

Higher prevalence of small intestinal
bacterial overgrowth (SIBO)

Crohn’s disease (CD) and ulcerative colitis
(UC), compared to healthy controls [157]

Considering the concept of “the microbiota–gut–brain axis”, dysbiosis can influence
GI and neuropsychiatric symptoms. Some authors suggest a correlation between the
disturbances in gut microbiota composition and the severity of autistic symptomatology,
including verbal and social skills and general behavior [46,161]. Furthermore, unusual
dietary patterns may favor harmful, pathogenic intestinal microbiota [162,163]. However,
further research will be beneficial for a better understanding of existing interconnection.

The composition of gut microbiota is unique for each person and may change through-
out life due to dietary and lifestyle changes. The foundation of a healthy microbiota lies in
maintaining a harmonious balance and diversity. Further research should be performed to
better understand potential advantageous approaches, including probiotic and prebiotic
supplementation, along with fecal microbiota transplantation. Additionally, dietary inter-
vention might be beneficial for maintaining homeostasis of the gut–brain axis, especially in
ASD patients.

8. Maternal Microbiome Dysregulation

In recent decades, attention has been drawn to maternal factors such as infections
or injuries and their importance in influencing prenatal brain development [9]. Some
epidemiological studies indicate an association between maternal infection and the child’s
risk of schizophrenia and autism spectrum disorder (ASD) [164–166].

Some findings have shown a correlation between the occurrence of ASD in a child and
prenatal infection with viruses: Herpes simplex virus type 2, Rubella, Cytomegalovirus,
and bacterial infections [9]. However, the outcome of exposure to prenatal viral infection
depends on many factors, including the maternal immune status, the strain and amount of
virus, susceptibility of the maternal and fetal host, the developmental stage of the fetus,
genetics, and probably other factors [167]. Some data did not find an overall association
between maternal infection during pregnancy and diagnosis of ASD in the child. However,
the same studies have observed an association between viral infection during the first
trimester and bacterial infection during the second trimester and the development of ASD
in the child [9].
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Moreover, not specific pathogens but pathogen-induced maternal immune activa-
tion (MIA), has been considered as a key factor contributing to abnormalities in brain
development and offspring’s behavior [168,169]. Inflammation during pregnancy possibly
affects the proper proliferation and migration of neurons and glia, formation of synapses,
myelination, and establishment of neuronal circuits [170,171]. What is more, environmental
and general physical and social health factors like obesity [172], pollution [173], diet [174],
poverty [175], and stress [176] can alter the immune system causing heightened inflamma-
tion, what can induce maternal immune activation and modify fetus neural development.

8.1. Maternal Immune Activation

Maternal immune activation (MIA) resulting from infection, stress, and autoimmune
diseases is an increase in the levels of inflammatory markers during pregnancy [177]. Ma-
ternal inflammatory factors induce the release of pathogen-associated molecular patterns
(PAMPs) and damage-associated molecular patterns (DAMPs), which activate Toll-like re-
ceptors on maternal immune cells and placental cells, leading to proinflammatory cytokine
production [178,179]. Abnormal brain cytokine levels can alter CNS development [180].
Many studies using poly I:C and bacterial mimic lipopolysaccharide (LPS) to trigger MIA,
have shown adult behavioral abnormalities in social behavior and selective attention, ex-
ploratory behavior, and working memory similar to ASD behaviors [181,182]. Cytokines
could be produced directly in the fetal brain or cross an immature blood–brain barrier
(BBB) [183]. Moreover, inflammation during neurodevelopment can cause damage to
the blood–brain barrier and it could result in the loss of highly vulnerable neurons like
dopaminergic cells [184] and may cause focal white matter injury [91].

8.2. MIA and Cytokines

Maternal immune activation is apparently disrupting the balance between pro-
inflammatory and anti-inflammatory cytokines in the fetal brain [10,185]. It has been
shown that pregnant women exposed to MIA may have dysregulated cytokine pro-
duction, such as for interleukins: IL-6 and IL-17a, which is associated with offspring
cognitive impairment [186,187].

8.3. IL-6

Elevated concentration of C-reactive protein during pregnancy is linked to the in-
creased risk of ASD in the child [188]. This protein is synthesized by hepatocytes in
response to IL-6 and other cytokines, such as interleukin-1β and TNF-α [189]. In the study
by Smith et al., elevated levels of IL-6 were found in MIA models in the maternal serum,
as well as in the amniotic fluid, placenta, and fetal brain. They found that IL-6 is a key
mediator of the effects of maternal immune activation on fetal brain development medi-
ating the behavioral and transcriptional changes in the offspring [186]. MIA affects gene
expression of spanning gene families affecting cell structure and function such as cytosolic
chaperone system, HSC70, Bicaudal D, aquaporin 4, carbonic anhydrase 3, glycine receptor,
norepinephrine transporter, and myelin basic protein in the brains of the offspring [190].
MIA could also be induced by a single injection of IL-6, yielding offspring with the same
behavioral abnormalities seen in viral infection [186].

