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Abstract: Normal pregnancy involves numerous physiological changes, including changes in hor-
mone levels, immune responses, and metabolism. Although several studies have shown that the
gut microbiota may have an important role in the progression of pregnancy, these findings have
been inconsistent, and the relationship between the gut microbiota and metabolites that change
dynamically during and after pregnancy remains to be clarified. In this longitudinal study, we com-
prehensively profiled the temporal dynamics of the gut microbiota, Bifidobacterium communities, and
serum and faecal metabolomes of 31 women during their pregnancies and postpartum periods. The
microbial composition changed as gestation progressed, with the pregnancy and postpartum periods
exhibiting distinct bacterial community characteristics, including significant alterations in the genera
of the Lachnospiraceae or Ruminococcaceae families, especially the Lachnospiraceae FCS020 group
and Ruminococcaceae UCG-003. Metabolic dynamics, characterised by changes in nutrients important
for fetal growth (e.g., docosatrienoic acid), anti-inflammatory metabolites (e.g., trans-3-indoleacrylic
acid), and steroid hormones (e.g., progesterone), were observed in both serum and faecal samples
during pregnancy. Moreover, a complex correlation was identified between the pregnancy-related
microbiota and metabolites, with Ruminococcus1 and Ruminococcaceae UCG-013 making important
contributions to changes in faecal and serum metabolites, respectively. Overall, a highly coordinated
microbiota–metabolite regulatory network may underlie the pregnancy process. These findings
provide a foundation for enhancing our understanding of the molecular processes occurring during
the progression of pregnancy, thereby contributing to nutrition and health management during
this period.

Keywords: pregnancy; postpartum period; gastrointestinal microbiome

1. Introduction

Normal pregnancy is a unique biological process involving simultaneous changes
in various physiological systems to support fetal development [1]. Critical metabolic
changes, resembling those occurring in metabolic syndrome, especially insulin resistance
and dyslipidaemia, occur during pregnancy [2]. The concentrations of key nutrients, such
as circulating lipids and amino acids, increase considerably with advancing gestation [3].
These changes are essential for fetal growth and the accumulation of energy reserves for
breastmilk production. Additionally, maternal immunity undergoes complex adaptive
changes: A certain degree of immunosuppression is required to accommodate the grow-
ing fetus, whose own immune system is developing, while robust immunity must be
maintained to protect both the mother and the fetus from infection [4].
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Notably, the gut microbiome plays a critical role in health, influencing nutrient ac-
quisition [5], immune programming [6], and metabolic homeostasis [7]. Faecal microbiota
transplant (FMT) of third trimester (T3) samples from pregnant women have induced
weight gain, insulin resistance, and inflammatory response [8]. Thus, the microbiome
may both influence and be influenced by the abovementioned pregnancy-related changes.
Although several longitudinal studies have reported temporal changes in microbial com-
position during pregnancy, conflicting results exist. The composition of intestinal flora
has been noted to change significantly from the first trimesters (T1 to T3), with reduced
richness [8,9]. However, DiGiulio et al. found no dramatic remodelling of microbial compo-
sition over the course of pregnancy [10]. Given the potential role of microbial disturbance in
pregnancy complications [11], understanding the temporal dynamics of the gut microbiota
in the context of a healthy pregnancy is crucial.

In addition to the gut microbiota, microbiota-related metabolites interact with the host
and transmit intestinal signals to the entire system, which may be precisely programmed
to maintain a normal pregnancy [12]. Metabolism during normal pregnancy is a dynamic
and precisely programmed process. Compared with the non-pregnancy period, pregnancy
triggers substantial metabolic changes, such as alteration in the serum levels of fatty acids
and amino acids, in women [13]. Liang et al. systematically characterized the serum
metabolomic profile throughout pregnancy with the weekly sampling of maternal serum
and found that functional metabolites, especially steroid hormones and long-chain fatty
acids, were changed over the gestational period [14]. Most metabolite changes rapidly
returned to pre-pregnancy levels after childbirth [14]. The faecal metabolome can help
clarify the influence and regulatory mechanism of intestinal microorganisms on host
metabolism [15]. However, little is known about the temporal characteristics of faecal
metabolites in a healthy pregnancy. Considering the impact of microbiota–metabolite
cross-talk on the host, it is important to simultaneously characterise how microbial, serum,
and faecal metabolic signatures longitudinally alter and interact during and after a healthy
pregnancy, which helps to fully understand how the pregnancy is regulated.

In this longitudinal study, we comprehensively characterised the dynamic remodelling
process of the gut microbiota and serum and faecal metabolomes. Integrated association
analysis was performed to evaluate significant microbiota–metabolite interactions over the
course of a normal pregnancy and 1-week postpartum. These findings may provide novel
insights into maternal physiological changes with advancing gestation and subsequent
pregnancy health management.

2. Materials and Methods
2.1. Pregnancy Cohort

The samples used in this study originated from a prospective nested case–control
study that commenced from October 2021 to October 2022 and involved women in the
early stage of pregnancy, with follow-up to the postpartum period. The operation protocol
was approved by the Research Ethics Committee of the Wuxi Xishan People’s Hospital
(Approval Code, xs2020ky010) and was registered with the Chinese Clinical Trial Registry
(No. ChiCTR2100052265). All participants who agreed to participate in this study provided
written informed consent prior to their enrolment.

