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A natural product is an organic compound from a living organism that can be isolated
from natural sources or synthesized.

This paper aims to highlight the scientific achievements published in the Special Issue
of Nutrients “Natural Products and Health”, which comprises nine original papers and three
reviews. The review articles focus on the Acai Palm, saponins found in allium vegetables,
and dietary recommendations for individuals with inflammatory bowel disease. The
original papers cover topics such as olive oil, royal jelly, hemp, Paeonia seed oil, Boswellia
serrata resin, phloretamide (a flavonoid present in apple juice), catalpol (an iridoid from
Rehmannia glutinous roots), and a flavone found in the leaves of Crocus species.

The açaí palm (Euterpe oleracea) and its berries, which contain a high proportion
of fats (50% of their composition), are well-known for their potent antioxidant and anti-
inflammatory properties [1,2]. Açaí is rich in amino acids, polyphenols, lignan isolates,
different fatty acids, and sterols, and effectively counters oxidative stress and regulates
pro-inflammatory genes (TNF-α, COX-2, NF-κβ) in vitro [3]. Açaí exhibits analgesic and
anti-inflammatory effects, and its oil (EOO) serves as an effective antibacterial agent against
Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, and Streptomyces aureus [4–6].
Moreover, it shows promise in inhibiting cancer cell growth [7,8], improving heart function,
reducing blood pressure, and enhancing vascular health [9,10]. Açaí may also provide pro-
tection to the kidneys, reducing damage and enhancing their function, and could combat
neurodegenerative diseases through antioxidant and anti-inflammatory mechanisms and
brain protein homeostasis. Additionally, it demonstrates potential antidiabetic, antidys-
lipidemic, and hepato- and nephroprotective benefits. Clinical trials have validated açaí’s
effectiveness in alleviating prostate cancer, mitigating risk factors associated with metabolic
syndrome, and addressing auditory dysfunctions [11].

Allium contains steroidal saponins that exhibit a range of diverse biological activ-
ities [12–14], including hypoglycemic activity, potentially regulated by visfatin, and an-
tiplatelet activity that reduces ADP-induced aggregation. Additionally, saponins exhibit
gastroprotective effects, bolster the immune response, and demonstrate anti-inflammatory
properties by restraining NO production by lipopolysaccharide (LPS). Saponins also demon-
strate cytotoxicity and antitumor effects against various tumor cell types, possess antifungal
and antibacterial properties, inhibit specific enzymes (Na, K-ATPase, cAMP phosphodi-
esterases), display antispasmodic activity, influence calcium ion regulation in cardiomy-
ocytes, and exhibit neuroprotective effects [15–17]. In a comprehensive literature review,
Wang et al. emphasized the significant role of steroidal saponins and elucidated their
biosynthetic process. They determined the biosynthetic pathways of several pivotal com-
pounds, contributing to a deeper understanding of this field [18].

The impact of phenolic compounds found in extra virgin olive oil (EVOO), namely
hydroxytyrosol (htyr), oleocanthal (ole), and tyrosol (tyr), was examined in cultured human
fibroblasts (specifically, the human skin fibroblast cell line CCD-1064S) [19,20]. These
compounds significantly increased both the proliferation and migration of fibroblasts,
with oleocanthal demonstrating the most pronounced effect at concentrations of 10−6 M
and 10−7 M. The treatments also resulted in a noteworthy elevation in fibronectin and
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α-actin expression in fibroblasts. Notably, no significant alterations were observed in cell
cycle distribution or DNA integrity, suggesting the safety of these compounds. These
findings underscore the potential of EVOO polyphenols in promoting tissue repair and
regeneration, suggesting potential applications in wound healing processes such as cell
adhesion, chemotaxis, and phagocytosis [21,22].

Royal jelly (RJ) has been employed for treating non-alcoholic fatty liver disease.
The application of RJ resulted in reduced weight gain, alleviated hyperinsulinemia, and
improved glucose tolerance. It also lowered liver enzymes and leptin, restored adiponectin
levels, and decreased inflammatory markers (IL-6, TNF-α) [23–25]. In rats fed a high-fat
diet, RJ enhanced their lipid profiles. Furthermore, RJ treatment led to the restoration
of AMPK activation and the expression of genes responsible for fat metabolism, such as
SREBP1 and PPARα. Histological examination revealed improved liver structure with
fewer fat vacuoles in RJ-treated rats. However, when RJ was co-administered with an
AMPK inhibitor, compound C (CC), these beneficial effects were attenuated [26].