However, it is worth noting that IL-6 is considered both anti- and to a lesser extent
proinflammatory cytokine [191]. The regenerative or anti-inflammatory function of IL-6
is mediated by classic signaling, whereby only a few cells express the IL-6 receptor and
respond to it. Pro-inflammatory responses of interleukin-6 are rather mediated by trans-
signaling (sIL-6R) [191]. Neural cells and neural stem cells depend on the sIL-6R in their
response to IL-6 [192,193], which suppresses Treg cells and induces the differentiation of
effector TH17 cells [194]. Differentiated from naive cells under the influence of IL-6, Th17
cells are involved in autoimmune processes and inflammation, while Treg inhibits excessive
effector T cell responses [195] (Figure 4).
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Figure 4. Stress, autoimmune diseases, infections and dysbiosis promote the release of pathogen-
associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPS), binding
to TLR receptors on maternal leukocytes and placental cells, resulting in maternal immune activation
(MIA). Increased IL-6 concentration affects neural cells via pro-inflammatory sIL-6R signaling, si-
multaneously promoting an inflammatory response with a predominance of Th17 lymphocytes over
immunosuppressive regulatory T cells.

Moreover, Hei et al. showed that blocking the trans-signaling of IL-6 increased socia-
bility in mice and induced glutamate release in synaptoneurosomes from the cerebral cor-
tex [196]. Additionally, some data indicate that the adoptive transfer of regulatory T cells re-
verses behavioral phenotypes associated with autism. It may upregulate anti-inflammatory
IL-10 and enhance chemotaxis and brain infiltration [197]. As well co-administration of an
anti-IL-6 antibody in pregnant exposed to MIA triggers prevented behavioral deficits in
offspring [186].

8.4. IL-17a

It is considered that elevated IL-17a levels may be related to the severity of behavioral
symptoms in individuals with ASD [198]. As described above, MIA increases maternal IL-6
levels, while the Th17 cells activated by IL-6 increase IL-17a production [199,200]. It has
been detected that IL-17a mRNA levels are elevated in the placenta in response to MIA [11].

IL-17a aids in the tissue repair process, induces innate immune-like defenses by
promoting the production of antimicrobial peptides and it has also been associated with
its pro-inflammatory role in autoimmune diseases [201]. This cytokine performs also its
function in the brain: it controls synaptic plasticity and short-term memory by increasing the
glutamatergic synaptic plasticity of hippocampal neurons [202] and elevated concentration
may elicit brain endothelial damage and cognitive dysfunction [203].
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MIA promotes the activation of maternal Th17 cells without concomitant activation of
Tregs [11], which unbalances the placenta and may promote fetal abnormalities [204].

8.5. Cytokine Imbalance in ASD

Cytokine imbalance and increased proinflammatory interleukins are also characteristic
of children diagnosed with ASD [198,205]. Aberrant expression of cytokines was observed
in the brain [91], peripheral blood [206,207] and gastrointestinal tract [208]. Among the
various cytokines characteristic was an increased level of IL-1B, IL-6, IL-4, IFN-γ, and
TGF-B [206,209–212].

However, cytokines expression is dependent on genetic and environmental factors [205].
Interleukins: -1, -2, and -6 have been shown to modify neuronal release of norepinephrine
(NE), serotonin (5-HT), dopamine (DA), and acetylcholine (ACh) in the hippocampus and
other brain regions such as striatum and frontal cortex [213,214].

The study by Hornig et al. has shown neuronal apoptosis in the hippocampus and
cerebellum after inoculating Lewis rats intracerebrally with the Borna disease virus. In-
creased mRNA transcripts for IL-1α, IL-1β, IL-6, and TNF-α were observed in multiple
brain regions in infected rats with behaviorally dysregulated exploratory activity [215].

Brain samples from patients with ASD revealed increased microglial activity with,
at the same time, elevated levels of TNF-α, IL-1β, IL-6, IL-13, and C-C motif chemokine
2 (MCP-1) in the cerebrospinal fluid [91]. Elevated levels of TNF-α have been positively
associated with the severity of ASD symptoms and they play a role in altering synaptic
plasticity and glutamate-mediated cytotoxicity [216,217], which can cause apoptosis of
hippocampal neurons [218].

The effects of maternal inflammation may induce long-lasting epigenetic memory on
fetal microglia and immune cells during critical developmental periods [219]. In various
models of MIA, hypomyelination, and degeneration of oligodendrocyte progenitor cells
have been described [220,221].

The formation of mature neural circuits is caused by the selective elimination of
inappropriate synaptic connections. Some immune molecules such as complement protein
C1q are involved in pruning and refinement of the developing nervous system [222].
Among the cytokines, IL-6 has a stimulatory effect on C1q production in macrophages [223].

MIA can also disrupt neuronal migration during brain development [224]. Some MIA
models have shown reduced expression of reelin, a major regulator of radial migration of
cortical principal neurons [225]. Simultaneous low expression of reelin has been found in
blood samples from patients with ASD [226].

8.6. Vitamin D in ASD

Vitamin D plays an important role in the process of early stages of brain development,
neuronal differentiation, neurotransmission, and synaptic function [227]. Moreover, empha-
sis is placed on its role as a neuromodulatory and neuroprotective agent [228]. Decreased
levels of vitamin D may influence the T cell activation profile and therefore adaptive immu-
nity [229]. Stimulation of the tryptophan hydroxylase type 2 enzyme by vitamin D results
in increased cerebral synthesis of serotonin [230].

