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Abstract: Because of within-individual variation, surveys to estimate an individual’s usual food
intake must be conducted over many days, in general. Here, using non-invasive biomarkers, we
examined the number of measurements required to screen for the usual intake of fruit and vegetables,
in addition to sodium, potassium, and the sodium-to-potassium (Na/K) ratio. Participants were
202 subjects aged 40–74 years from five areas of Japan who completed weighed food records (WFR)
and five 24-hour urinary collections (24-h UCs) between 2012 and 2013. The number of 24-h UCs
required to screen for intake that deviated from guidelines estimated by the WFR and their accuracies
were assessed by the area under the curve (AUC) in a receiver-operating characteristics (ROC)
analysis. The single urinary excretion of sodium, potassium, and the Na/K ratio showed moderate
performance (AUC value: >0.7) in discriminating deviations from their criteria by respective intake
based on the WFR. Urinary potassium excretion also showed moderate performance (AUC value:
>0.7) in estimating the intake of vegetables but could not be used to estimate fruit intake even after
five collections. The non-invasive measurement of biomarkers in a single 24-h UC showed moderate
performance in screening the usual intake of vegetables, as measured based on the 12-day WFR, as
well as of sodium, potassium, and the Na/K ratio.

Keywords: screening; fruit and vegetable intake; biomarker; receiver-operating characteristic analysis;
within- and between- individual variation

1. Introduction

Given findings that a high intake of sodium and low intake of fruit and vegetables
are major adverse dietary factors for death and disability-adjusted life years (DALYs) [1],
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the quantitative assessment of the adherence of an individual’s usual intake of sodium,
fruits, and vegetables to guidelines defined by the WHO [2,3] or individual countries may
be particularly important.

Fruit and vegetable intake is better measured using objective methods, because mea-
surements using subjective methods tend to result in overestimation [4]. While serum
carotenoids and plasma vitamin C are used as biomarkers of fruit and vegetable in-
take [5,6], their use is limited by the difficulties they present in obtaining total intake [7],
the lack of quantification [8], and invasiveness. Skin carotenoids (carotenoids in sebum
of the palm) are non-invasive biomarkers that can be measured via spectroscopy tech-
nologies, including resonance Raman spectroscopy (RRS), reflection spectroscopy (RS),
and spectrophotometers [9]. However, studies of the validity of these methods have been
limited to correlations with blood carotenoid concentrations or the self-reported intake of
fruit and vegetables or carotenoids. Moreover, urinary potassium has been rarely used as a
biomarker of fruit and vegetable intake [6], notwithstanding the substantial contribution of
fruits and vegetables to potassium intake [10–12]. With regard to sodium, the estimation
of sodium intake based on food records or 24-hour dietary recall is considered relatively
inaccurate [13]. Sodium intake can be estimated based on urinary excretion, but since this
reflects recent intake only [14], which may vary widely from day to day, usual intake is bet-
ter determined using multiple 24-hour urinary samples [15–17]. To be effective, screening
tools for both potassium and sodium should be able to quantitatively assess adherence to
usual intake. Their implementation is particularly advantageous when they are primarily
non-invasive and require less frequent measurements or a less frequent need to weigh and
record all eaten foods.

Against this background, we examined the number of 24-h urinary collections (24-h
UCs) required to screen for guideline deviations in intake determined using 12-day weighed
food records (12-d WFR) and their accuracy. In addition, we also examined the degrees
of error required to assess individual intakes based on 12-d WFR and the variability of
estimates obtained from the WFR compared with those using the 24-h UC.

2. Materials and Methods
2.1. Study Setting and Participants

The study was conducted in five areas included under the Japan Public Health Center-
based Prospective Study for Next Generation (JPHC-NEXT) protocol (Yokote, Saku, Chiku-
sei, Murakami, and Uonuma). Details of the study design and methods of data collection
have been described elsewhere [18–20]. Of 255 participants at the beginning of the study,
202 participants (80 men and 122 women) aged 40–74 years without missing data on
creatinine who completed a 12-d WFR and five 24-h UCs were included in the analysis.

This study was carried out accordance with the Declaration of Helsinki and approved
by the Institutional Review Boards of the National Cancer Center, Tokyo, Japan, and of all
other collaborating research institutions, including the Ethics Review Committee of Nara
Women’s University. All participants provided written informed consent to participate in
the study.

2.2. Data Collection

The 12-d WFR and five 24-h UCs were conducted between November 2012 and
December 2013. WFRs were conducted for three consecutive days over four seasons at
approximately 3-month intervals. The 24-h UCs were collected on the last day of each 3-day
WFR and one year after the start of the survey. Information on age and anthropometric
data was obtained using a self-administered questionnaire.