Specifically, pregnant women in their first trimester, aged 18–40 years, who underwent
prenatal examinations at Xishan People’s Hospital were invited to participate. Pregnant
women were excluded if they (1) had been diagnosed with a systemic, endocrine, or urinary
system disease or another chronic medical condition; (2) experienced gestational diseases
during pregnancy, including hyperemesis gravidarum, gestational diabetes, pre-eclampsia,
or intrahepatic cholestasis of pregnancy; or (3) used antibiotics, probiotics, or medication
affecting the gut microbiome during pregnancy. Importantly, the pregnant women included
in this study lived within 30 km of the study hospital, did not leave the city of Wuxi, and
maintained consistent dietary patterns throughout their pregnancies.
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2.2. Sample Collection

In each trimester of pregnancy and postpartum, serum samples were collected by
professional medical staff after fasting and stored in −80 ◦C refrigerators after centrifu-
gation and equal volume packaging. Additionally, faecal samples were collected in each
trimester of pregnancy and the postpartum period using sterile containers with ice boxes
and immediately transferred to −80 ◦C freezers.

2.3. Clinical Measurements and Blood Index Evaluation

The general characteristics of all participants were recorded at recruitment, and clinical
data were obtained from their medical records. Gestational weight gain was determined
by calculating the difference between the weight at each trimester and the pre-pregnancy
weight. Routine blood examinations in each trimester were conducted using an XN-Series
automated haematology analyser (SYSMEX, Kobe, Japan).

2.4. Faecal DNA Extraction, 16S rRNA Sequencing, and GroEL Gene Sequencing

The sequencing of 124 faecal samples was performed on a MiSeq platform (Illumina,
San Diego, CA, USA) following established procedures, including the following experimen-
tal steps [16]: (1) genomic DNA was extracted using a FastDNA Spin Kit (MP Biomedical,
Irvine, CA, USA); (2) the V3–V4 region was amplified by polymerase chain reaction (PCR)
with a universal primer pair (341F/806R); (3) the amplified products were purified and
quantified using a Qubit dsDNA Assay Kit (Life Technologies, Invitrogen, Carlsbad, CA,
USA); (4) the purified PCR products were pooled at equal concentrations; and (5) paired-
end sequenced was performed on a MiSeq platform.

The process for sequencing the GroEL gene of Bifidobacterium [17] was similar to the
process for standard 16S rRNA sequencing but with different primers and PCR amplification
conditions, as described previously [18].

2.5. Sequence Data Processing and Bioinformatic Analysis

Sequence data were processed using QIIME2 [19]. The Ribosomal Database Project
Classifier and Bifidobacterium GroEL Database were used for taxonomical classification of
the 16S rRNA and GroEL sequencing data. Additionally, α-diversity (within-sample diver-
sity) analysis involving the Shannon and Chao1 indices was performed based on the relative
abundance at the genus level. The β-diversity (between-sample diversity) was indicated
by the genus-level Bray–Curtis distance and was visualised through principal coordinates
analysis (PCoA). Additionally, the differences in β-diversity between groups were assessed
through permutational multivariate analysis of variance involving 999 permutations. Taxo-
nomic biomarkers of different trimesters were determined using the Kruskal–Wallis test
and linear discriminant analysis effect size (LEfSe). Furthermore, the gut microbiome func-
tion was predicted using the Phylogenetic Investigation of Communities by Reconstruction
of Unobserved States2 (PICRUSt2, https://github.com/picrust/picrust2, accessed on 6
February 2023) software [20].

2.6. Untargeted Metabolomics for Faecal and Serum Samples

Metabolites were extracted from stool samples following established methods with
some modifications [21]. Aliquots of lyophilised faecal samples were placed in centrifuge
tubes containing grinding beads and treated with a pre-cooled extraction solvent (ultra-
pure water: methanol: acetonitrile: = 1:2:2, [v/v]), followed by homogenisation (65 Hz, 30 s,
three times). After protein precipitation at −20 ◦C for 1 h, the mixture was centrifuged
at 15,000× g for 10 min to collect the supernatants for concentration. Subsequently, the
metabolic extracts were dissolved in 50% (v/v) acetonitrile and subjected to ultraperfor-
mance liquid chromatography with tandem mass spectrometry (UPLC-MS) detection. The
preparation of serum samples was similar to the method used for stool samples, except
that the extraction solvent used was methanol. Notably, a quality control (QC) sample was

https://github.com/picrust/picrust2
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prepared by mixing each sample equally. The QC sample was regularly injected to monitor
the stability of untargeted metabolomics analysis and signal intensity [22].

Untargeted metabolomic profiling was conducted using an UItiMate 3000 UPLC
system connected to a high-resolution Q Exactive Mass Spectrometer and UPLC High-
Strength Silica T3 column (2.1 × 100 mm, 1.8 µm; Waters, Milford, MA, USA). The UPLC-MS
operating conditions were set in accordance with published protocols [21].