A pivotal role in vitamin D involvement in the pathogenesis of ASD is played by
vitamin D binding protein (DBP). DBP is encoded by the GC gene and involves different
polymorphisms, which results in the binding of different vitamin D metabolites in the blood,
regulation of serum concentration, and distribution in the body. Bolognesi et al. showed
that the occurrence of GC1f genotype was more probable in ASD-diagnosed individuals, as
well as with worse clinical symptoms [231]. While acknowledging the limitations of this
study, it is important to emphasize the need for more extensive investigations involving
larger groups of both patients and controls, since this research area holds promise for the
discovery of genetic markers associated with specific ASD phenotypes.

Chronic activation of microglia might cause damage to the central nervous system
and is commonly mentioned in the context of ASD pathogenesis. It is noteworthy that
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microglia express vitamin D receptors. Boontanrart et al. demonstrated in mouse models
that vitamin D binds to the vitamin D receptor (VDR) and by that reduces the release
of pro-inflammatory cytokines (IL-6, IL-12, and TNF-α), and increases the expression of
anti-inflammatory IL-10 [232].

Vuillermot et al. in the mouse models of inducted MIA (maternal immune activa-
tion) prenatally administered an active form of vitamin D which resulted in abolished
ASD-like behaviors (e.g., stereotyped digging and social withdrawal in the offspring). Nev-
ertheless, vitamin D did not alter levels of pro-inflammatory cytokines [233]. Other study
conducted by Guerini et al. indicated that decreased concentrations of vitamin D and VDR
polymorphisms correlate with structural and functional brain abnormalities and behavior
disturbances. Studies have also revealed that children with ASD and their mothers are more
prone to vitamin D/VDR complex with low biological activity [234]. However, further
research is required for a better understanding of vitamin D immunomodulatory properties
and its importance in autism.

8.7. Gender Differences

The importance of developing autism in offspring as a result of excessive activation
of the mother’s immune system is enhanced by increased concentration of antibodies
compared to mothers of healthy children [235].

Bauman et al. isolated IgG from mothers of children with ASD (IgG-ASD) and admin-
istered it to two groups of female rhesus monkeys during the first and second trimesters of
pregnancy. Developmental abnormalities were observed in monkeys exposed prenatally to
human IgG-ASD. Male offspring had enlarged brain volume compared with controls and
these differences were most noticeable in the frontal lobes, while no differences in female
subjects were identified [236]. However, it is important to indicate the limitations of the
presented research. Among the limitations, it is noteworthy that the study sample size
is small, and the animal model, although it can be a model for human neuropsychiatric
disorders due to similarities in brain organization and observable behavioral changes
similar to ASD, nevertheless limits the conclusiveness of conclusions. These data indicate
that there are differences in the neuropathology of boys and girls with ASD.

Other studies report a striking preponderance of males in terms of the prevalence of
ASD [237]. However, there are gender differences in the manifestation of autism—males
with ASD more often show externalizing behavior problems like aggressive behavior,
hyperactivity, social behavior disturbances, and increased restricted interests. Females
with ASD show more internalizing symptoms, including anxiety, depression, and other
emotional symptoms [238]. Therefore, women may be under-diagnosed due to less clear
symptoms. However, it is important to note that some studies suggest the meaning of
female protective factors such as lower concentrations of testosterone, a hormone that plays
a key role in the Extreme Male Brain theory—theory explaining brain masculinization
as a cause of autism [239]. In brain regions which are on average larger in men than in
women, i.e., amygdala or cerebellum, people with autism have larger brain areas than
typical men, and their total brain volume is also larger than that of a neurotypical male
control group [240].

What is more, even though ASD is not an X-linked disorder, sex chromosomes may
modulate ASD risk as it is indicated by the higher prevalence of autism in: Klinefelter
syndrome (XXY) [241], XYY syndrome but not in X chromosome trisomy (XXX) [242,243].
The study by Bishop et al. noted an association of autistic traits in males with an extra sex
chromosome, with more noticeable changes observed in males with the XYY karyotype
than XXY. Moreover, in this study, although girls with karyotype XXX also had a high rate
of educational difficulties and required speech therapy, none of them had a diagnosis of
ASD or significant communication problems [242].

However, the increased prevalence of autism in Turner syndrome [244] may seem
contradictory to the above results.
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Nevertheless, Creswell et al. conclude that the key is not the presence of the X-gene,
but that there is an imprinted locus on the X-chromosome, which is inherited from a father
and lowers the threshold for the phenotypic expression of genes that predispose to autism
elsewhere on the genome. All patients with Turner syndrome and a diagnosis of autism in
the above study either had no X-chromosome inherited from their father or it was abnormal.
Boys, on the other hand, inherit the X chromosome only from the mother, so according
to Creswell et al.’s hypothesis, a normal paternal chromosome may reduce a child’s risk
of autism, so boys are potentially at higher risk for the disorder. However, it should be
noted that genes effects are often pleiotropic and affects various other genes and their
expression. The study’s final conclusion is that changes in genes on the X chromosome are
not directly related to the traits of the autistic phenotype, but that its action affects other
genes elsewhere in the genome that confer susceptibility to the development of the autistic
phenotype [245]. In summary, imprinted locus on the X-chromosome still requires further
study, and it has not been clearly determined why the threshold for autism expression in
males is lower than in females. Furthermore, it should be noted that most children with
autism spectrum disorders have a normal karyotype [246].

