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Abstract: The probiotic Limosilactobacillus reuteri DSM 17938 produces anti-inflammatory effects in
scurfy (SF) mice, a model characterized by immune dysregulation, polyendocrinopathy, enteropathy,
and X-linked inheritance (called IPEX syndrome in humans), caused by regulatory T cell (Treg)
deficiency and is due to a Foxp3 gene mutation. Considering the pivotal role of lipids in autoimmune
inflammatory processes, we investigated alterations in the relative abundance of lipid profiles in
SF mice (± treatment with DSM 17938) compared to normal WT mice. We also examined the
correlation between plasma lipids and gut microbiota and circulating inflammatory markers. We
noted a significant upregulation of plasma lipids associated with autoimmune disease in SF mice,
many of which were downregulated by DSM 17938. The upregulated lipids in SF mice demonstrated
a significant correlation with gut bacteria known to be implicated in the pathogenesis of various
autoimmune diseases. Chronic hepatitis in SF livers responded to DSM 17938 treatment with a
reduction in hepatic inflammation. Altered gene expression associated with lipid metabolism and the
positive correlation between lipids and inflammatory cytokines together suggest that autoimmunity
leads to dyslipidemia with impaired fatty acid oxidation in SF mice. Probiotics are presumed to
contribute to the reduction of lipids by reducing inflammatory pathways.

Keywords: probiotics; regulatory T cell; autoimmunity; lipid metabolism; microbiota; inflammation;
IPEX syndrome; autoimmune disease; scurfy mouse

1. Introduction

Regulatory T (Treg) cells are crucial for maintaining peripheral tolerance and inflam-
matory T cell suppression [1,2]. The Forkhead Box protein 3 (Foxp3) gene is a master
transcription factor involved in Treg cell development, stability, and function [3,4]. In mice,
Foxp3 gene mutation results in the scurfy (SF) mouse model, which serves as a unique
model for a rapidly fatal disease characterized by immune dysregulation, polyendocrinopa-
thy, enteropathy, and X-linked inheritance (human IPEX syndrome [5–7]. IPEX syndrome is
linked to various autoimmune disorders including type I diabetes (T1DM), eczema, thyroid
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dysfunction, interstitial pneumonitis, and renal disease [8]. In addition, there have been
case reports of autoimmune hepatitis (AIH) in patients with IPEX syndrome [9].

SF mice develop a severe autoimmune phenotype mediated by uncontrolled Th1
and Th2 cells, resulting in multi-organ failure and premature death before four weeks of
age [10,11]. The affected organs include the lungs (pneumonitis), skin (severe dermatitis
and autoimmune blistering disease), joints (arthritis), kidneys (glomerulonephritis), and
reproductive organs [2,12–14]. Additionally, SF mice demonstrate hematologic abnormali-
ties and display phenotypic features like autoimmune systemic lupus erythematous (SLE),
including the presence of anti-nuclear antibodies, anti-double-stranded DNA antibodies,
anti-histone antibodies, and anti-Smith antibodies [15]. In addition, they exhibit histological
and biochemical features of AIH and autoimmune cholangitis [16,17].

We previously demonstrated dynamic changes in autoimmunity and gut microbial
dysbiosis during the lifespan of SF mice. We were able to modify these changes through
intragastric administration of probiotic Limosilactobacillus reuteri DSM 17938 (DSM 17938),
resulting in marked prolongation of lifespans from <1 month to >4 months [18]. DSM
17938, derived from ATCC 55730, was isolated from a Peruvian mother’s breast milk by
removing two plasmids harboring antibiotic-resistance genes [19]. This modified strain has
been shown to be clinically beneficial in newborn conditions such as infantile colic [20–22]
and necrotizing enterocolitis (NEC) [23]. In rodents with experimental NEC, immune
deficiency, and healthy newborns, this strain has been observed to reset gut microbial
dysbiosis, generate beneficial metabolites, and regulate immune responses [18,24–26].
In SF mice, we identified a unique anti-inflammatory pathway which operates through
an adenosine/inosine-A2A-dependent mechanism, resulting in a profound reduction of
inflammatory T cells [18,27].

The development of autoimmune disorders is influenced by metabolic disturbances,
particularly those related to lipid metabolism. These abnormalities of lipid metabolism are
notable in both polygenic autoimmune disorders such as T1DM [28] and in monogenic
primary autoimmune diseases such as common variable immunodeficiency (CVID) [29].
Lipids are known to play crucial roles in inflammatory processes [30,31]. For example,
some polyunsaturated fatty acids have been shown to have anti-inflammatory effects in
autoimmune disorders such as SLE and T1DM, while others are pro-inflammatory [32].
In addition, the gut microbiome plays an important role in regulating intestinal lipid
metabolism in both human and animal models [33,34]. Gut microbial dysbiosis may con-
tribute to dysregulating lipid metabolism in primary immune deficiency [35,36] and other
diseases such as inflammatory bowel disease (IBD), thereby highlighting the importance of
this association and its potential benefit as a therapeutic target [33,37].