Peak alignment, peak picking, and peak identification were performed, and the re-
tention time (RT) and m/z data for each peak were obtained using Compound Discov-
ery 3.3 (CD 3.3, Thermo Fisher Scientific, Waltham, MA, USA) following an untargeted
metabolomic workflow [21]. Only metabolomic features appearing in >50% of the QC
samples and showing <30% relative standard deviation in the QC samples were retained for
further analysis. Notably, MS signal drift with time was independently corrected by locally
estimated scatterplot smoothing normalisation. Metabolite annotations were performed
using mzVault, mzCloud, ChemSpider, and the Human Metabolome Database. Only
metabolite annotations with mzCloud MS/MS spectral match scores ≥ 70 were considered
credible [23].

The obtained metabolite data were imported into MetaboAnalyst 5.0 (https://www.
metaboanalyst.ca/, accessed on 8 April 2023) for further analysis [24]. Spearman’s cor-
relation analysis and principal component analysis plots for all QC data were used to
examine the stability of the metabolic data and check the run quality. Orthogonal partial
least squares discriminant analysis (OPLS-DA) was performed to characterise the overall
distribution within the groups and the degree of difference between different trimesters
and the postpartum period. Furthermore, discriminative metabolites were identified based
on the criteria of a variable importance plot (VIP) score > 1.0 and p < 0.05 [25]. Pathway
enrichment analysis was performed for distinctive markers using the Kyoto Encyclopedia
of Genes and Genomes database.

2.7. Targeted Metabolomics of Short-Chain Fatty Acids (SCFAs) by Gas Chromatography–Mass
Spectrometry (GC-MS)

The extraction and quantification of faecal SCFAs were performed with reference to
reported protocols [26]. Briefly, 30 mg of freeze-dried faecal samples were dissolved with
sodium chloride and acidified with sulphuric acid, followed by extraction with diethyl
ether. The SCFAs in the resulting extracts were identified using GC-MS. Raw GC-MS
data were analysed using the Xcalibur 4.7 software (Thermo Fisher Scientific), followed by
manual verification of the RT.

2.8. Statistical Analysis

Various software applications, including Prism version 8.0.2 (GraphPad, San Diego,
CA, USA), SPSS version 22 (IBM, Armonk, NY, USA), and R 4.0.3 (https://www.r-project.
org/, accessed on 3 December 2022), were used for statistical analysis. The Shapiro–
Wilk test was performed to assess normal distribution. For normally distributed data,
Student’s t-test or one-way analysis of variance with the Holm–Sidak test was performed.
For nonparametric data, a Wilcoxon rank-sum test, Fisher’s exact test, or Kruskal–Wallis
test was conducted, followed by Dunn’s test or Welch’s t-test. Data are presented as
mean values ± standard errors of mean or the median ± interquartile range. p < 0.05
was considered to represent statistical significance. Spearman’s correlation analysis was
performed based on differential microbiota and metabolites between different trimesters,
with visualisations obtained using Gephi (p < 0.05).

3. Results
3.1. Participants’ Clinical Characteristics

Thirty-one pregnant women were included in this longitudinal study. Each participant
provided faecal and serum samples during T1 (10.9 ± 0.33 weeks), the second trimester
(T2) (23.0 ± 0.47 weeks), T3 (35.5 ± 0.35 weeks), and the postpartum period (day 5.2 ± 0.18

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
https://www.r-project.org/
https://www.r-project.org/
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after delivery) (Table 1). All women had normal body mass indexes in the pre-pregnancy
stage and had no diagnosed pregnancy complications. The weight, metabolism-related
indicators (e.g., triglycerides), liver-function-related indicators (e.g., alkaline phosphatase),
and kidney-function-related indicators (e.g., cystatin C) were found to change significantly
with advancing gestation.

Table 1. Characteristics of participants during pregnancy.

Parameter (n = 31) T1 T2 T3 p Value

Gestation weeks 10.9 ± 0.33 23.0 ± 0.47 35.5 ± 0.35
Gestational weight gain (Kg) 1.39 ± 0.23 6.48 ± 0.71 12.39 ± 0.87 p < 0.0001

Cholesterol (mmol/L) 4.05 ± 0.14 5.97 ± 0.43 5.87 ± 0.34 p < 0.0001
Glucose (mmol/L) 4.49 ± 0.09 4.31 ± 0.12 4.39 ± 0.11 0.27

Triglyceride (mmol/L) 1.36 ± 0.09 3.21 ± 0.33 3.42 ± 0.35 p < 0.0001
High-density lipoprotein

Cholesterol (mmol/L) 1.46 ± 0.07 1.69 ± 0.07 1.82 ± 0.17 p < 0.05

Low-density lipoprotein
cholesterol (mmol/L) 2.07 ± 0.09 3.02 ± 0.35 3.08 ± 0.20 p < 0.0001

Cystatin C (mg/L) 0.67 ± 0.02 0.83 ± 0.05 0.92 ± 0.04 p < 0.0001
Total Protein (g/L) 69.24 ± 1.88 65.25 ± 0.54 63.59 ± 0.66 p < 0.0001

Alkaline phosphatase (µ/L) 45.70 ± 2.28 76.58 ± 4.51 120.80 ± 9.02 p < 0.0001
Data are presented as median (interquartile interval) or mean ± SEM. p-value based on the Mann–Whitney U-test
or Student’s t-test, as appropriate. T1: first trimester; T2: second trimester; T3: third trimester.