Nevertheless, the findings point to the possible importance of genes present on the
sex chromosomes, with attention being paid to neuroligin (NLGN) genes, which encode
proteins responsible for the formation of functional synapses, and the disruption of which
has been linked to the occurrence of autism [247]. Moreover, deletion of the Xp22 fragment
may be a potential cause of autism, since one of the neuroligin genes, NLGN4X, is present
in this chromosome fragment [248]. Thus, a possible explanation for the increased risk of
autism in children with sex chromosome abnormal syndromes is that genetic syndromes
lacking the protective effects of the second X chromosome with properly functioning NLGN
genes may have dysfunctional adhesion molecules involved in synapse formation and
neurodevelopment. However, this study was performed on small groups, so it needs to be
analyzed in more detail.

Tartaglione et al. also reported that a single injection of poly I:C to pregnant mice
causes deficits in social interaction, changes in gut microbiota composition, and neu-
roinflammatory response in both sexes. However, males seemed more disturbed than
females [249]. The effect of microbiota on microglia function in offspring is related to
gender and age, with a greater impact in males during prenatal development, while in
females during adulthood [250]. However, sex differences in microglia and microbiota still
remain unknown [249].

In conclusion, maternal immune activation may increase pro-inflammatory cytokines,
which may affect the microglia that shape normal neurogenesis in the first weeks of
life. Numerous models point to the association of neuroinflammation with the potential
development of autistic behavior, and therefore inhibiting the inflammatory response may
be an important therapeutic target.

9. MIA and Microbiome Dysregulation

Animal studies indicated that in addition to genetic predisposition, the maternal gut
microbiota may play an essential role in the occurrence of autism in offspring [110,251].
Maternal microbiome exposed to fat produces proinflammatory bacterial metabolites
that can activate maternal innate immune cells, which may be the cause of MIA and the
degenerative effect of this phenomenon on fetal neurodevelopment [251].

9.1. MIA and Impaired Intestinal Integrity

MIA offspring display behavioral features of ASD [252].
The study by Hsiao et al. showed that the offspring of mice with induced MIA, exhibit

impaired intestinal integrity and changes in the composition of the intestinal microflora,
reminiscent of those described in patients with ASD. Deficits in intestinal integrity were
detectable in 3-week-old MIA offspring, and in adult MIA offspring in both the small
and large intestine, insufficient expression of the ZO-1 (Zonula occludens-1) gene, which
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encodes scaffolding protein that crosslinks and anchors Tight Junction (TJ) strand proteins,
was detected. What is more, the same study has shown that Bacteroides fragilis supplementa-
tion corrects intestinal permeability in MIA offspring and alters the expression of genes that
regulate intestinal barrier integrity [110]. However, an excess of certain strains of B. fragilis,
on the contrary, can reduce integrity due to the secreted fragilinase, a metalloproteinase
capable of cleaving E-cadherin, which binds epithelial cells together [253].

Another study also in an animal model confirms increased intestinal integrity with
supplementation of B. fragilis strains, while showing that they can promote stem cell
regeneration and increase mucus secretion in intestines [254]. The positive effect on sealing
the intestinal barrier can be linked to the effect of these bacteria on increased synthesis of
SCFA, anti-inflammatory IL-22 and promoting the development of regulatory T cells [255].

Simultaneous oral treatment with Bacteroides fragilis and Bacteroides thetaiotaomicron
may improve communicative, repetitive, anxiety-like, and sensorimotor behavior associ-
ated with ASD in mice [110]. However, more recent studies do not support this link, and
in fact indicate that dysbiosis in autistic individuals is characterized by elevated levels of
Bacteroides spp. which in animal models can worsen behavior [256]. The increase in this
strain is confirmed by meta-analyses using several cohorts, with concomitant elevated IL-6
levels in ASD patients [257].

What is more, Hsiao et al. found that B. fragilis lowers IL-6 levels in the colon [110]—an
interleukin with an elevated level characteristic of MIA and may be related to behavioral
deficits in autism [186]. Interestingly, IL-6 and other cytokines regulate tight junction
expression; and, at the same time, the microbiome regulates cytokine levels [258]. Recent
studies also point to the anti-inflammatory effects of B. fragilis in the gut. Due to B. fragilis
administration, levels of colonic pro-inflammatory cytokines such as TNF-α, IL-1β, and
IL-6 were reduced and IL-10 increased [259].

9.2. Gut Microflora and MIA

Maternal immune activation may be directly related to the gut microbiome. Kim
et al. found that supplying vancomycin to the offspring of mothers injected with poly I:C,
prevented them from induction of behavioral abnormalities in MIA offspring. Moreover, it
led to lower levels of maternal IL-17a and offspring did not develop cortical lesions [187].
This may indicate that vancomycin-sensitive gut microflora play a role in stimulating cells
to IL-17a production and for the development of MIA-related behavioral abnormalities in
the offspring [260]. It is worth mentioning that vancomycin’s spectrum of action includes
bacteria including Clostridioides spp., the concentration of which may be elevated in ASD
and is one of the hypotheses of its pathogenesis [261].