The changes in circulating lipids and the association of lipids with gut microbiota and
systemic inflammation in SF mice have not been investigated. We hypothesized that Foxp3
deficiency may be associated with the dysregulation of lipid metabolism. We previously
demonstrated dynamic gut microbial dysbiosis throughout the first 21 days of life of SF
mice. This dysbiosis was beneficially modulated through the intragastric administration of
probiotic DSM 17938 to SF mice [18]. Consequently, we hypothesized that DSM 17938 could
alter lipid derangements if it is present. In the current study, we examined plasma lipid
profiles and hepatic inflammation in SF mice, comparing the changes to normal mice and SF
mice treated with DSM 17938. Our aim was to investigate the potential effect of DSM 17938
on these changes. Additionally, we explored correlations between lipids and gut microbes,
circulating inflammatory biomarkers, and liver genes involved in lipid metabolism to
further understand the probiotic mechanism of action in Treg-deficient autoimmunity.

2. Materials and Methods

Mice. Wild-type (WT) C57BL/6J (000664) male and heterozygous B6.Cg-Foxp3sf/J
(004088) female mice, 6–8 weeks old, were purchased from the Jackson Laboratory (Bar
Harbor, ME) and were allowed to acclimatize for 2 weeks before setting up breeding
pairs for generating SF mice (B6.Cg-Foxp3sf/Y). Since the Foxp3 gene is located on the X
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chromosome, only males had SF features, with a 25% probability of total offspring from each
litter being SF mice. SF mice were collected from at least 3 different cages per experimental
group, and only male mice (either SF or WT littermates) were used in this study.

SF mice exhibited scaly skin on their ears, eyes, and tails and had deformed ears
beginning on day of life 13, and early deaths were noted around d24–28 of life [18,38]. Male
mice were treated with either control medium or the probiotic beginning on d8 of life, prior
to clinical recognition, and were analyzed on d21 of life at the weaning date. The mice
were housed under a 12 h light/12 h dark cycle and temperatures of 18–23 ◦C with 40–60%
humidity. They had access to food and water ad libitum in a specific-pathogen-free (SPF)
animal facility at the University of Texas Health Science Center at Houston (UTHealth).
This study was carried out in accordance with the recommendations of the Guide for
the Care and Use of Laboratory Animals of the National Institutes of Health (NIH). The
Institutional Animal Care and Use Committee (IACUC) of UTHealth approved the study
(protocol numbers: AWC-14-056, AWC-17-0045, and AWC-22-0112).

Preparation of DSM 17938 and treatment of mice. DSM 17938, provided by BioGaia AB
(Stockholm, Sweden), was prepared as described previously [39]. Briefly, DSM 17938 was
anaerobically cultured in deMan-Rogosa-Sharpe (MRS) medium at 37 ◦C for 24 h, and
then plated in MRS agar at specific serial dilutions and grown anaerobically at 37 ◦C for
48–72 h. A quantitative analysis of bacteria in culture media was performed by comparing
optical density (OD) 600 nm of cultures at known concentrations using a standard curve
of bacterial colony-forming units (CFU)/mL grown on MRS agar. Freshly cultured DSM
17938 bacteria were re-suspended in specified volumes of fresh MRS media based on the
calculated CFU required for each feeding, prepared daily for mouse feeding.

Newborn mice were fed with DSM 17938 (107 CFU/day in 100 µL) using intragastric
administration, daily, starting from day of life 8 (d8) to d21 (SFL, n = 5) or compared with
SF mice (SFC, n = 6) and WT male littermate controls (WTC, n = 6) that were fed with
an identical volume of fresh MRS media in the absence of DSM 17938. The dosage and
chosen administration method were based on documented evidence of the probiotic strain’s
efficacy. For infantile colic, beneficial effects were observed with oral administration of
~5 × 108 CFU (5 drops) in sunflower oil to the babies [22,40,41]. In neonatal experimental
NEC in rodents, a daily intragastric administration of 106 cfu/g. b.w./day beginning on d10
had been established [24,39,42]. In Treg-deficient SF mice, daily intragastric administration
of 107 cfu/day until d21 reduced the severity [18,25,43]. Mice were euthanized at age d22
to collect blood and cecal/colonic contents. The isolated plasma and cecal contents were
stored immediately at −80 ◦C for further plasma lipid profile and fecal microbiota analysis.