2.3. 12-d WFR

Each 3-day WFR was conducted for three consecutive days, consisting of two week-
days and one weekend day in each of the four seasons. Food portions were measured by
each participant during meal preparation using a supplied precise portable digital cooking
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scale (Tanita Co., Ltd., Tokyo, Japan) and measuring spoons and cups. For meals purchased
or consumed outside the home, the participants were instructed to record the approximate
quantity of all foods in the meal and/or the name of the product and company. Dieticians
checked food records with the participants the day after each of the 3-day WFR on site in
each study area. The intake of total sodium and potassium was calculated using the Stan-
dard Tables of Food Composition in Japan 2010 (FCT) [21]. Fruit and vegetable intake was
defined according to food groups in the FCT. Potassium intake for the sodium-to-potassium
(Na/K) ratio was adjusted to the urinary excretion level by dividing by 1.3 [12,22]. The
Na/K ratio was calculated as a molar ratio.

2.4. 24-h UC

The participants collected urine samples using a portable urine measurement de-
vice (sumius U-Container, Sumimoto Bakelite Co., Ltd., Tokyo, Japan), which obtains a
1/50 portion of all collected urine. A single urine collection error (e.g., forgetting to conduct
the sampling or spillage out of the container) was corrected using the mean value based
on the individual’s collected urine volumes and recorded number of error-free collections.
Participants who had two or more errors in any one of a total of five urine collections during
the study period were excluded from analysis. The 24-h urinary sodium and potassium
excretion were calculated using the following formulas: 24-h urinary sodium excretion
(mg) = obtained volume of urinary excretion (mL) × 50/1000 × urinary sodium concen-
tration (mEq/L) × 23; and 24-h urinary potassium excretion (mg) = obtained volume of
urinary excretion (mL) × 50/1000 × urinary potassium concentration (mEq/L) × 39. Fur-
thermore, potassium excretion was adjusted to the intake level by multiplying by 1.3 [12,22].
The Na/K ratio was calculated as a molar ratio. Additionally, to examine the usefulness
of urinary concentrations, we used 24-h urinary sodium, potassium, and creatinine con-
centrations instead of second-morning voiding urine for Kawasaki equations [23], which
were originally proposed to estimate the 24-h urinary sodium and potassium excretion
from the second voiding of urine in the morning. Since the Na/K ratio can be calculated
based on the concentration, the Kawasaki equations are not required and were therefore
not calculated.

2.5. Statistical Analysis

To examine the accuracy of urinary sodium, potassium, and Na/K ratio values ob-
tained from the 24-h UCs in discriminating their usual intake, the area under the curve
(AUC) and its 95% confidence intervals (CIs) were calculated via receiver-operating charac-
teristic (ROC) analysis using the mean values of the 12-d WFR as the reference standard.
Sensitivity was defined as the probability of discriminating whether a person whose intake
deviated from the criterion based on the 12-d WFR also deviated by 24-h UC. Specificity
was defined as the probability of discriminating whether a person whose intake did not
deviate from the criterion by the 12-d WFR also did not deviate based on the 24-h UC.
Similarly, to screen the intake of fruit and vegetables, the accuracy of urinary potassium was
examined. As criteria, the tentative dietary goals for preventing lifestyle-related diseases
(DG) in Dietary Reference Intakes for Japanese (2020) [24] were used for sodium (<7.5 g
for men and <6.5 g for women, salt equivalents) and potassium (≥3000 mg for men and
≥2600 mg for women). For the Na/K ratio, previous studies considered a tentative target
value of a molar ratio < 2.0 [25,26]; however, because few participants met this criterion,
the median value of the 12-d WFR was also used; ≥350 g per day for vegetable intake
and ≥100 g per day for fruit intake were used as criteria, as defined in the Basic Direction
for Comprehensive Implementation of National Health Promotion (Health Japan 21, the
Second Term) [27]. Screening was defined as useful if the AUC was >0.7 and the lower limit
of the 95% CI was >0.5 [28]. The optimal cut-off value was determined based on the Youden
Index and the minimum distance between the upper left point and each point on the ROC
curve. The Youden Index and distance to the corner were calculated using these formulas:
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Youden Index = sensitivity + specificity − 1, and distance to corner = (1 − sensitivity)2 +
(1 − specificity)2. Sensitivity and specificity at the optimal cut-off value were also selected.

Five 24-h UCs for each participant were randomly arranged, and the cumulative
mean values from one to five collections were calculated for each. Using these values, we
examined the number of 24-h UCs required for screening. Furthermore, we conducted sub-
analyses to examine the usefulness of screening using values other than the aforementioned
values as criteria, as follows: for every 1 g between <7 and <15 g (salt equivalent) for
sodium, for every 500 mg between ≥2000 and ≥4000 mg for potassium, for every 0.5 units
between <2.0 and <4.5 units for the Na/K ratio, and for every 50 g between ≥50 and
≥250 g and between ≥200 and ≥550 g for fruit and vegetables, respectively. Analyses
that discriminated the combined intake of fruit and vegetables were also conducted. The
criteria were defined as ≥250 to ≥800 g in 50 g increments.