3.2. Dramatic Changes in the Gut Microbiota with Advancing Gestation

To comprehensively examine the compositional dynamics of the microbiota during
normal gestation, 16S rRNA sequencing of faecal samples, collected longitudinally in each
trimester and the postpartum period, was performed. No difference was observed in the α-
diversity (i.e., Chao1 and Shannon indices), as indicated in Figure 1A. However, the PCoA
based on Bray–Curtis distances suggested distinct variations in the overall composition of
the gut microbiome as gestation progressed (p = 0.038) (Figure 1B).
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Figure 1. Temporal dynamics of gut microbiota composition during pregnancy. (A) Alpha diversity
analysis indicated by Chao1 and Shannon indices. (B) Beta diversity characterised by a Bray–Curtis
analysis. (C) Microbial distribution at the phylum level. (D) Microbial distribution at the family level.
T1: first trimester; T2: second trimester; T3: third trimester (T3); Post: postpartum.

Temporal changes in the gut microbial profiles during pregnancy and the postpartum
period were observed from the phylum to genus levels. At the phylum level, the relative
abundance of the dominant bacteria, Bacteroidetes, increased from T1 to T2, and the abun-
dances of Proteobacteria and Actinobacteria varied with advancing gestation (Figure 1C).
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At the family level, temporal changes in the relative abundance of Enterobacteriaceae were
observed during and after pregnancy, and Bifidobacteriaceae was noted to be enriched in
T1 compared with T3 (Figure 1D). At the genus level, differential microbiota characterising
each trimester and the postpartum period were identified by Lefse analysis (Figure 2A,B).
Butyricicoccus, Roseburia, and Ruminococcaceae UCG-013 were predominant in T1, while T2
was characterised by genera belonging to the Lachnospiraceae family, including Agathobac-
ter, Fusicatenibacter, and Lachnospira. Sphingomonas, Ruminococcus1, and the Lachnospiraceae
FCS020 group were abundant in T3. Compared with pregnant women, women in the
immediate postpartum period displayed an abundance of pathogenic bacteria, especially
Escherichia_Shigella, Enterococcus, and UBA1819. Taxonomic biomarkers presented different
trends as pregnancy progressed. The trends were maintained for some of the bacteria but
reversed in others during the postpartum period (Figure 2A). For example, the relative
abundance of Ruminococcaceae UCG-013 progressively decreased with advancing gestation
until the postpartum period, while the levels of Ruminococcus1 gradually increased as
pregnancy progressed but decreased after delivery. These findings suggested that the gut
microbiota exhibits temporal changes as pregnancy progresses.

3.3. Symbiotic Network Analysis of the Gut Microbiota in Pregnant Women

The dynamic balance of the intestinal ecosystem is maintained by the interactions
of intestinal microorganisms. Hence, we performed Spearman’s correlation analysis and
constructed symbiotic networks for the top 100 most abundant genera to reveal the interac-
tions between gut microbes and identify the core genera in each trimester and postpartum
(Figure 2C). The gut microbiota in T3 has the fewest microbiota interactions compared
with other trimesters. In T1, the dominant microbiota in the network were Ruminococcaceae
UCG-002, Butyricimonas, and the Lachnospiraceae NK4A136 group. Blautia, Odoribacter, and
Ruminococcaceae UCG-002 occupied an important advantage in T2. The Lachnospiraceae
NK4A136 group was the main contributor to the co-occurrence network both in T3 and post-
partum. The symbiotic correlations between the gut microbiota showed time-dependent
changes during pregnancy.

3.4. Minimal Changes in Bifidobacterium Communities at the Species Level with
Advancing Gestation

Considering the significance of Bifidobacterium in early life development, we examined
Bifidobacterium communities at the species level. High-throughput sequencing of GroEL
regions was performed for faecal samples collected in T1, T2, and T3 and the postpartum
period, and 28 species of Bifidobacterium were detected. However, no significant temporal
changes were observed in the Bifidobacterium structures or signatures over the course
of normal pregnancy (Figure S1A). Only certain Bifidobacterium species exhibited subtle
changes during pregnancy (Figure 2D). For example, the abundance of Bifidobacterium
breve significantly increased from T3 to the postpartum period, while the abundance of
Bifidobacterium ruminantium decreased from T1 to T2 (p = 0.05). These findings suggested
minimal impact on Bifidobacterium communities during pregnancy.