Plasma global lipid profile analysis. Plasma lipid metabolites were processed and assayed
using Metabolon Inc. “www.metabolon.com (accessed on 6 February 2024)” [18]. A total
of 212 named lipids in plasma were detected using a non-targeted metabolomic analysis
platform including ultra-high-performance liquid chromatography/electrospray ionization
tandem mass spectrometry (UPLC-MS/MS) and gas chromatography/mass spectrometry
(GC/MS). The lipid profile data included fold changes of SFC/WTC (SF vs. Control)
and SFL/SFC (SF+ DSM 17938 treatment vs. SF + MRS treatment) and were reported by
Metabolon Inc., with p < 0.05 indicating a significant difference between the groups using
the Welch’s two-sample t-test.

Stool microbial community analysis. Sequencing and bioinformatics were performed at
Louisiana State University Health Sciences Center Microbial Genomics Resource Group
“http://metagenomics.lsuhsc.edu/mgrg (accessed on 6 February 2024)”. The 16S ribosomal
DNA hypervariable region V4 was PCR-amplified using primers V4F GTGCCAGCMGC-
CGCGGTAA and V4R GGACTACHVGGGTWTCTAAT with Illumina adaptors and molec-
ular barcodes to produce amplicons. Samples were sequenced on an Illumina MiSeq
(Illumina, San Diego, CA, USA) using a 500 cycle V2 sequencing kit to produce 2 × 250
paired end reads. The forward and reverse-read files were processed using the DADA2 [44]
and pipelined in QIIME2 [45]. Amplicon sequence variants were taxonomically classified
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using the SILVA v138 database [46]. Bacterial alpha and beta diversity metrics, as well as
taxonomic community assessments were performed using QIIME2.

Plasma cytokines, alanine aminotransferase (ALT), and aspartate aminotransferase (AST)
measurement. Plasma cytokines IFN-γ and IL-4 were assessed using a mouse proinflamma-
tory assay kit from Meso Scale Discovery (MSD), according to the manufacturer’s protocol.
Plasma ALT and AST levels were measured using a Beckman Coulter AU480 Chemistry
Analyzer using the Center for Comparative Medicine, Pathology Diagnostic Laboratory,
Baylor College of Medicine, Houston, Texas, data reported as U/L.

Histological evaluation of hepatitis in mouse livers. Liver tissues collected from mice were
fixed and processed using the Cellular and Molecular Morphology Core Laboratory at Texas
Medical Center Digestive Diseases Center, Houston, Texas, and stained with hematoxylin
and eosin (H & E) for histological evaluation. Hepatitis evaluation was performed by
two pathologists independently, using the modified hepatic activity index (abbreviated as
modified HAI) grading system. We scored periportal or periseptal interface hepatitis (0 to
4), confluent necrosis (0 to 6), focal lytic necrosis, apoptosis, and focal inflammation (0 to
4), portal inflammation (0 to 4), and modified staging (architectural changes, fibrosis, and
cirrhosis) (0 to 6) [47].

Genes associated with lipid metabolism analyzed using a quantitative real-time polymerase
chain reaction (RT-qPCR). Total RNA was extracted from mouse liver tissues using the
RNAeasy Mini Kit (QIAGEN), according to the manufacturer’s protocol. The total RNA
(500 ng) was reverse transcribed using amfiRivert cDNA synthesis Platinum Master Mix
(GenDepot). qRT-PCR was performed using amfiSure qGreen Q-PCR Master Mix (GenDe-
pot) on the CFX Opus 384 Real-Time PCR System (BIO-RAD). The peroxisome proliferator-
activated receptor (Ppara = Pparα) and its target genes [48], genes involved in de novo
lipogenesis [49] and genes that are involved in lipid and fatty acid uptake [50,51], were
evaluated. All qPCR primers are listed in Supplementary Table S1.

Statistical Analysis. We measured the difference in individual lipid metabolites from the
testing groups and reported fold changes; the significance of differences was tested using
one-way ANOVA. The upregulated and downregulated lipid metabolites were defined
as those with 2.0 (up) or 0.5 (down)-fold changes when associated with a p-value < 0.05.
Integrative analysis of lipid metabolites and gut microbiota: lipid metabolites and plasma
cytokine levels were measured by calculating the Spearman’s rank correlation coefficient
using the matched samples of each group with both lipid metabolites and microbiota
data or plasma cytokine data. A heatmap was plotted using the R package heatmap.
For gene expression analysis, to compare the groups of SFC, SFL, and WTC, we used a
two-way ANOVA with Tukey’s multiple comparisons. For histological parameters, to
compare the groups of SFC, SFL, and WTC, we used one-way ANOVA with Tukey’s
multiple comparisons test using GraphPad Prism version 9.4.1 (GraphPad Software, San
Diego, CA, USA). Data are represented as means ± SD. p values < 0.05 were considered
statistically significant.