The adult gut microflora is individual and it has been considered to be stable through-
out life [262]. However, more recent studies indicate that a change in diet can drastically
affect the composition of the already-formed microbiota [263]. This leads to the question
of whether the previously normal microflora of the mother under the influence of envi-
ronmental factors such as a diet rich in fats, can change and can be passed on to the child,
which, with the presence of appropriate genetic factors, can develop ASD.

Dysbiosis can cause activation of inflammation, leading to a mechanism resembling a
viral infection and resulting in maternal immune activation, which can result in behavioral
changes in the offspring. This may be related to both impaired intestinal junctions and
metabolites and molecules produced by the bacteria, which can stimulate the mother’s
immune system even without an ongoing infection. Unambiguous identification of gut
microflora disorders in ASD is difficult for several reasons. One is, on the one hand, the
discernible differences in the composition of the intestinal microflora of children with ASD
relative to a sex- and age-matched neurotypical control group while, at the same time, the
not so clearly discernible difference between neurotypical siblings and children with ASD.
Here, the differences may be due to a different age group and gender [257].
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At the same time, some studies indicate that siblings of children with ASD are more
likely to develop autism [264]. Further research is also needed to analyze why gender
variance with male dominance is characteristic in behavioral changes in animal models.

10. Obesity and a High-Fat Diet
10.1. Mother’s Obesity and ASD

Among the pregnancy factors that increase the risk of ASD is maternal obesity [265].
Obesity, insulin resistance, and type 2 diabetes are associated with systemic and adipose
tissue inflammation [266]. Gut microbiota may alter adipose tissue inflammation and
impair glucose metabolism due to being a source of pro-inflammatory molecules such as
lipopolysaccharides and peptidoglycan [267]. Plasma lipopolysaccharide levels increase
with a higher fat diet in mice [268] and humans [269]. A high-fat diet may increase the
percentage of gut microflora containing LPS, which leads to an increase in inflammatory
markers and triglycerides in the liver [268].

Moreover, both obese mice and humans have an altered composition of intestinal
microflora—microbiota contains more Firmicutes and fewer Bacteroidetes [270]. Bacteroidetes
may respond to caloric intake due to an increase in their amount under the influence of
a change to a low-fat, low-carbohydrate diet [271]. The abundance of bacterial strains is
also influenced by the supply of prebiotics—inulin increases the levels of F. prausnitzii and
Bifidobacterium spp. in humans [272].

10.2. A Maternal High-Fat Diet (MHFD)

A maternal high-fat diet (MHFD) may induce behavioral modifications in offspring
due to chronic low-grade inflammation [273], macrophage recruitment, and increased
pro-inflammatory cytokines in adipose tissue [274] or changes in maternal gut microbial
ecology [275]. Hildebrandt et al. found that both obese and non-obese mice fed on
high-fat diets have reduced numbers of Bacteroidetes, and increased numbers of Firmicutes
and Proteobacteria [276]. Among several species especially abundance of Lactobacillus
reuteri was diminished in MHFD offspring [251]. L. reuteri has been shown to promote
oxytocin levels [277], a hormone that dysregulation is considered a potential cause of
autism [278]. Oxytocin modulates behavior, learning, and memory [279]. In healthy
individuals, administering oxytocin increases emotion-identification of human faces and
attention to the eye region of faces [280]. Modahl et al. found that oxytocin levels do
not increase before the onset of puberty in individuals with ASD, unlike neurotypical
individuals [281]. Moreover, polymorphisms in the oxytocin receptor genes are related to
symptom severity of ASD [282].

The study by Buffington et al. showed that MHFD offspring have fewer oxytocin
immunoreactive neurons in the hypothalamus. What is more, they found that changes
induced by diet in the offspring gut microbiota block long-lasting neural adaptation in
the ventral tegmental area, which is a mesolimbic dopamine reward system. The data
showed that probiotics may correct oxytocin levels and synaptic dysfunction in the VTA
and reverse behavioral deficits in MHFD offspring [251].

What indicates the importance of the intestinal microflora is the fact that transferring
non-MHFD gut microbiota between mice by the fecal-oral route corrected social deficits in
MHFD offspring. However, there is a neurodevelopmental window during which microbial
transfer improves behavior [251].

Maternal factors during pregnancy therefore have a significant impact on the formation
of the developing fetus. Special attention should be focused on protecting the mother from
contact with infectious agents, but this cannot be fully avoided. What the mother can
influence, however, is to make sure she has a proper low-fat diet rich in fiber and vitamins
to strengthen the role of commensal bacterial flora. Additionally, body weight reduction is
advised to avoid chronic inflammation resulting from inflammation-active adipose tissue.
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11. Therapeutic Targets

Considering gut–brain axis pathomechanism and abnormal gut microbiota in ASD
patients, researchers took action to examine a variety of treatments. Their focus embraces
probiotics, antibiotics, microbiota transfer therapy, digestive enzymes, and even helminth
therapy. The aim is to modify the gut microbiota and therefore improve GI and behavioral
symptoms among children with ASD.