The degrees of error in the 12-d WFR used as a reference to screen intake were esti-
mated using the following analysis. Within-individual variance and between-individual
variance in sodium, potassium, and the Na/K ratio were calculated using the proc varcomp
procedure (SAS version 9.4 software, SAS Institute Inc., Care, NC, USA) [29] for the esti-
mated values obtained from the WFR, 24-h urinary excretion, 24-h urinary concentrations,
and estimated excretion values using Kawasaki equations, respectively. Values of fruit and
vegetable intake based on the WFR were also calculated. Coefficients of within-individual
variation (CVw) and of between-individual variation (CVb) were calculated using the fol-
lowing formulas: CVw (%) = {(within-individual variance)0.5/mean} × 100; and CVb (%) =
{(between-individual variance)0.5/mean} × 100. In this study, untransformed data were
used to calculate CVw and CVb, since previous studies [30,31] showed several problems
with transformed data, namely that estimates based upon transformed data were difficult
to interpret meaningfully, back-transformation may introduce considerable bias to the
variance estimates, and normality was not improved by log-transformation. The number
of survey days required to estimate mean intake within a specified percentage deviation
(meaning 95% CIs) of the individual mean from the usual (“true”) mean value based on
the CVw was calculated using the following formula [14]: n = (Zα × CVw/D)2, where
n = the number of days required to estimate per person, Zα = 1.96, and D = a certain degree
of error as a percentage of true usual intake. The number of days required was determined
assuming errors of ±5% (10%), ±10% (20%), and ±15% (30%), respectively. All analyses
were performed using SAS version 9.4 (SAS Institute Inc., Care, NC, USA).

3. Results

Table 1 shows the characteristics of participants. The intake of sodium and potassium
and the Na/K ratio were greater in men than in women. The median fruit intake based on
individual means with the 12-d WFR was greater in women than in men, whereas vegetable
intake was similar between the sexes.

Table 1. Characteristics of participants.

Men (n = 80) Women (n = 122)

Median Interquartile
Range Median Interquartile

Range

Age (years) 59 52–64 58 51–64
Body weight (kg) 67.0 61.0–71.5 55.0 50.0–59.0
Body height (cm) 167.5 163.0–173.0 156.0 152.0–160.0

BMI (kg/m2) 23.8 22.2–25.2 22.4 20.8–24.1
Sodium intake (mg, WFR) 4424 3772–5267 3694 3155–4218

Potassium intake (mg, WFR) 3236 2588–3752 2934 2394–3454
Na/K ratio in intake

(mol/mol, WFR) 3.3 2.7–3.7 2.9 2.4–3.3

Fruit intake (g) 78 36–151 131 73–191
Vegetable intake (g) 336 241–452 332 257–429

BMI, body mass index; WFR, weighed food record.
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The required number of 24-h UCs and their accuracy in screening for deviations from
the guideline intake of sodium and potassium based on the 12-d WFR are shown in Table 2.
Both sodium and potassium could be discriminated by a single 24-h urinary excretion
measurement with AUC values > 0.7. Accuracies did not greatly change even when the
cumulative number of measurements was increased. Concentrations were not useful in
discriminating based on the guideline for either sodium or potassium. Most of the excretion
values estimated using Kawasaki equations for sodium and potassium were as accurate
as excretions. A single 24-h urinary Na/K ratio was also useful, with an AUC value > 0.7
when the median value of the 12-d WFR was used as the criterion (Table 2). A similar
result was obtained when <2.0 was used as the criterion, albeit few participants actually
met this criterion.

Table 2. AUC (95% CI) of the ROC curve of 24-hour urinary sodium, potassium, and the Na/K ratio
to detect deviation from dietary intake measured based on the 12-day WFR.

Men Women
AUC 95% CI CO a Se Spe YI DC AUC 95% CI CO a Se Spe YI DC

Sodium Criterion < 7.5 g (n b = 75/80) Criterion < 6.5 g (n b = 115/122)
1 time Excretion 0.77 0.63–0.92 3621 0.67 0.80 0.47 0.39 0.84 0.74–0.94 3074 0.77 0.86 0.62 0.27

Concentration 0.55 0.21–0.89 66 0.92 0.40 0.32 0.61 0.69 0.44–0.93 95 0.62 0.86 0.47 0.41
Kawasaki 0.72 0.52–0.91 4663 0.67 0.80 0.47 0.39 0.89 0.82–0.96 4184 0.84 0.86 0.70 0.21

2 times Excretion 0.84 0.71–0.97 3347 0.87 0.80 0.67 0.24 0.88 0.82–0.94 2889 0.85 0.86 0.71 0.21
Concentration 0.66 0.32–1.00 83 0.88 0.60 0.48 0.42 0.57 0.34–0.80 115 0.43 0.86 0.28 0.59