3. Results
3.1. Altered Plasma Lipid Profiles in Treg-Deficiency SF Mice

Altogether, 212 lipid metabolites were identified in the plasma of mice. The SFC group
exhibited significant dyslipidemia in comparison to the WTC mice, as evidenced by the
significant upregulation of 114 (54%) lipid metabolites, with only 9 (4%) lipids showing
downregulation. Specifically, there was a notable increase in the levels of 14 phospholipids,
14 inositols, 12 acylcarnitines, 11 polyunsaturated fatty acids (PUFAs), 11 long-chain FAs
(LCFAs), 11 mono- or di-acylglycerols, nine lysolipids, six sphingolipids, four FAs involved
in branched-chain amino acid metabolism, three medium-chain FAs (MCFAs), and three
acylglycines (Figure 1a). Among the individual upregulated lipids in the SFC group
compared to the WTC group, monoacylglycerols and diacylglycerols exhibited the highest
fold-change increases, exceeding four times the baseline levels in WTC mice (Figure 1b).
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Figure 1. Changed plasma lipid profiles in Treg-deficiency SF mice: (a) the number of lipid sub-
pathway categories were upregulated, and (b) Mono- and di-acylglycerols had >4-fold increase in SF
mice (SFC, n = 6) compared to WT mice both fed with control media (WTC, n = 6).

3.2. Probiotic DSM 17938 Modulates Plasma Lipid Profile in SF Mice

Intragastric administration of DSM 17938 to SF mice was associated with downregula-
tion of 37 lipids (17%), including sub-pathways phospholipids, acylcarnitine, dihydroxy
FA, monoacylglycerol, polyunsaturated FAs, BCAA, and acylglycine. Only four lipids (2%)
were upregulated.

Treatment with DSM 17938 resulted in the downregulation of many lipid pathways,
including eight phospholipids (the same phospholipids upregulated in SF mice), four
acylcarnitines, and MCFAs, three dicarboxylate FAs, and two of each of the following lipid
categories, dihydroxy FAs, LCFAs, monoacylglycerol, branched FAs. Additionally, there
was downregulation observed in one PUFA and one acylglycine (Figure 2).
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3.3. Foxp3+ Treg Deficiency Reduces Expression of Genes That Are Related to Lipid Metabolism in
the Liver of SF Mice

To investigate the mechanism of plasma dyslipidemia caused by Treg-deficiency,
we analyzed genes associated with lipid metabolism in the liver of SF mice. PPARα
is a ligand-activated transcription factor that belongs to the steroid hormone receptor
superfamily, which is expressed predominantly in tissues that have a high level of fatty
acid catabolism [52]. PPARα regulates the expression of several genes critical for lipid
and lipoprotein metabolism [52]. Expression levels of Ppara and its targets, as well as
genes related to fatty acid synthesis and uptake were downregulated (Figure 3). Notably,
intragastric administration of the probiotic did not rescue the inhibition of gene expression
levels in SF mice.
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Figure 3. Foxp3 gene mutation globally and it severely reduced the expression levels of genes that
are related to lipid metabolism in the liver of SF mice. Pparα and its target genes include acyl-CoA
Oxidase 1 (Acox1), carnitine palmitoyltransferase (Cpt1a and Cpt2), peroxisome proliferator-activated
receptor gamma coactivator 1-alpha (Ppargc1a), and acyl-CoA thioesterase (Acot1, and Acot3) [48].
Genes involved in de novo lipogenesis [49] include sterol regulatory element binding transcription
factor 1 (Srebf1) and fatty acid synthase (Fasn). Genes involved in lipid and fatty acid uptake [50]
include very-low-density lipoprotein receptor (Vldlr), FAT atypical cadherin 1 (CD36 = Fat), and
fatty acid transport proteins Slc27a2 = Fatp2, and Slc27a5 = Fatp5) [51]. Downregulated genes in SF
mice could not be reversed using probiotic treatment. Significant differences between the groups are
indicated. WTC n = 6; SFC n = 6; and SFL n = 5. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