3.5. Changes in Functional Pathways of Gut Microbiota during Pregnancy

We conducted a PICRUSt2 analysis to predict functional pathways in the gut micro-
biota. The differential functional pathways pertained to immune-related signalling path-
ways (e.g., the p53 and FoxO signalling pathways), metabolism-related signalling pathways
(the insulin signalling pathway, the apelin signalling pathway, and energy metabolism),
and signalling pathways related to fatty acids or amino acids (e.g., tryptophan metabolism
and fatty acid degradation) (Figure S1B).
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Figure 2. Changes in the gut microbiota at the genus level as pregnancy progressed. (A) Cladogram
of the characterised microbiota and the average levels of the important significant microbiota changes
as gestation progressed. The letters correspond to the names of the significant microbiota marked in
the line chart. The colors of the letters correspond to the colors in the cladogram. (B) Distribution
histogram of the characterised microbiota based on LDA. (C) Co-occurrence network graph of gut
microbiota in T1, T2, and T3 and postpartum at the genus level. Node size indicates the degree of
corresponding factors. Only p-values < 0.05 and |r| ≥ 0.5 are displayed in the network. (D) The
relative abundance of Bifidobacterium breve and Bifidobacterium ruminantium. T1: first trimester;
T2: second trimester; T3: third trimester (T3); Post: postpartum.
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3.6. Temporal Changes in Faecal and Serum Metabolomic Profiles during Pregnancy and the
Postpartum Period

Gut-microbiota-related metabolites interact with the host to regulate host homeostasis.
Untargeted metabolomics analysis was performed on faecal and serum samples to clarify
the functional role of the gut microbiota as gestation progresses. A total of 1026 metabolites,
including 542 serum metabolites and 484 faecal metabolites, exhibited MS/MS spectral
best-match scores greater than or equal to 70 in the mzCloud database. In faecal-positive
(ESI+) and -negative electrospray ionisation (ESI−) samples, as well as serum ESI+ and ESI−

samples, the QC samples were tightly clustered (Figure S2A–D). Additionally, Spearman’s
correlation coefficients of the ESI+ and ESI− QC data for both faecal and serum sam-
ples were high, reflecting the stability and accuracy of the untargeted metabolomics data
(Figure S2E–H). OPLS-DA analysis revealed that the dynamic distributions of metabolomic
data for both faecal and serum samples changed significantly as gestation progressed
(p < 0.001), and the overall faecal and serum metabolic signatures were different before and
after childbirth (Figures 3A and 4A).
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Figure 3. Temporal changes in faecal metabolites during pregnancy. (A) OPLS-DA score plot.
Heatmap exhibits the metabolite signal intensity averaged across pregnant women, showing impor-
tant significant metabolites decreased (B) and increased (C) by the end of pregnancy. (D) Metabolite
set enrichment analysis of pregnancy-related metabolites based on the KEGG database. The av-
erage levels of the metabolite change with advancing gestation in the clusters of steroid hormone
biosynthesis (E), long-chain fatty acids (F), and tryptophan metabolism (G). The y-axis shows CLR-
transformed metabolite concentrations. T1: first trimester; T2: second trimester; T3: third trimester
(T3); Post: postpartum.



Nutrients 2024, 16, 483 9 of 17Nutrients 2024, 16, x FOR PEER REVIEW 11 of 19 
 

 

 

  Figure 4. Temporal changes in serum metabolites during pregnancy. (A) OPLS-DA score plot.
Heatmap exhibits the metabolite signal intensity averaged across pregnant women, showing impor-
tant significant metabolites decreased (B) and increased (C) by the end of pregnancy. (D) Metabolite
set enrichment analysis of pregnancy-related metabolites based on the KEGG database. The average
levels of the metabolite change with advancing gestation in the clusters of steroid hormone biosynthe-
sis (E), long-chain fatty acids (F), and tryptophan metabolism (G). The y-axis shows CLR-transformed
metabolite concentrations. (H) Human disease states associated with pregnancy-related metabolites.
T1: first trimester; T2: second trimester; T3: third trimester (T3); Post: postpartum.
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Among the faecal metabolites, 98 showed considerable alterations with advancing
gestation based on a combination of the statistical parameters of univariate (p < 0.05) and
multivariate analyses (VIP > 1). Existing structural and biological information was used to
categorise the metabolites with the most notable changes to clarify the functional groups
(Figure 3B,C). Metabolic pathways showing changes corresponded to caffeine metabolism,
steroid hormone biosynthesis, pyrimidine metabolism, the biosynthesis of unsaturated
fatty acids, and amino acid metabolism (including tryptophan and beta-alanine) pathways
during pregnancy and the postpartum period (Figure 3D). Significant metabolites related to
steroid hormone biosynthesis, including estriol, progesterone, and estriol 17-sulfate, consis-
tently increased during pregnancy, with most decreasing sharply after delivery (Figure 3E).
Compounds related to fatty acid metabolism exhibited distinct variation trends. For ex-
ample, the concentrations of pentadecanoic acid and tridecylic acid steadily decreased
during pregnancy and increased after delivery, while dodecanedioic acid showed the op-
posite trend (Figure 3F). Notably, the concentrations of unsaturated fatty acids, including
arachidonic acid, eicosadienoic acid, and 8Z,11Z,14Z-eicosatrienoic acid, gradually de-
creased as gestation progressed and then increased in the postpartum period (Figure 3F).
The metabolites related to tryptophan metabolism exhibited intricate temporal changes
during pregnancy. For example, the concentrations of trans-3-indoleacrylic acid and indole
decreased from T1 to T2 and then steadily increased until childbirth, while 5-hydroxyindole-
3-acetic acid showed the opposite trend. Interestingly, important neurotransmitters, such
as acetylcholine and γ-aminobutyric acid, presented temporal variations during pregnancy
and the postpartum period. Overall, the functional faecal metabolites showed significant
and programmed changes as gestation progressed.