11.1. Probiotisc and Prebiotics

Many studies have been performed to show the efficiency of probiotics in ASD patients,
as these have therapeutic effects on animals. It was proven that probiotics mixture, which is
Lactobacillus spp. and Bifidobacterium spp. improved social ability in (the validated valproic
acid- or antibiotics-induced) animal model [283].

The efficiency of probiotics in ASD human patients was confirmed by Lauren M.
Schmitt et al.: They reported that a formulation of L. reuteri, dextran microparticles, and
maltose improves adaptive behavior and social preference and remains well tolerated [284].

In another study, through probiotics and fructo-oligosaccharide intervention, the
level of Bifidobacteriales and Bifidobacterium longum increased, while Clostridioides decreased.
These alterations in gut microbiota were observed to elevate SCFAs, which can modulate
the production of neurotransmitters serotonin and dopamine via the gut–brain axis, leading
to improved ASD symptoms [285].

However, randomized clinical trials testing the effectiveness of probiotic and prebiotic
therapy in children with ASD are still lacking. Overall, the evidence supporting the
effectiveness of probiotics in alleviating gastrointestinal symptoms or behavioral disorders
found in children with autism is limited [286].

What is more, findings of the systematic review and meta-analysis revealed no efficacy
of probiotics supplementation in children with ASD. More high-quality studies on children
are needed to examine the therapeutic effects of probiotics. Although animal studies seem
to give great evidence of improving ASD-like symptoms, there are significant differences
between mice and humans, that must be taken into consideration such as species dissimi-
larity, the drug’s role in inducing ASD model in mice, and complex pathomechanism of
ASD in humans [287].

11.2. Antibiotics

When it comes to antibiotics, numerous studies indicate, that pre- and postnatal
antibiotic exposure can be a risk factor for ASD in children, especially prenatal ones, which
is associated with dysbiosis described above [288].

A study by Logan K. Wink et al. suggests, that D-Cycloserince (DCS) appears to
improve social skills in ASD children compared to placebo but further studies are needed
to see the long-term impact of DCS [289].

Minocycline is a broad-spectrum tetracycline antibiotic, which, primarily, is used to
treat bacterial infections but also has a neuroprotective, anti-inflammatory, and antioxidant
effect [290,291]. Hence, it became an object of interest as an adjunctive treatment for
psychiatric and neurobiological conditions [292].

In one study, ASD children received minocycline for 10 weeks in addition to risperi-
done, as there is a lack of positive findings in efficacy of minocycline alone. As a result,
there were improvements in subscales of irritability and hyperactivity/noncompliance.
Due to the immunomodulatory and anti-inflammatory characteristics of minocycline, it is
hypothesized to be an adjunctive treatment to risperidone in children with ASD [293].

11.3. Microbiota Transfer Therapy (MTT)

Microbiota Transfer Therapy (MTT) is a modified fecal microbiota transplant, which
includes a bowel cleanse, two-week vancomycin treatment, commensal microbes from a
healthy donor transplant, and stomach-acid suppressant. According to an MTT interven-
tion on 18 ASD-diagnosed children The Gastrointestinal Symptom Rating Scale showed
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an approximately 80% improvement in GI symptoms and these remain for eight weeks
following treatment. Furthermore, there was a major reduction in behavioral symptoms
of ASD, and the gut microbiome was affected, in particular, increased Bifidobacteria, Pre-
votella, and Desulvovibrio [294]. Two years after the MTT trial, the same participants were
re-evaluated and researchers still observed higher gut microbiota diversity, increased
Bifidobacteria and Prevotella, and improvement in behavioral symptoms [295]. After com-
prehensive metabolomic measurements on plasma and fecal samples taken from previous
clinical trial, it was found that, in the beginning, ASD children had different metabolite
profiles in comparison to typically developing children.

Differences included lower levels of nicotinamide riboside, IMP, iminodiacetate,
methyl succinate, galactonate, valylglycine, sarcosine, and leucylglycine and a higher
level of caprylate and heptanoate. From being different at baseline, plasma metabolite
profiles appeared to resemble those in the typically developing group. This shows, that
MTT had a huge impact on plasma metabolites, and this way it can be a promising form of
therapy for ASD children [296].

11.4. Enzymes

The study by Horvarth et al. shows a lack of digestive enzymes in autistic children.
They observed low activity of at least one disaccharidase or glucoamylase, but in particular
low levels of lactase and maltase, and this resulted in gaseousness and loose stools [297].
More studies have been taken to establish if introducing digestive enzymes can improve
ASD symptoms, and the results are mixed. According to a study on 101 children with ASD,
3 months of digestive enzyme therapy can ease behavior and GI symptoms. There were
improvements in socialization, hyperactivity, stool quality, stomach aches, vomiting, and
food variety [298].

In a 12-month treatment study of a comprehensive nutritional and dietary interven-
tion, which included special vitamin/mineral supplements, fatty acids, Epsom salt baths,
carnitine, healthy gluten-free, casein-free, soy-free diet, and digestive enzymes the most
effective were vitamin/mineral supplements, essential fatty acids, and soy-free diet as they
have a role in improving nutritional status and nonverbal intellectual ability. As it comes to
digestive enzymes they appear to have insignificant clinical benefits [299].