Suffruticosol C, derived from the seeds of Paeonia species [27,28], exhibits significant
antitumor effects against various cancer cell lines (Caco2, H1299, HCT116, HepG2, and
PC3 cells). It induces cell death, autophagy, and cell cycle arrest by inhibiting the mTORC1
pathway [29–32]. Suffruticosol C significantly suppresses the growth of different lines of
cancer cells and demonstrates more potency than resveratrol. It promotes autophagy by
increasing autophagy markers, up-regulating the expression of genes associated with lyso-
some biogenesis, and starting the autophagosomal process. Suffruticosol C suppresses cell
proliferation and division and, in a dose-dependent manner, inhibits mTORC1 activation,
suggesting its potential as an anti-cancer agent that targets autophagy and cell cycle-related
mechanisms [33–47].

6-Hydroxyflavanone (6-HF) displays anti-inflammatory, antioxidant, and anti-
neuropathic effects [48–50]. It induces cell death, autophagy, and cell cycle arrest in a
dose-dependent manner, suggesting its potential as an anticancer agent. In silico docking
investigations and in vitro studies revealed that 6-HF has essential binding interactions
with the catalytic site residues of the COX-2 enzyme, demonstrating significant inhibitory
activity against COX-2 and 5-LOX enzymes. In vivo studies demonstrated that 6-HF highly
prolonged the latency of responses in mice, indicating its thermal anti-nociceptive effects.
Additionally, it displayed anti-inflammatory activity in a carrageenan-induced paw edema
test and effectively alleviated allodynia and vulvodynia, both static and dynamic, in a dia-
betic neuropathy model induced by streptozotocin (STZ). These findings imply that 6-HF
potentially has anticancer properties, specifically targeting autophagy and cell cycle-related
mechanisms [51,52].

11-keto-β-boswellic acid (AKBA), a key constituent of the natural resin Boswellia
serrata, exhibits antioxidant properties by stimulating the Nrf2/antioxidant axis and pos-
sesses anti-inflammatory properties, targeting NF-κB p65, IL-6, and TNF-α [53–55]. In
diabetic rats, it elevated insulin levels, aiding in blood glucose regulation. AKBA also
lowered high blood sugar levels and reduced lipid accumulation in the heart and liver
of rats. It stimulated glucose uptake and oxidation and enhanced fatty acid oxidation in
the heart, leading to normalized cardiac metabolism. Furthermore, it bolstered the Nrf2
antioxidant pathway, thereby reducing oxidative stress [55–59]. AKBA suppressed NF-κB
and inflammatory cytokines, resulting in reduced inflammation. It played a crucial role
in AMPK activation, preserving cardiac structure and function, improving glucose and
lipid profiles, and modulating cardiac metabolism in diabetic rats. When AMPK was
inhibited, these benefits were reversed, underscoring the significance of AKBA’s role in
AMPK regulation [60].

Phloretamide, a derivative of phloretic acid found in apple juice [61–63], exhibited
promising potential in mitigating non-alcoholic fatty liver disease (NAFLD) in streptozo-
tocin (STZ)-induced diabetic rats. This compound significantly increased the rats’ body
weight and improved glucose regulation, with notable reductions in fasting glucose and
hepatic levels of, G-6-Pase, IL-6, FBP-1, NF-κB, MDA, TNF-α. It simultaneously raised
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levels of CAT, GSH, HO-1, and SOD and hepatic levels of hexokinase and glycogen and
positively influenced pancreatic structure by increasing islet size and cell count. Addition-
ally, it favorably impacted lipid profiles by reducing serum levels of FFAs and rectifying
lipid imbalances. Phloretamide effectively reversed adverse changes in oxidative stress and
inflammation markers. It significantly impacted the hepatic Keap-1/Nrf2 axis, with more
pronounced effects at higher doses. Histological improvements were observed in liver
tissues from STZ-induced diabetic rats treated with phloretamide, particularly at a dose of
200 mg/kg, showing nearly normal hepatocytes and reduced cytoplasmic fat deposits [64].