In serum samples, 105 differential serum metabolites were identified and categorised
based on existing structural and biological information (Figure 4B,C). Similar to the faecal
metabolome, these differential serum metabolites were mainly enriched in pathways
associated with steroid hormone biosynthesis, tryptophan metabolism, and the biosynthesis
of unsaturated fatty acids (Figure 4D). The number of changed metabolites related to
steroid hormone biosynthesis in serum samples exceeded the number in stool samples.
Most serum steroid hormone concentrations followed the same trend as those in faeces,
gradually increasing during pregnancy but decreasing soon after delivery, except for
estriol (Figure 4E). The concentrations of most unsaturated fatty acids continued to decline
during pregnancy, following the trend observed in stool samples (Figure 4F). All three
major pathways of tryptophan metabolism, involving serotonin, kynurenine, and indole
derivatives, were altered (Figure 4G). Indole-3-acetic acid and kynurenic acid concentrations
decreased from T1 to T2 and then generally increased until delivery. In contrast, the
concentration of 3-indoxyl sulphate continued to increase during and after pregnancy.
Additionally, many pregnancy-associated metabolites were implicated in human diseases,
especially inflammatory-related diseases (systemic lupus erythematosus and rheumatoid
arthritis) and neonatal intrahepatic cholestasis based on a metabolite set library of disease
signatures (Figure 4H). Some metabolite concentrations changed in both serum and faeces,
but the trends were conflicting, suggesting a coordinated adjustment to support adaptation
to the physiological state of pregnancy

Considering the role of SCFAs in physiological processes, targeted metabolomics
analysis was performed to determine the dynamics of SCFAs during and after pregnancy.
However, no temporal changes in SCFA concentrations were observed with advancing
gestation (Figure S3).

3.7. Correlations between Pregnancy-Related Microbiota and Faecal and Serum Metabolites
Presenting Temporal Changes during Pregnancy

We performed Spearman’s correlation analysis to investigate the reciprocal interac-
tions between pregnancy-related microbiota and faecal or serum metabolites presenting
time-dependent changes during pregnancy (Figure 5). Notably, Ruminococcus1 and Ru-
minococcaceae UCG-013 were the main contributors to changes in faecal and serum metabo-



Nutrients 2024, 16, 483 11 of 17

lite concentrations, respectively. Changes in the concentrations of serum steroid hormones
were strongly associated with variations in the microbiota. For example, the abundance of
the Lachnospiraceae FCS020 group was positively correlated with the serum progesterone
concentration, while the abundance of Ruminococcaceae UCG-013 was inversely correlated
with the concentration of 17α-hydroxyprogesterone. The abundances of Ruminococcus1
and Lachnospira displayed inverse correlations with the faecal trans-3-indoleacrylic acid
concentration, suggesting that pregnancy-related microbiota may influence tryptophan
metabolism during pregnancy. Furthermore, the altered bacterial abundances influenced
important neurotransmitters in the gut. For example, the abundance of Flavonifractor was
strongly correlated with the faecal acetylcholine concentration. These findings suggest
that pregnancy-related microbiota may contribute to the dynamic temporal regulation of
metabolic changes.
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Figure 5. Interactions between pregnancy-related microbiota and metabolites. (A) Correlation
network analysis of pregnancy-related microbiota and faecal metabolites. (B) Correlation network
analysis of pregnancy-related microbiota and serum metabolites. Node size indicates the degree of
corresponding factors. Only p-values < 0.05 are displayed in the network.

4. Discussion

Pregnancy involves various physiological changes, including hormonal, immune, and
metabolic shifts, which both influence and are influenced by the gut microbiome. Although
the gut microbiota and associated metabolites have been recognised to considerably affect
human health, our understanding of their dynamic changes and interactions during preg-
nancy and the postpartum period remains insufficient. Thus, in this study, we profiled the
temporal dynamics of the gut microbiota and the faecal and serum metabolomes during
and after pregnancy.