11.5. Helminth Therapy

Due to the fact that inflammatory conditions have been established in ASD as cru-
cial factors, helminth therapy has become a subject of interest. Helminth supports anti-
inflammatory Th2 immune response, reverting pro-inflammatory Th1 activation, sustaining
gastrointestinal homeostasis, and also increasing production of IL-3, IL-4, IL-5, and IL-10
which can lower IL-6, IL-1B, and IL-12, increased in autism [300]. To examine the po-
tential therapeutic effects of helminth a pilot study on ASD adults was conducted and
the results show improvements in repetitive and restricted behavior. Although further
studies are needed to confirm the beneficial side of this treatment, this study indicates that
immune-modulating helminths may be a helpful therapy strategy for ASD patients in the
future [301].

11.6. Maternal Therapeutic Targets

An attempt to influence the gut microbiota of the mother may be useful in potentially
preventing the appearance of autism, reducing its symptoms, or facilitating diagnosis.
Several studies indicate the possibility of using specific strains of bacteria as biomarkers in
children with ASD and their mothers [7,302]. Possibly therapeutic targeting of Th17 cells in
susceptible pregnant women may reduce the risk of bearing children with inflammation-
induced ASD [11].

Attempts to use probiotics in pregnancy as a factor regulating disregulations in the
composition of the mother’s microflora and the consequences of this condition on fetal
neurodevelopment may also be promising [303].
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The animal study by Xiao Wang et al. has shown that oral probiotic administration
(Bifidobacteria, Lactobacillus helveticus, fructooligosaccharides, and maltodextrin) in female
mice prevented MIA-Induced ASD-relevant deficits in adult offspring. What is more, it
prevented parvalbumin-positive neuron loss, increased proinflammatory cytokines levels
in maternal serum and fetal brain, and decreased GABA levels [304].

More careful use of antibiotics in pregnancy as a potential risk factor for autism in
offspring may also be important [305]. Antibiotics release CW (bacterial cell wall peptido-
glycan), which is a PAMP (pathogen-associated molecular pattern) for Toll-like receptors,
especially TLR2. CW can transfer via the placenta to the fetal circulation and induce FoxG1
(neuronal transcription factor), which causes neuroproliferation in the cortex, leading to in-
creased dell density and then, postnatal behavioral abnormalities [306]. Overexpression of
FoxG1 induces GABAergic neuron overproduction and can be associated with an increased
risk of autism spectrum disorder [307].

A study was performed to examine if exposure to broad-spectrum ampicillin antibiotic
during a narrow critical perinatal window can induce ASD-like behaviors in mice. Re-
searchers demonstrated reduced gene expression of the oxytocin receptor and tight-junction
proteins in the prefrontal cortex, (which is responsible for social and emotional behaviors)
in exposed juvenile males and it resulted in atypical behavioral symptoms [305]. However,
the population-based cohort study consisting of 96,736 children aged 8 to 14 years showed
a small increased risk for ASD after using various antibiotics during pregnancy [308]. More-
over, a study by Yu-Chun Lin et al. examines if there is a potential association between
prenatal antibiotic exposure at a specific time and developing ASD in offspring. It was
proven, that only exposure after 34 weeks of gestation increased the risk of ASD, but still
slightly [309].

A small increase in risk was also observed in the study by Amanda S Nitschke et al.,
but particularly during the first and second trimesters [310]. In different cohort studies,
there was a 10% increase in risk in those exposed to antibiotics, but in the second or third
trimester [311].

Summing up, there are some conflicting results about the trimester, in which the risk
of developing ASD after antibiotic exposure is the highest. Although antibiotics have
been shown to have not such a significant role in causing ASD, more careful use during
pregnancy can be suitable. Total withdrawing antibiotics during a bacterial infection can
have much worse consequences for both mother and fetus [312].

11.7. Vitamin D Supplementation

Due to the immunomodulatory and neuroprotective role of vitamin D, its deficiency
during pregnancy contributes to immune and behavioral anomalies in post- gestational
age [313]. Vitamin D deficiency can cause pre-eclampsia, preterm birth and gestational
diabetes and these increase the risk for ASD in newborn. Hence, it is hypothesized that
vitamin D supplementation to pregnant women lower the risk of autism in the infants [314].

A comprehensive meta-analysis carried out by Wang et al. indicated the higher preva-
lence of lower concentrations of vitamin D in individuals with ASD but also establish a
correlation between reduced vitamin D levels and an elevated risk of developing ASD. In
addition, the analysis emphasized the impact of maternal and neonatal vitamin D concen-
trations revealing a pattern of decreased early-life levels in the ASD group. It indicated a
potential link between diminished maternal or neonatal vitamin D and the predisposition
to ASD development [315]. Moreover, Feng et al. observed that autistic children with
lower vitamin D levels showed poorer language and behavioral performance, and after
following 3 months of vitamin D supplementation improved their behavior, particularly
among children under 3 years of age. Nevertheless, the study was conducted on a relatively
small group. However, results suggest promising areas for further investigation [316].