3.4. Altered Plasma Lipids Are Correlated with Gut Microbiota in SF Mice

We have discovered that intragastric administration of DSM 17938 to SF mice ame-
liorates Treg-associated gut microbial dysbiosis. We found that the decreased Shannon
α-diversity associated with Treg deficiency was reversed with DSM 17938 treatment, and
that a three-dimensional principal coordinate analysis (PCoA) revealed SF mice with DSM
17938 treatment displayed a shift in microbial community, which was distinct from ei-
ther WT or SF populations [18,25]. An integrative analysis of changed plasma lipids and
gut microbiota revealed a number of correlated alterations, as demonstrated using the
HeatMap (Figure 4a). We found that altered lipid metabolites in 19 lipid subpathways
significantly correlated with 12 genera of fecal bacteria (Figure 4b). Phospholipids, acylcar-
nitines, PUFAs, LCFAs, and acylglycerols were associated with several common genera of
bacteria. All the upregulated lipids were positively associated with Escherichia and were
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negatively associated with Ruminococcus. Among them, phospholipids correlated with
the highest number of bacteria, including seven different bacterial genera. There were
47 acylcarnitine−derivatives correlated with bacteria, showing positive correlation with
Bacteroides, Pseudomonas, Anaerotruncus, and Escherichia, and negative correlation with Ru-
minococcus, Anaeroplasma, Turicibacter, and Akkermansia. As mentioned, 17 percent of plasma
lipids were downregulated by DSM 17938, and these lipids correlated with Escherichia,
Pseudomonas, and Bacteroides.
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in its identify, however, compounds have not been officially confirmed based on a standard. (b) Dot 
graph indicating Spearman correlation coefficient Rho (x-axis) and significant correlation p value 
(<0.05, y-axis) between genera microbiota (the colors) and plasma lipid sub-pathways (the dot sizes) 
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Figure 4. Correlation of gut microbiota and plasma lipids comparing SFC with WTC. (a) Correlation
heatmap: bacterial genera (Labeled panel on the top) and lipid metabolites (labeled panel on the
right), showing positive (orange/yellow) and negative (blue) correlations with changed lipids in
SFC (n = 6) compared to WTC (n = 6). Upregulated (red) lipids and downregulated (blue) lipids are
shown; note that most upregulated lipids in SF mice were positively correlated with Pseudomonas,
Anaerotruncus, Escherichia, and Bacteroides. * indicates compounds that Metabolon Inc. has confident
in its identify, however, compounds have not been officially confirmed based on a standard. (b) Dot
graph indicating Spearman correlation coefficient Rho (x-axis) and significant correlation p value
(<0.05, y-axis) between genera microbiota (the colors) and plasma lipid sub-pathways (the dot sizes)
changed in SF mice compared to WT mice. Pearman’s Rho measures the strength of positive (the
right) or negative (the left) association between genera microbiota and sub-pathways of lipids. Colors
represent different genera of bacteria. Dot sizes represent different lipid sub-pathways. Twelve
identified genera were significantly associated with 19 different lipid sub-pathways. Importantly,
Escherichia (purple), Pseudomonas (orange), and Anaerotruncus (red) positively correlated significantly
with altered levels of lipids, while Anaeroplasma (blue) and Ruminococcus (black) negatively correlated
significantly with altered lipids in SF mice.
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3.5. Changed Plasma Lipids Are Positively Correlated with Plasma Th1-Associated (IFN-γ) and
Th2-Associated (IL-4) Cytokine Levels

We have previously demonstrated significant increases in plasma Th1- and Th2-
associated cytokines in SF mice, levels of which were reduced through intragastric admin-
istration of DSM 17938 [18]. Certain lipids have been identified as potential contributors to
systemic inflammation in primary autoimmune diseases [29]. To understand which lipid
metabolites were associated with Th1- and Th2-associated inflammation, we conducted
a correlation analysis between upregulated lipid metabolites and plasma IFN-γ and IL-4.
The results showed significant positive correlations between 1-linoleoyl-GPA, caprylate,
stearoyl sphingomyelin, taurochenodeoxycholate, and aurohyodeoxycholic acid with IFN-
γ (Table 1). Additionally, three lysolipids, 1-palmitoyl-2-oleoyl-GPC, LCFAs (eicosenoate
and erucate), PUFA (adrenate), and 1-(1-enyl-palmitoyl)-GPE were positively correlated
with IL-4 (Table 2).

Table 1. Lipid biochemicals associated with IFN-γ in SF mice.

Lipid Pathway Lipid Biochemical R Value p Value

Lysolipid 1-linoleoyl-GPA (18:2) 0.94 0.015

Medium-Chain Fatty Acid caprylate (8:0) 0.89 0.033

Sphingolipid metabolism stearoyl sphingomyelin
(d18:1/18:0) 0.89 0.033

Primary Bile Acid Metabolism taurochenodeoxycholate 0.94 0.017

Secondary Bile Acid Metabolism taurohyodeoxycholic acid 0.93 0.007

Table 2. Lipid biochemicals associated with IL-4 in SF mice.

Lipid Pathway Lipid Biochemical R Value p Value

Lysolipid 1-(1-enyl-oleoyl)-GPE (P-18:1) 0.94 0.017
1-stearoyl-GPE (18:0) 0.89 0.033
1-arachidonoyl-GPA (20:4) 0.99 0.0003

Phospholipid Metabolism 1-palmitoyl-2-oleoyl-GPC
(16:0/18:1) 0.89 0.033

Long-Chain Fatty Acid eicosenoate (20:1) 0.94 0.017
erucate (22:1n9) 0.94 0.017

Polyunsaturated Fatty Acid adrenate (22:4n6) 0.94 0.017

Lysoplasmalogen 1-(1-enyl-palmitoyl)-GPE (P-16:0) 0.94 0.017

3.6. Foxp3+Treg Deficiency Induces Chronic Hepatitis and Can Be Partially Reduced through
Intragastric Administration of DSM 17938