Our results demonstrated that the composition and signature shifted with advancing
gestation. LEfSe analysis revealed unique characteristic bacteria during each trimester and
the postpartum period, concentrated within genera belonging to the Lachnospiraceae or Ru-
minococcaceae families. In general, Lachnospiraceae represents one of the major taxonomic
groups of the human intestinal microbiota [27]. Our results showed that genera associated
with the Lachnospiraceae family, including the Lachnospiraceae FCS020 group, Roseburia,
and Agathobacter, exhibited temporal changes as gestation progressed, with the abundance
of the Lachnospiraceae FCS020 group increasing during pregnancy. Previous studies have
linked members of Lachnospiraceae to obesity and diabetes, serving as biomarkers for
prediabetes [28]. Ruminococcaceae UCG-003 abundance was noted to significantly decrease
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with advancing gestation in our study. A previous human study showed that the abun-
dance of Ruminococcaceae UCG-003 is inversely correlated with cardiometabolic diseases
and related symptoms [29]. Additionally, Ruminococcaceae UCG-003 considerably affects
host glucose homeostasis and lipid metabolism [30]. Ruminococcus1, as a major contributor
to the gut microecosystem, is considered a favourable bacterium in obesity models [31–33],
and its abundance increased steadily during pregnancy. From the perspective of host
metabolism, two types of bacteria may play key roles during pregnancy. The first type,
i.e., obesity-related bacteria (e.g., Lachnospiraceae FCS020 group), may favour energy and
nutrient accumulation, ensuring a sustained supply of nutrition for the fetus and for the
preparation of breastfeeding. The second type, referred to as obesity-friendly bacteria,
may prevent excessive fat accumulation and associated pregnancy complications, such
as gestational diabetes. This interplay between the two types of bacteria may serve as a
long-term feedback mechanism for host metabolism and facilitate metabolic adaptation
during pregnancy.

Additionally, the time-dependent alterations in the abovementioned bacteria during
pregnancy may influence immune function. The depletion of Ruminococcaceae UCG-003
is beneficial in inhibiting inflammatory responses that are harmful to the host [34]. Lach-
nospiraceae family bacteria can elicit the immune surveillance function of CD8+ T cells,
thereby enhancing maternal immunity [35]. Given the complexity of immune modula-
tion during pregnancy, which includes immunosuppression to accommodate fetal growth
and the maintenance of robust immunity to protect against infection, it is speculated that
time-dependent changes in bacterial abundance associated with immune responses may
contribute substantially to immunological adaptations during pregnancy, but this war-
rants further research. Notably, although most pregnancy-associated bacteria within the
Lachnospiraceae family are known for producing SCFAs, their levels did not significantly
change over time during pregnancy. The function of Lachnospiraceae family bacteria
appears to vary depending on the environment [35]. Thus, their primary function may
not be the production of SCFAs in the highly hormonal intestinal environment during
pregnancy, and they may regulate pregnancy functions through alternative metabolic path-
ways. For example, we found that the abundance of the Lachnospiraceae FCS020 group was
positively correlated with the concentration of inosine, which is known to regulate energy
metabolism and inflammatory responses [36]. These observations indicate that changes in
the microbiota composition over time during pregnancy promote the healthy development
of the fetus and prevent maternal illness.

After delivery, the abundance of several potential opportunistic pathogens, including
Escherichia_Shigella, Enterococcus, and UBA1819, increased significantly compared with those
during pregnancy. Escherichia_Shigella and UBA1819 are known to be pro-inflammatory
bacteria with increased abundances in various inflammatory disease conditions, such as
acute liver injury [37] and colitis [38]. Enterococcus is known to express metalloproteases,
thereby impairing the gut barrier and transmitting into the bloodstream in vulnerable hosts,
resulting in inflammatory reactions [39]. These findings suggest a potential inflammatory
response in women during the first week of the postpartum period. However, our study
did not include continued follow-up beyond 1 week postpartum. Thus, the time required
for the gut microbiome to return to the prenatal status remains unclear. Future research
with extended postpartum follow-up may offer insights into future childbirth intervals
from the perspective of the gut microbiota.

In addition to the gut microbiota, both serum and faecal metabolites exhibited temporal
alterations over the course of normal pregnancy. Differential metabolites in serum and fae-
cal samples were mainly involved in three metabolic pathways: steroid hormone biosynthe-
sis, fatty acid metabolism, and amino acid metabolism (especially tryptophan metabolism).
In the metabolic pathways related to steroid hormone biosynthesis, most pregnancy-
associated serum steroids, especially progesterone and 17α-hydroxyprogesterone, increased
in concentrations during pregnancy and rapidly returned to pre-pregnancy concentrations
after delivery, which is consistent with the findings of previous studies [13,14]. 17α-
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hydroxyprogesterone is an important precursor in the biosynthesis of many steroid hor-
mones, such as oestrogen, and a downstream metabolite of progesterone [40]. Reproductive
hormones can modulate crucial physiological processes during embryonic development,
which is crucial for maintaining pregnancy [41]. Recent publications have highlighted
that the interaction between steroids and the gut microbiota is a bidirectional axis [42].
Some microorganisms can increase sex steroid levels through enterohepatic circulation [43],
and Nuriel-Ohayon et al. found that progesterone modulates the pregnancy-associated
gut microbial composition [44]. We found that the serum progesterone concentration was
strongly positively correlated with the abundances of the Lachnospiraceae FCS020 group and
Sphingomonas, which is consistent with a previous report [45]. Additionally, the abundance
of Ruminococcaceae UCG-013 was strongly correlated with the concentration of the serum
17α-hydroxyprogesterone level. Gut microbiota may interact with reproductive hormones
to maintain physiological processes during pregnancy, while the specific mechanisms and
pathways of microbial endocrinology in pregnancy remain unclear.