Catalpol (CAT), an iridoid glucoside derived from the root of Rehmannia gluti-
nosa [65], demonstrates nephroprotective effects in murine models of chronic kidney
disease (CKD). CAT effectively mitigates adenine-induced alterations in the body, water
intake, urine volume, and plasma concentrations of creatinine and urea [66–73]. More-
over, CAT reduces adenine-induced kidney injury by lowering levels of kidney injury
molecule-1, adiponectin, cystatin C, and neutrophil gelatinase-associated lipocalin. In an
adenine-treated group, CAT pre-treatment significantly reduced inflammation and oxida-
tive stress markers (TNFα and IL-6, NF-κB). Histologically, CAT demonstrates notable
effects in reducing tubular necrosis, interstitial fibrosis, and dilation in the kidney. The ben-
eficial effects of CAT against adenine-induced CKD in mouse models involve mechanisms
such as sirtuin-1 activation and NF-κB inhibition [74].

Cannabidiol (CBD) and tetrahydrocannabinol (THC) are the principal components
of Cannabis sativa [75]. In the Special Issue “Natural Products and Health”, two papers
concern Cannabis sativa. In the first paper, hemp extract prepared from plants with reduced
THC content was orally administered to rats. THC is responsible for the hallucinogenic
and euphoric effects of hemp preparations, and its reduction in hemp preparations used
by humans is desirable. In oral hemp treatment, the pharmacokinetics and bioavailability
of CBD and THC are significantly influenced by the solvent. The authors showed that for
hemp extract dissolved in rapeseed oil, the total bioavailability of CBD and THC was higher
than for Cremophor. Notably, higher CBD concentrations than THC were observed in the
whole blood and the brain. However, some CBD underwent conversion into THC within
the body, a factor to be considered when using Cannabis sativa for medicinal purposes in
humans [76].

The authors of the second paper on hemp examined how CBD influenced the develop-
ment of alcohol addiction in a rat model. The sedative and hypothermic effects of alcohol
increased with the elevation of blood alcohol concentration [77]. Given that tolerance is
considered to be a precursor to drug addiction, it is suggested that CBD can impede the
development of alcohol dependence. On the molecular level, the most expressed effect
of the ethanol–CBD intervention was observed in the striatum, where CBD inverted the
ethanol-induced down-regulation of CB2R gene transcription. The opposite effect was
observed for the mRNA of CB1 and dopaminergic receptors (DRD1, DRD2) [78].

Inflammatory bowel disease (IBD) is characterised by intestinal inflammation re-
sulting from both genetic and environmental factors, among which diet plays the most
critical role. Through a critical analysis of data on the use of selected diets (Low-FODMAP
diet, Exclusive Enteral Nutrition, Specific Carbohydrate Diet, Anti-Inflammatory Diet) and
based on available medical data, the authors prepared guidelines for patients and clinicians
regarding best practices in diet modification for treating IBD. They concluded that a diet
high in selected fats, artificial sweeteners, carbohydrates, and some additives, specifically
carrageenan, exacerbates IBD, just as a diet rich in meat also has an undesirable effect on
the course of IBD. In contrast, dietary fiber, fruits, omega-3 fatty acids, and Curcumin, a
turmeric component, are considered protective in IBD management [79].

The search for new human-health-promoting molecules of natural origin is a topic
that has attracted much interest. Natural products have been used for medicinal purposes
for thousands of years and are still a vital, available, and cheap source of substances of
pharmacological value [80].
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They are also integral in the field of functional food and can contribute to improving
the health-promoting properties of food matrices. This is especially important in the case
of lifestyle-affecting diseases, such as inflammatory bowel disease (IBD) or fatty liver
disease, in terms of both treatment and prevention. As mentioned above, components
like dietary fiber, omega-3 fatty acids, and curcumin show protective effects in managing
IBD, and phloretamide, found in apple juice, may support the treatment of liver disorders,
including steatosis.

The importance of this knowledge lies in the fact that education and dietary impact
can influence vast populations at a relatively low cost [80].

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

5-LOX 5-Lipoxygenase
6-HF 6-Hydroxyflavanone
AKBA 11-keto-β-boswellic acid
AMPK AMP-activated protein kinase
CAT catalpol
CBD cannabidiol
CBR cannabinoid receptor
COX-2 cyclooxygenase 2
DM diabetes mellitus
DNA deoxyribonucleic acid
DRD dopamine receptor
EVOO extra virgin olive oil
FFA free fatty acid
Htyr hydroxytyrosol
IL-6 interleukin 6
mRNA messenger ribonucleic acid
mTORC1 mammalian target of rapamycin complex 1
NF-κB nuclear factor kappa B
Nrf2 nuclear factor erythroid 2
Ole oleocanthal
RJ royal jelly
SREBP1 sterol regulatory element-binding protein 1
STZ streptozotocin
THC tetrahydrocannabinol
TNF-α tumor necrosis factor α
Tyr tyrosol
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