Although SF mice had significantly upregulated lipids in plasma, hepatic steatosis
was not observed in histological evaluation. Instead, the livers of SF mice demonstrated
heavy portal tract and periportal chronic inflammation with interface hepatitis, and central
and portal vein endothelialitis. With intrasgastric administration of DSM 17938, SF mice
showed marked reduction of the portal tract and subendothelial central vein lymphocytic
inflammation (Figure 5a). The average total modified HAI score for SF mice was 5.45 ± 1.48
(of a maximal total score of 24), whereas normal WT mice scored 0 (no changes associated
with autoimmunity) (Figure 5b). SF mice scored a mean of 1.95 ± 0.76 in periportal or
periseptal interface hepatitis (Figure 5c); 0 in confluent necrosis; 1.25 ± 0.42 in focal lytic
necrosis, apoptosis, and focal inflammation (Figure 5d); 2.25 ± 0.67 in portal inflammation
(Figure 5e); and 0 in modified staging (no observed architectural changes, fibrosis, or
cirrhosis). Interestingly, venous endothelial inflammation involving most of the portal and
hepatic venules was much like that seen in AIH and acute T-cell mediated rejection of
the liver in human patients. DSM 17938 impacted the total score, periportal or periseptal
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interface hepatitis, and portal inflammation scores (Figure 5b,c,e), while no improvement
was noted in the focal inflammation score (Figure 5d). However, elevated plasma levels
of ALT and AST were not observed in SF mice compared to WT mice (Supplementary
Figure S1).
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4. Discussion

We have uncovered the presence of dyslipidemia in Treg-deficiency-induced autoim-
munity. Altered plasma lipids were significantly correlated with systemic inflammation and
with specific genera of gut bacteria. Treg-deficiency due to Foxp3 gene mutation resulted in
the histological features of hepatitis which could be ameliorated using gavage feeding DSM
17938. Our study highlights the interplay of liver gene expression, immune cell cytokines,
gut microbes, and microbe-associated metabolites in this autoimmune disease.

4.1. Altered Lipid Metabolites in Mice and Humans with Treg-Deficiency Are Associated
with Inflammation

Bioactive lipid metabolites play crucial roles in inflammatory processes and regulate
immune responses while influencing leukocyte trafficking and clearance in autoimmune
diseases [30,53]. Our observations show significant lipid derangements in SF mice, with a
>50% elevation of identified lipid metabolites including PUFAs, acylcarnitines, acylglycines
(acylglycerols), monoacylglycerol compounds, sphingolipids, and LCFAs. Upregulated
lipids are also found in patients with autoimmune conditions such as T1DM, rheumatoid
arthritis (RA), multiple sclerosis (MS), SLE, and IBD [54]. In human IPEX syndrome,
endocrinopathy evolves during the first year, while T1DM usually develops in the first
month of life due to extreme autoimmunological reactions from activated T cells [55].
However, there have been no studies of lipidomics in human IPEX syndrome or in SF mice.
In our previous studies, we showed a dynamic progression of autoimmunity development
over the first 22d of life. We demonstrated increased levels of IFN-γ and IL-4 in the plasma
along with IFN-γ- and IL-4- producing CD4+T cells in the spleen. High cytokines were
detectable as early as d8 of age, even before the manifestation of clinical symptoms. Notably,
these elevated levels of Th1- and Th2-associated cytokines persisted throughout d22 of
age [18]. In the current study, we found that the upregulation of lipids positively correlated
with circulating IFN-γ and IL-4 levels.

4.2. Categories of Lipids That Are Increased in Autoimmune Diseases

High serum PUFAs, including ω-3 and ω-6, are observed in SLE and correlate with
elevated anti-nuclear antibody (ANA) titers, and levels responded to immunosuppres-
sants [56]. Notably, our SF mice also displayed significant elevations in the same PUFAs
seen in human SLE, including docosahexaenoic (DHA), eicosapentaenoic acid (EPA), steari-
donic, linolenic, and arachidonic acid. Some studies have demonstrated that ω-3 PUFAs
have anti-inflammatory functions and could have therapeutic potential in autoimmune
diseases [57]. Therefore, it is plausible to hypothesize that the increased PUFAs in SF mice
may represent a response to inflammation.

Acylcarnitines, involved in LCFA transportation into the mitochondria, are increased
in several autoimmune diseases, and have been used as important diagnostic markers for
inborn errors of fatty acid oxidation, as well as markers for energy metabolism, deficits
in mitochondrial and peroxisomal β-oxidation activity, insulin resistance and physical
activity [58]. Recently they have been identified as potential biomarkers for the diagnosis
of SLE [59]. Given the presence of similarities between SF mice and SLE [15], we may
postulate that acylcarnitines may also be useful biomarkers in Treg-associated autoimmune
disorders [35].