Kawasaki 0.74 0.44–1.00 4638 0.72 0.80 0.52 0.34 0.90 0.84–0.96 4162 0.84 0.86 0.70 0.21
3 times Excretion 0.85 0.69–1.00 3327 0.89 0.80 0.69 0.23 0.88 0.80–0.96 2990 0.83 0.86 0.69 0.22

Concentration 0.64 0.28–1.00 82 0.87 0.60 0.47 0.42 0.58 0.33–0.82 96 0.60 0.71 0.31 0.49
Kawasaki 0.78 0.52–1.00 4579 0.84 0.80 0.64 0.26 0.95 0.90–0.99 4087 0.91 0.86 0.77 0.17

4 times Excretion 0.80 0.65–0.95 3549 0.83 0.80 0.63 0.26 0.83 0.71–0.95 3370 0.73 0.86 0.59 0.31
Concentration 0.56 0.19–0.92 72 0.96 0.40 0.36 0.60 0.54 0.31–0.77 107 0.46 0.71 0.18 0.61

Kawasaki 0.74 0.50–0.98 4665 0.85 0.80 0.65 0.25 0.89 0.80–0.97 4305 0.83 0.86 0.68 0.23
5 times Excretion 0.76 0.59–0.93 4215 0.69 0.80 0.49 0.37 0.87 0.77–0.96 3265 0.79 0.86 0.65 0.25

Concentration 0.54 0.24–0.85 89 0.81 0.40 0.21 0.63 0.48 0.25–0.72 85 0.28 0.86 0.14 0.74
Kawasaki 0.71 0.44–0.98 4899 0.75 0.80 0.55 0.32 0.92 0.85–1.00 4217 0.92 0.86 0.78 0.16

Potassium Criterion ≥ 3000 mg (n b = 34/80) Criterion ≥ 2600 mg (n b = 40/122)
1 time Excretion c 0.77 0.67–0.88 2814 0.74 0.78 0.52 0.34 0.76 0.67–0.84 3146 0.88 0.56 0.44 0.46

Concentration 0.60 0.46–0.73 30.2 0.56 0.67 0.23 0.55 0.52 0.41–0.63 33.3 0.40 0.70 0.10 0.67
Kawasaki c 0.73 0.62–0.84 2734 0.71 0.72 0.42 0.41 0.73 0.63–0.82 2560 0.55 0.79 0.34 0.50

2 times Excretion c 0.82 0.73–0.91 3027 0.85 0.70 0.55 0.34 0.72 0.63–0.82 2605 0.60 0.76 0.36 0.47
Concentration 0.62 0.49–0.75 33.1 0.62 0.63 0.25 0.53 0.50 0.39–0.60 46.5 0.83 0.27 0.09 0.75
Kawasaki c 0.76 0.66–0.87 2694 0.74 0.76 0.50 0.36 0.72 0.63–0.82 2704 0.75 0.63 0.38 0.44

3 times Excretion c 0.81 0.72–0.90 2811 0.76 0.74 0.50 0.35 0.78 0.68–0.87 2654 0.73 0.72 0.44 0.39
Concentration 0.60 0.48–0.73 29.1 0.44 0.83 0.27 0.59 0.50 0.39–0.61 45.7 0.90 0.26 0.16 0.75
Kawasaki c 0.76 0.66–0.86 2681 0.65 0.78 0.43 0.41 0.78 0.68–0.87 2683 0.75 0.70 0.45 0.39

4 times Excretion c 0.81 0.71–0.90 3002 0.82 0.70 0.52 0.35 0.79 0.70–0.87 2653 0.70 0.73 0.43 0.40
Concentration 0.58 0.45–0.72 28.7 0.44 0.78 0.22 0.60 0.50 0.38–0.61 39.2 0.65 0.41 0.06 0.68
Kawasaki c 0.76 0.65–0.86 2793 0.79 0.67 0.47 0.39 0.78 0.68–0.87 2488 0.58 0.88 0.45 0.44

5 times Excretion c 0.81 0.72–0.90 3024 0.88 0.63 0.51 0.39 0.79 0.70–0.88 2658 0.65 0.78 0.43 0.41
Concentration 0.57 0.44–0.70 29.4 0.44 0.78 0.22 0.60 0.49 0.38–0.60 39.6 0.68 0.41 0.09 0.67
Kawasaki c 0.74 0.63–0.85 2755 0.76 0.65 0.42 0.42 0.78 0.69–0.88 2571 0.63 0.84 0.47 0.41