Furthermore, variations in the tryptophan–indole pathway during pregnancy were ob-
served in both faeces and serum samples. Faecal trans-3-indoleacrylic acid concentrations
gradually decreased from T1 to T2 and then increased continuously until the postpartum
period. Indole derivatives can function as ligands for the aromatic meridian receptor
(AhR) to influence the Th17 cell/regulatory T cell balance and immune function, leading
to an improved immune response [46,47]. Furthermore, indole metabolites were directly
transformed from tryptophan, which is completely dependent on the gut microbiota [48].
We found that the concentration of faecal trans-3-indoleacrylic acid was correlated with
the abundance of specific bacteria (i.e., Ruminococcus1), suggesting that the pregnancy-
related microbiota influences the tryptophan–indole pathway. These findings indicate that
the gut microbiota may mediate temporal immune regulation according to the needs of
different stages of pregnancy by affecting the production of specific indole derivatives,
thus contributing to immune adaptation. The concentration of serum acetylcholine, a
pivotal neurotransmitter for cognitive function [49], consistently reduced during preg-
nancy and increased soon after childbirth, attributable to its consumption to support the
neural development of the fetus. However, the concentration of acetylcholine in faeces
steadily increased during and after pregnancy. Previous studies have indicated that the
gut microbiota can influence the central nervous system by synthesising neuroactive com-
pounds or regulating the secretion of neurotransmitters, such as acetylcholine, to regulate
cognition [50,51]. In this study, the abundance of Flavonifractor was positively correlated
with the faecal acetylcholine level. This suggests that the gut microbiota may complement
cognitive functions affected by fetal depletion by regulating neurotransmitter levels in
the gut through the gut–brain axis. Thus, a highly coordinated microbiota–metabolite
regulatory network may underlie the pregnancy process.

Fatty acids play a key role in supporting the rapid cell growth and activity in the devel-
oping fetus. Consistent with previous reports [13], the concentrations of certain serum fatty
acids, such as 11(E)-eicosenoic acid and docosatrienoic acid, increased during pregnancy.
However, the concentrations of several important polyunsaturated fatty acids in stool sam-
ples, especially eicosadienoic acid and 8Z,11Z,14Z-eicosatrienoic acid, gradually decreased
during pregnancy and rapidly increased after childbirth, illustrating the consumption of
maternal nutrients by the developing fetus. On the other hand, the gut microbiota can
metabolize polyunsaturated fatty acids to confer host resistance to obesity [52]. Here, we
found that the abundance of Ruminococcus1 was negatively correlated with 8Z,11Z,14Z-
eicosatrienoic acid levels. These observations suggest that the pregnancy-related microbiota
may modulate unsaturated fatty acid metabolism to modify metabolic adaptation and the
incidence of metabolic disorders during pregnancy.

Although longitudinal changes in maternal metabolites are beneficial for fetal develop-
ment during pregnancy, some changes may be unfavourable to the mother. In addition to
the depletion of important maternal fatty acids, such as γ-linolenic acid, an accumulation
of indoxyl sulphate, which has pro-inflammatory properties, has been observed, possibly
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linked to changes in hepatic metabolism during pregnancy triggering the conversion of
indole to excess indoxyl sulphate [53]. Alterations in the concentrations of these metabolites
and elevated low-density lipoprotein concentrations are associated with an increased risk
of cardiometabolic disease, which may explain prior evidence suggesting that multiple
pregnancies may put women at higher risk of cardiovascular disease at an older age [54].
Collectively, these findings indicate the dynamic temporal regulation of microbial and
metabolic changes during healthy pregnancy, contributing to maternal adaptation and fetal
growth and development.

However, this study has several limitations. First, while high-throughput sequencing
was performed in this study, a more comprehensive analysis necessitates high-resolution
shotgun metagenomic sequencing. According to a previously published study, 30 patients
in each group would likely be sufficient to assess phenotypic heterogeneity at the molecular
level in a microbiota study [55,56]. Longitudinal sampling overcomes heterogeneity, which
makes it possible to use small sample sizes in studies [57]. However, larger cohorts would
potentially reveal additional microbe–metabolite relationships. In future studies, we will
expand the sample size. Despite the strong correlations reported, causal inferences cannot
be made conclusively. Further validation, such as investigating the immunological changes
through transplantations of the faecal microbiota from pregnant and non-pregnant conven-
tional mice into pregnant and non-pregnant germ-free mice, is necessary to confirm the role
of the microbiota–metabolite network in driving maternal adaptation and fetal growth.

5. Conclusions

This study revealed temporal changes in the gut microbiota and faecal and serum
metabolites during and after pregnancy through microbiota sequencing and untargeted
metabolomics of faecal and serum samples. These findings highlighted that a highly coor-
dinated microbiota–metabolite regulatory network may be involved in normal pregnancy,
and this warrants further investigation. The insights derived from this work may provide
guidance for health management during pregnancy.
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