Monoacylglycerol compounds were significantly upregulated in the plasma of patients
with systemic sclerosis (SSc). These may function as endogenous cannabinoid ligands
involved in SSc pathogenesis [60]. The elevation of sphingolipids, including ceramide,
described in SLE and RA, can lead to apoptosis, endothelial dysfunction, and perpetuation
of autoimmunity [61]; hence, a similar mechanism may be postulated in Treg-associated
autoimmune pathogenesis. It is noteworthy that a diet rich in LCFAs can contribute to
nonalcoholic steatohepatitis development in human and guinea pig models [62]. Despite
elevated LCFAs in SF mice, liver histology did not show signs of steatosis, indicating that
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LCFAs may contribute to hepatitis by exaggerating T helper immune responses rather than
causing steatohepatitis.

LCFAs, particularly, very-long-chain fatty acids (VLCFAs), which are abundant in
myelin, have been implicated in autoimmune-mediated neuroinflammation, including the
development of MS, with evidence of elevated sphingosine-1-phosphate (S1P) levels in glia.
Therapeutic effects of S1P inhibition in a mouse model of MS has been reported [63]. Inter-
estingly, it has been previously shown that DSM 17938 reduced the severity of autoimmune
encephalomyelitis in a mouse model with MS [64].

4.3. Potential Role of PPARα in Dyslipidemia and Chronic Hepatitis in SF Mice

The reduced expression levels of genes associated with de novo lipogenesis, lipid and
fatty acid uptake, and fatty acid oxidation in SF mice, may be secondary to inflammation
in SF mice. The PPARα pathway is primarily expressed in rodent hepatocytes and is
responsible for fat metabolism and carbohydrate homeostasis, as well as cell proliferation
and differentiation and inflammation. The roles of PPARs and their receptors in chronic
diseases such as diabetes, cancer, and atherosclerosis are well established [65]. PPARα
is a key regulator of fatty acid oxidation, and its activation leads to a decrease in lipid
levels and elimination of triglyceride from plasma [66]. PPARα expression was downreg-
ulated in SF mice, along with its target genes, which would inhibit fatty acid oxidation
and, subsequently, potentially upregulate lipid levels in the plasma [52,67]. Additionally,
PPARα activation represses NF-κB signaling, resulting in decreased inflammatory cytokine
production by different cell types, with reduced tumor necrosis factor-alpha (TNF-α), IL-6,
and Il-1β [68]. PPARα inhibits activator protein −1 (AP-1)-dependent genes involved in
inflammation and tumor progression [69] and suppresses Th17 cells through modulation of
IL-6/STAT3/RORγt signaling in rat models of autoimmune myocarditis [70]. The reduction
in PPARα activity in SF mice, coupled with dyslipidemia, may, therefore, be contributing
to worsening autoimmunity, inflammation, and hepatitis. PPARα could potentially serve
as a molecular target for the treatment of autoimmune diseases.

Finally, gut bacteria and microbial-associated metabolites, such as bioactive lipids
and endocannabinoids could serve as a PPARα agonist with potential benefits in human
diseases [37]. For instance, Akkermensia muciniphila can activate PPARα via modulating
endocannabinoid-related lipids, specifically, mono-palmitoyl-glycerols [71]. We, therefore,
postulate that changes in the SF mice microbiome, including down regulation of Akkermensia
species, might be associated with PPARα downregulation. However, further studies are
necessary to validate this hypothesis.

4.4. Potential Clinical Relevance of SF Mouse Chronic Hepatitis Phenotype

Dysfunction or deficiency of Tregs has been linked to the onset and progression of
AIH [72]. AIH- associated autoantibodies have been described in patients with IPEX
syndrome [9,73]. A recent study reported the clinical, serological, and immunopathological
characteristics of AIH with primary biliary cholangitis (PBC) in SF mice [17]. Additionally,
central perivenulitis (CP) was observed in SF mice livers, shedding light on the potential
use of SF mice as an acute T-cell mediated rejection model in a transplant setting or
pharmacologic therapy for human patients with AIH. Indeed, the pathophysiology of SF
mice is mainly mediated by Th1 and Th2 cells and their associated cytokines [10,18,74].