Na/Kratio d Criterion < 3.3 (n b = 39/80) Criterion < 2.9 (n b = 57/122)
1 time - 0.74 0.63–0.85 3.7 0.56 0.80 0.37 0.48 0.79 0.71–0.87 2.7 0.82 0.68 0.50 0.37
2 times - 0.82 0.73–0.91 3.4 0.74 0.80 0.55 0.32 0.87 0.80–0.93 3.2 0.77 0.88 0.65 0.26
3 times - 0.84 0.75–0.93 3.4 0.85 0.78 0.63 0.27 0.87 0.81–0.93 3.1 0.82 0.83 0.66 0.24
4 times - 0.84 0.75–0.92 3.4 0.79 0.78 0.58 0.30 0.89 0.83–0.94 3.1 0.82 0.82 0.64 0.25
5 times - 0.86 0.78–0.94 3.2 0.85 0.76 0.60 0.29 0.90 0.84–0.95 3.2 0.81 0.88 0.68 0.23

Abbreviations: AUC, area under the curve; CI, confidence interval; ROC, receiver-operating characteristic; WFR,
weighed food record; CO, cut-off value; Se, sensitivity; Spe, specificity; YI, Youden Index; DC, distance to
corner; Kawasaki, estimated excretion values using Kawasaki equations; Na/K ratio, sodium-to-potassium ratio.
a Cut-off values were determined from the Youden Index (sensitivity + specificity − 1) and distance to the corner
{(1 − sensitivity)2 + (1 − specificity)2}; b number of participants who deviated from the criterion based on WFR as
a reference measure; c 24-hour urinary potassium excretion and estimated 24-hour urinary potassium excretion
based on the Kawasaki equation were adjusted to the intake level by multiplying by 1.3; d potassium intake
based on the WFR used to calculate the Na/K ratio was adjusted to the 24-h urinary potassium excretion level by
dividing by 1.3.



Nutrients 2024, 16, 442 6 of 12

Spearman’s correlation coefficient between a single randomly selected 24-h urinary
potassium excretion measurement and vegetable intake based on the 12-d WFR was 0.50
for men and 0.48 for women. Respective coefficients for fruit intake were 0.25 and 0.35.
Regarding vegetables, when ≥350 g was used as the criterion, screening was useful for the
24-h urinary potassium excretion, regardless of sex (Table 3), but not with the concentration.
All potassium excretion values estimated using Kawasaki equations were as accurate as
the 24-h urinary potassium excretion. However, 24-h urinary potassium excretion was
not useful for ≥100 g of fruit as a criterion regardless of sex or the cumulative number of
collections (Table 3).

Table 3. AUC (95% CI) of the ROC curve of 24-hour urinary potassium excretion a to detect those
with deviation from fruit and vegetable intake, measured based on the 12-day WFR.

Men Women
AUC 95% CI CO b Se Spe YI DC AUC 95% CI CO b Se Spe YI DC

Fruit Criterion ≥ 100 g (n c = 46/80) Criterion ≥ 100 g (n c = 42/122)
1 time 0.65 0.53–0.77 2867 0.61 0.74 0.34 0.47 0.68 0.58–0.78 2779 0.64 0.71 0.36 0.46
2 times 0.64 0.52–0.76 2697 0.52 0.74 0.26 0.55 0.68 0.58–0.77 2793 0.64 0.63 0.27 0.52
3 times 0.62 0.50–0.74 2576 0.41 0.85 0.27 0.61 0.71 0.62–0.81 2839 0.71 0.61 0.33 0.48
4 times 0.61 0.48–0.73 3030 0.63 0.56 0.19 0.58 0.69 0.59–0.79 3078 0.81 0.54 0.35 0.50
5 times 0.63 0.50–0.75 3024 0.67 0.53 0.20 0.57 0.68 0.58–0.78 2878 0.71 0.61 0.33 0.48

Vegetables Criterion ≥ 350 g (n c = 44/80) Criterion ≥ 350 g (n c = 70/122)
1 time 0.77 0.66–0.87 3149 0.75 0.72 0.47 0.37 0.71 0.62–0.80 3348 0.86 0.52 0.38 0.50
2 times 0.80 0.70–0.90 3143 0.86 0.69 0.56 0.33 0.68 0.59–0.78 2988 0.70 0.63 0.33 0.47
3 times 0.77 0.67–0.88 3174 0.84 0.64 0.48 0.39 0.72 0.62–0.81 3085 0.77 0.62 0.39 0.45
4 times 0.76 0.65–0.88 3296 0.93 0.61 0.54 0.39 0.73 0.64–0.82 3073 0.77 0.69 0.46 0.38
5 times 0.77 0.66–0.88 3292 0.93 0.61 0.54 0.39 0.73 0.65–0.82 3000 0.71 0.69 0.41 0.42

Abbreviations: AUC, area under the curve; CI, confidence interval; ROC, receiver-operating characteristic;
WFR, weighed food record; CO, cut-off value; Se, sensitivity; Spe, specificity; YI, Youden Index; DC, distance
to corner. a The 24-hour urinary potassium excretion was adjusted to the intake level by multiplying by 1.3;
b cut-off values were determined from the Youden Index (sensitivity + specificity − 1) and distance to the corner
{(1 − sensitivity)2 + (1 − specificity)2}; c number of participants who deviated from the criterion based on the
WFR as a reference measure.