A study by G. Stubbs et al. was conducted to show if supplementation with vitamin
in pregnancy is beneficial in decreasing the risk of autism in the offspring and results were
promising. Pregnant women with a previous ASD child received Vitamin D3 5000 IU/d,
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which is higher doses than is commonly recommended, followed by the supplementation
of a newborn with Vitamin D3 1000 IU/d to their third birthday and only 5% children
developed autism [317]. Furthermore, the study by Pérez-López et al. proved, that lower
maternal serum levels of 25(OH)D appears during the first trimester and have been associ-
ated with ASD in offspring. Although it seems reasonable to start supplementation during
this specific time, further studies are needed to confirm that statement [318].

Moreover, attention should be paid to the potentially dangerous effects of overdosing
on vitamin D at higher than recommended doses. It is therefore necessary to monitor
vitamin D blood levels to prevent toxicity and dangerous complications like hypercal-
cemia [319].

12. Limitations

The study is not a systematic review and does not provide quantitative information.
Strict inclusion and exclusion criteria were not applied. Both large and small studies
were included.

13. Conclusions

Changes in the gut microbiome of ASD patients have been confirmed in studies. The
greatest importance of the mode of delivery on microbial diversity in the early period of a
child’s life continues to be indicated, with exposure to the birth canal environment resulting
in children born by vaginal delivery being populated with more diverse communities
of Lactobacillus and Bifidobacterium as opposed to those born by cesarean section. These
differences diminish and are less noticeable during the first weeks after birth, and it is
worth noting that this time is crucial for the child’s neurodevelopment. The most important
potential significance of the probiotic strains is summarized in Table 2.

Table 2. The potential role of the bacteria.

Bifidocaterium Lactobacillus spp. Bacteroides spp.

producing SCFAs [92–94]
GABA releasing [129]

preventing MIA-Induced ASD-relevant deficits in adult offspring [304]
preventing parvalbumin-positive neuron loss, increased proinflammatory
cytokines levels in maternal serum and fetal brain, and decreased GABA

levels [304]

intestinal refilling of tryptophan
(Bifidobacterium infantis) [120]

inducing changes in γ-aminobutyric acid
(L. rhamnosus) [107]

taking part in maintaining tight junctions
between cells [55]

preventing the overgrowth of Candida [56]
promoting oxytocin levels (L. reuteri) [277]

B. fragilis:
regulating intestinal barrier integrity [110]

lowering Il-6 in colon [110,259]
reducing gut permeability [53]

promoting stem cell regeneration and
increase mucus secretion in intestines [254]
promoting the development of regulatory T

cells and IL-22 secretion [255]
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Dysbiosis can increase inflammation in the mother’s and children’s bodies, with a
high-fat diet, maternal obesity, or antibiotic therapy likely to disrupt the composition of the
microflora. However, further well-designed studies are needed due to the limitation and
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inconclusiveness of the studies so far, resulting from the inability to verify the authenticity
of the cases analyzed and conclusively determine whether the source of the disruption is
genetic or an external factor. An additional limitation is the number of studies on animal
models and cohorts relative to studies providing strong evidence.

Nevertheless, it is not clear what is the main cause of intestinal dysbiosis in ASD
patients—it is not fully discovered whether food selectivity, a characteristic symptom of the
disorder, causes dysbiosis and gastrointestinal symptoms, or whether feeding difficulties
are a factor in pre-existing dysbiosis.

Given the potential association of abnormal gut microflora in ASD patients, numerous
studies have been conducted to evaluate various treatments, such as probiotics, antibiotics,
microflora transfer therapy, digestive enzymes, and even helminth therapy to modify
gut microflora and regulate inflammation. Probiotic therapies in children with ASD are
promising, but more high-quality studies on children rather than animal models are needed
to investigate the therapeutic effects of probiotics. Attempts to use probiotics in pregnancy
as an agent to regulate maternal microflora composition and fetal neurodevelopment may
also be promising. However, more data and broadcasts on human models are lacking,
hampered by ethical motives and the difficulty of experimental studies on pregnant women.
Likewise, the results of the effects of probiotic therapy should also be treated with caution
due to the often inconclusive effects of bacterial strains on intestinal barrier tightness, the
behavior of individuals in animal models and differences in the effects of probiotic therapy
in clinical trials.

As for antibiotics, several studies suggest that exposure to antibiotics before and after
birth may be a risk factor for ASD in children, but the data are conflicting. Extremely
promising is microbiota transfer therapy (MTT), which affects changes in plasma metabo-
lites and may be an effective therapy to modify autistic symptoms. Also new is research
into helminth therapy, which supports an anti-inflammatory immune response and reduces
inflammation. Several studies also point to the possibility of using specific bacterial strains
as biomarkers in children with ASD and their mothers.

Overall, special attention should be paid to environmental factors modifying the
composition of the mother’s microflora and the course of her inflammatory response.
Further research is needed to address issues such as the composition, optimal dose, and
duration of probiotic supplementation in children with ASD, but also well-designed studies
evaluating probiotic therapy as well as antibiotic therapy in pregnancy. Specific bacterial
strains or their metabolites could be helpful in the early diagnosis of ASD as an early marker
of autism. Careful analysis of gastrointestinal symptoms in children with ASD could also
speed up diagnosis and early introduction of therapy, especially in patients presenting with
low-intensity symptoms. All of these measures would help develop effective treatment,
prevention, and diagnostic strategies to improve ASD symptoms.
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