4.5. DSM 17938 Impacts Inflammation and Autoimmune-Associated Lipids through Modulating
Gut Microbiota and Microbial-Associated Metabolites in SF Mice

Gastrointestinal microbiota dysbiosis can contribute to autoimmune disorders [35,75,76].
Probiotics not only reshape the host microbiota but also impact global metabolic functions,
offering potential autoimmune disorder treatments [77]. The gut microbiota influenced
by DSM 17938 in SF mice has been associated with metabolic and immunomodulatory
regulation [78]. The immunomodulatory mechanisms of DSM 17938 include promoting
the maturation of tolerogenic dendritic cells (DCs) via a toll-like receptor (TLR2) and
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educating naïve T cell differentiation toward Treg cells [24]. Additionally, DSM 17938
directly inhibits inflammatory effector T cells [42] and inhibits the NF-kB pathway [39]
reducing inflammatory cytokine production during inflammation. Probiotic-educated
Treg cells maintain a regulatory function in neonatal stress conditions [79]. The primary
mechanism through which Treg cells control inflammatory T cells is through the production
of adenosine, which interacts with the adenosine receptor, specifically, A2A. This receptor is
predominately present on inflammatory T cells and inhibits their differentiation [80].

In SF mice, the absence of this control mechanism could be reversed by probiotic-
derived adenosine and the adenosine metabolite inosine. Adenosine and inosine act as
agonists of the adenosine receptor A2A to control inflammation [18,27,43]. DSM 17938 may
influence other bacteria-associated metabolites, including amino acids and their derivatives
such as glutamine, tryptophan/indoles, and polyamines. These metabolites can regulate
the PPAR gamma (PPARγ) pathway (for example, glutamine), promote Treg cell activation
(for example tryptophan-derived indoles), and facilitate renewal of the intestinal mucosa
(for example, glutamine and polyamines) [26,81].

We found that DSM 17938 significantly alleviated hepatitis histology in SF mice. How-
ever, it only downregulated 17% of lipids, and could not rescue the downregulated genes
associated with lipid metabolism. In SF mice, Pseudomonads, Escherichia, and Bacteroides
positively correlated with upregulated lipids. These lipids were downregulated by DSM
17938. It is worth noting that the relative abundance (RA) of Bacteroides at the genus level
in SF mice increased to 30%, which could be reduced to the normal levels of 15% by DSM
17938 [18]. Bacteroides, specifically Bacteroides fragilis containing the ubiquitin B (UBB) gene,
may trigger autoimmune responses due to molecular mimicry in T1DM, IBD, and MS [82].
P. aeruginosa, a strain belonging to Pseudomonads can cause diseases across diverse host
organisms [83].

Conversely, we found that the bacteria Anaeroplasma and Ruminococcus were negatively
correlated with altered lipids in SF mice. These bacteria are generally considered beneficial
to protect against autoimmunity. Anaeroplasma is stimulated by probiotic Lactobacillus rham-
nosus GG in rodent models and may have the potential to produce anti-tumor effects [84].
In the setting of a high-fat diet, Anaeroplasma may contribute with other commensals to
reduce the formation of atherosclerotic plaque [85]. Downregulation of Ruminococcus has
been also associated with other autoimmune diseases [86]. SF mice showed a marginal
reduction in Ruminococcus compared to WT mice, while intragastric administration of DSM
17938 to SF mice resulted in recovery of Ruminococcus to a level similar level to that in
WT mice [18].

Finally, probiotics and gut commensals may cooperate in regulating enterocyte lipid
metabolism. For example, L-lactate secreted from Lactobacillus paracasei promotes lipid stor-
age, while acetate secreted from Escherichia coli stimulates lipid oxidation and consumption
in enterocytes [34]. Therefore, exploring the dysfunction of lipid metabolism in SF mice’s
enterocytes and gut microbial modulation of these processes holds promise for identifying
therapeutic targets in these disorders.

4.6. Study Limitations

Our data were analyzed on the weaning day (d22) of SF mice. The illness in SF mice
leads to malnutrition because they consume less of the dam’s breast milk compared to their
WT littermates, and malnutrition may also be a factor affecting the lipid metabolic profile.
Also, in human AIH, serum enzyme ALT and AST levels are markedly increased [87].
However, we chose to study mice at less than 1 month of life because of severe multiorgan
(including pulmonary) failure, ensuring their survival at the time of testing. These mice
were on breast milk, as we intentionally avoided the effects of solid food on gut microbiota
in this study. Therefore, we did not analyze liver injury beyond d22 of age. Liver cell death
was relatively mild, even though we found lymphocytic infiltration in the face of normal
plasma ALT and AST levels.
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5. Conclusions

Treg deficiency not only leads to systemic inflammation and malnutrition, but also
results in a global increase in plasma lipids with decreased expression of hepatic genes
associated with lipid transport, fatty acid oxidation, and de novo lipogenesis. Certain
microbial taxa were linked to abnormal lipids, and these lipids were tightly associated
with plasma IFN-γ and IL-4 levels. We found that administration of a single probiotic, L.
reuteri DSM 17938, correlated with shifts in microbial taxa known to improve gut microbial
carbohydrate and fat metabolism. L. reuteri improved liver periportal infiltration and
endotheliitis. Further research on lipid metabolism and its connection with bacterial
communities in SF mice may provide diagnostic biomarkers and therapeutic targets for
treating autoimmune or transplant-associated liver disease.
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