In addition, single urinary sodium excretion was able to discriminate <7.0 to <12.0 g
in 1 g increments for salt intake (Table S1). Moreover, a single 24-h urinary potassium
excretion was able to discriminate ≥2000 to ≥3500 mg in 500 mg increments for potassium
intake (Table S1). The Na/K ratio in a single urine collection could discriminate <2.0 to <4.5
in 0.5-unit increments of the Na/K intake ratio (Table S1). A single 24-h urinary potassium
excretion was also able to discriminate ≥400 g and ≥500 g for vegetable intake and ≥300
to ≥450 g and ≥550 to ≥650 g for the combined intake of fruit and vegetables in 50 g
increments, regardless of sex (Table S2). However, fruit intake could not be discriminated
from a single 24-h urinary potassium excretion in any criteria in either sex (Table S2).

The coefficients of variation in estimates and the number of days required to estimate
an individual’s usual mean intake with a certain degree of error as a percentage of usual
intake are shown in Table 4. CVw and CVb of the 12-d WFR were almost the same as for
the five 24-h UCs for sodium, potassium, and the Na/K ratio. The CVw of vegetables was
greater than those of other nutrients, while the CVw of fruit was even greater. WFR of 8, 6,
and 10 days, respectively, was needed to estimate the 95% CI of the usual mean intake of
sodium, potassium, or the Na/K ratio within ±10%, regardless of sex. Similarly to these,
based on 24-h urinary excretion, the corresponding number of days required was 10, 7,
and 10 days for men and 9, 7, and 8 days for women, respectively. In contrast, the intake
of fruit and vegetables needed more days of WFRs for these evaluations (vegetables, 22
and 18 days for men and women, respectively; fruit, 115 and 72 days for men and women,
respectively). As a result, for the 12-d WFR that we used as a reference to screen intake,
the intake of sodium and potassium and the Na/K ratio were evaluated with 95% CIs
within ±5% to ±10% of an individual’s usual mean intake. In the WFR, the number of
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days required to estimate the error (95% CI) to within ±5% to ±10% of an individual’s
mean intake for sodium, potassium, and the Na/K ratio was similar to that obtained with
24-h UCs. Vegetable and fruit intake based on the 12-d WFR were evaluated with 95% CIs
to be within ±10% to ±15% and wider than ±15% of an individual’s mean of the usual
intake, respectively.

Table 4. Number of days needed to assess mean values with 95% CIs within the specified % deviation
of an individual’s mean from the usual (“true”) mean values identified based on the WFR or 24 h UC.

Men (n = 80) Women (n = 122)

Mean CVw
a CVb

b Number of Days c
Mean CVw

a CVb
b Number of Days c

±5% ±10% ±15% ±5% ±10% ±15%

Sodium WFR (mg) - 4561 28.7 23.1 32 8 4 3797 28.7 22.4 32 8 4
24-h UC Excretion (mg) 4674 31.0 23.0 37 10 5 3904 29.5 22.2 34 9 4

Concentration
(mEq/L) 122 26.2 27.7 27 7 3 109 24.0 26.4 23 6 3

Kawasaki (mg) 5328 14.0 11.2 8 2 1 4832 13.4 12.0 7 2 1
Potassium WFR (mg) - 3175 24.8 28.8 24 6 3 2959 23.3 22.9 21 6 3

24-h UC Excretion (mg) d 3008 25.3 27.9 25 7 3 3010 25.2 27.0 25 7 3
Concentration
(mEq/L) 35.9 30.5 25.7 36 9 4 38 23.7 24.3 22 6 3

Kawasaki (mg) d 2793 10.3 11.2 5 2 1 2775 10.7 12.7 5 2 1
Na/K ratio WFR (mol/mol) e - 3.4 31.9 23.4 39 10 5 3.0 31.1 22.5 38 10 5

24-h UC
(mol/mol) - 3.7 31.5 30.4 39 10 5 3.1 28.5 26.2 32 8 4

Fruit WFR (g) - 102 109.0 74.9 457 115 51 136 86.4 49.3 287 72 32
Vegetable WFR (g) - 370 47.8 44.6 88 22 10 349 42.7 32.3 71 18 8

Abbreviations: CIs, confidence intervals; WFR, weighed food record; 24-h UC, 24-hour urinary collection;
CVw, coefficient of within-individual variation; CVb, coefficient of between-individual variation; Kawasaki,
estimated excretion values using Kawasaki equations. a CVw = {(within-individual variance)0.5/mean} × 100;
b CVb = {(between-individual variance)0.5/mean} × 100; c number of days needed to assess mean values with
95% CIs within the specified % deviation and the individual’s mean from usual mean values = (1.96 × CVw/
specified % deviation)2; d 24-h urinary potassium excretion and estimated 24-h urinary potassium excretion
values based on the Kawasaki equation were adjusted to the intake level by multiplying by 1.3; e potassium intake
based on the WFR used to calculate the Na/K ratio was adjusted to the urinary excretion level by dividing by 1.3.

4. Discussion

We found that the evaluated intake of sodium, potassium, and the Na/K ratio from a
12-d WFR with 95% CIs was within ±5% to ±10% of an individual’s usual mean intake,
similar to intakes evaluated based on the same number of 24-h UCs. The intake of sodium
and potassium and the Na/K ratio, based on the 12-d WFR, could be discriminated from on
the single 24-h urinary excretion for almost all criteria. Vegetable intake, but not fruit intake,
could be discriminated using single 24-h urinary potassium excretion for some criteria.

Using a 12-d WFR in men and women aged 45–77 years, Ogawa et al. [29] reported
that eight days of WFRs were required to estimate the usual mean sodium intake with a
95% CI within ±10% for both men and women. They also showed that seven days and five
days of WFR were required to estimate the usual mean potassium intake with a 95% CI
within ±10% for men and women, respectively. Fukumoto et al. [30] used a 16-d WFR in
men and women aged 50–69 years to show that 11 days were needed to assess the usual
mean intake of sodium with a 95% CI within ±10% based on the WFR for both men and
women. To assess the usual mean intake of potassium with a 95% CI within ±10%, five
days and seven days were required for men and women, respectively. These results are
consistent with our present finding that an individual’s usual mean sodium and potassium
intake can be estimated based on the 12-d WFR with a 95% CI within ±10%. In addition,
Ogawa et al. [29] also reported that an assessment of an individual’s usual vegetable intake
with a 95% CI within ±10% required 18 days and 16 days of WFRs for men and women,
respectively. They also reported that an assessment of an individual’s usual fruit intake
with a 95% CI within ±10% required 140 days for men and 64 days for women. These
values are consistent with the trend in our present study, specifically that assessing an
individual’s usual mean intake of vegetables requires more days than the number required



Nutrients 2024, 16, 442 8 of 12

to assess the intake of individual nutrients and that assessing fruit intake requires even
more days. To our knowledge, the few previous studies on the CVw and CVb of sodium or
potassium measured based on 24-h urine [32–34] used two or four 24-h UCs. Our results
were based on a larger number of 24-h UCs than these previous reports and were consistent
with them.

Previously, the relationship between sodium intake based on the WFR and 24-h urinary
sodium excretion was examined from the correlation and mean difference [34,35]. Further,
one study [18] discriminated based on WFR using the 24-h UC as a reference standard. To
our knowledge, however, no previous study has quantitatively investigated intake using
biomarkers in comparison with the WFR as a reference standard.

In the present study, urinary potassium could be used to discriminate vegetable
intake, but not fruit intake. This might be attributable to the difference in the percentage
contribution to total potassium intake among food groups; the largest was for vegetables
(30.6%), whereas fruits were only the fourth largest (7.3%). This is likely consistent with
the National Health and Nutrition Survey in Japan in 2013 [36], which measured that at
22.8% and 8.8% for vegetables and fruit, respectively. This relatively small contribution of
fruit to potassium intake may be one reason why urinary potassium excretion could not be
used to determine fruit intake. A second reason for the inability to discriminate fruit intake
by urinary potassium excretion may be that the 12-d WFR, which was used as a reference,
may not have adequately reflected the usual intake because of its large CVw.

Fujioka et al. [37] reported a dose–response relationship between intake of 25, 50,
100, 200, 300, 400, or 500 µmol of glucobrassicin (based on a Brussels sprouts- and/or
cabbage- feeding session), which is abundant in cruciferous vegetables, and urinary 3,3′-
diindolymethane (DIM), which is one of its metabolites. The correlation was relatively
high, at R2 = 0.68, albeit they considered cruciferous vegetables only. We considered that
urinary potassium, as a major nutrient, is more convenient for screening total vegetable
intake. However, Krogholm et al. [38] reported no differences in urinary potassium excre-
tion among groups with feeding interventions of 0, 300, and 600 g of fruit and vegetables
using urine samples from the day before and the day of the intervention. Because urinary
biomarkers are thought to be reflected by the day of intake and during the week there-
after [7], it is possible that intake was not adequately reflected in the urine in their study. In
our present study, we showed that usual total vegetable intake can be screened by urinary
potassium excretion using four of five 24-h UCs conducted on the last day of each 3-d WFR.

With regard to fruit, we speculate that a combination of several biomarkers may be
suitable for determining intake. McNamara et al. [39] developed a multi-biomarker panel
using spot urine for fruit intake and examined its agreement with intake. The fruit intake
intervention consisted of low, medium, and high portions of provided fruit, namely 50, 100,
and 300 g for apples and 80, 160, and 320 g for oranges, respectively, in 160 men and women
aged 18–60 years for four consecutive days each week over five weeks. They collected
fasting first-void urine after an overnight 12-h fast at the end of each study week. Proline
betaine, hippurate, and xylose were selected based on a metabolomic analysis of urine, and
a multi-biomarker panel was created by summing the values of the three biomarkers per
participant. Cut-off values of ≤ 4.766, 4.766–5.976, and >5.976 µM/mOms/kg were defined
for the multi-biomarker panel for fruit intake of <100, 101−160, and >160 g. They then
used the total fruit intake obtained from semi-weighed food records for four consecutive
days and fasting first-void urine collected at or as close to the end of the food record as
possible for 546 men and women aged 18–90 years and examined agreement among <100,
101−160, and >160 g of fruit intake and ≤4.766, 4.766–5.976, and >5.976 µM/mOms/kg
of the multi-biomarker panel. The results showed good agreement. The biomarkers used
to estimate foods or food groups should be specific biomarkers [7,8]. The combination of
values of the three biomarkers selected by McNamara et al. may have been specific for fruit
intake, but their methods were nevertheless not simple. Furthermore, fruit and vegetable
intake is subject to seasonal variation. The data they used to develop their multi-biomarker
panel were based on an intake intervention of apples and oranges for four consecutive



Nutrients 2024, 16, 442 9 of 12

days each week over five weeks, which accordingly excluded any consideration of seasonal
variation. In contrast, the 12-d WFR used as a reference standard in our present study
collected data in each of the four seasons of a single year and could therefore be used to
evaluate intake with the consideration of seasonal variation.

With regard to other non-invasive biomarkers for the individual intake of vegetables
or fruit, Radtke et al. [9] reviewed the accuracy of skin carotenoid measurements using
spectroscopy technologies, such as RRS, RS, and spectrophotometers, which had been
examined by calculating the correlation between blood carotenoids (serum and plasma)
or dietary carotenoids and fruit and vegetable intake, as estimated using self-reported
methods. The correlation coefficients for skin carotenoids were reported to range from
weak to strong (0.39 to 0.81) for blood carotenoids, from weak to moderate (0.41 to 0.60) for
dietary carotenoids, and from weak to moderate (0.22 to 0.47) for fruit and vegetable intake.
In that review [9], the studies that examined the association between skin carotenoids
and both blood carotenoids and dietary intake showed moderate-to-strong correlation
coefficients with blood carotenoids (0.62–0.79), whereas the correlation coefficients with
dietary intake were all lower than those with blood carotenoids. In our present study, the
correlation coefficient between single 24-h urinary potassium excretion and vegetable intake
from the 12-d WFR was slightly higher (0.48 to 0.50) than those between skin carotenoids
and the intake of fruit and vegetables (0.22 to 0.47) in the review. Additionally, to our
knowledge, no previous study has examined the accuracy of screening the individual
consumption of fruit and vegetables based on skin carotenoids.

This study has some limitations. First, the urine used in this study was not spot
urine. The accuracy of estimation using the Kawasaki equation, which originally used
spot urine, was not properly evaluated because we used the 24-h UC. We consider that
the 24-h UC probably overestimates the accuracy of the evaluation compared with spot
urine, and further examination using spot urine is required. Second, the participants were
skewed toward middle-aged and elderly adults. It has been reported that the CVw is
smaller in elderly people than in younger people [30]. Accordingly, the CVw obtained from
our participants may also have been smaller than those of younger people. It is possible
that the accuracy of the discrimination may have been overestimated due to our measured
values—obtained with a 12-d WFR—more closely reflecting usual intake, given that the
screening accuracy of fruit intake was low with a larger CVw than that seen with the others.

5. Conclusions

In conclusion, this study suggests that deviations from the criteria for sodium and
potassium intake and the Na/K ratio established using a 12-d WFR could be differentiated
using a single 24-h UC. Vegetable intake could also be differentiated based on a single 24-h
urinary potassium excretion. In contrast, fruit intake could not be determined using the
cumulative average of multiple urinary potassium excretions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu16030442/s1, Table S1: AUC (95% CI) of ROC curves of one-time
24-h urinary sodium and potassium excretion and Na/K ratio in one-time 24-h urinary collection
to detect those with deviating intakes of sodium, potassium, or Na/K measured by 12-day WFR
using other criteria; Table S2: AUC (95% CI) of the ROC curves by one-time 24-h urinary potassium
excretion to detect those with deviating intakes of fruit or vegetables measured by 12-day WFR using
other criteria.
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