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Abstract: Gestational diabetes mellitus (GDM) is a common metabolic disorder that often develops
during pregnancy, characterized by glucose intolerance and insulin resistance (IR). To ensure the well-
being of both the mother and the fetus, the body undergoes multiple metabolic and immunological
changes that result in peripheral IR and, under certain hereditary or acquired abnormalities, GDM in
predisposed women. The adverse short- and long-term effects of GDM impact both the mother and
the fetus. Nutrition seems to play an important role to prevent GDM or improve its evolution. An
emphasis has been given to the proportion of carbohydrates (CHO) relative to protein and lipids,
as well as dietary patterns, in GDM. The effects of CHO on postprandial glucose concentrations are
reflected in the glycemic index (GI) and glycemic load (GL). Diets rich in GI and GL may induce or
exacerbate IR, whereas diets low in GI and GL appear to enhance insulin sensitivity and improve
glycemic control. These positive outcomes may be attributed to direct interactions with insulin and
glucose homeostasis or indirect effects through improved body composition and weight management.
This comprehensive narrative review aims to explore the significance of nutrition, with a focus on the
critical evaluation of GI and GL in the dietary management of women with GDM.

Keywords: gestational diabetes mellitus; diet; nutrition; carbohydrates; insulin resistance; glycemic
load; glycemic index; obesity; pregnancy; gestational insulin resistance; gestational inflammation

1. Introduction

Gestational diabetes mellitus (GDM) is one of the most common pregnancy com-
plications, with a steadily increasing prevalence, in parallel to the global rise in type
2 diabetes mellitus (T2DM) and obesity. Approximately 15% of pregnancies worldwide are
complicated by GDM [1].

Pregnancy undergoes various anatomical, biochemical, physiological, and hormonal
changes to meet the increased metabolic demands for fetal development. During early
gestation, insulin sensitivity increases in order to control glucose metabolism and promote
the uptake of glucose into adipose stores in preparation for the energy demands of mid-
and late pregnancy. In adapting to ensure an adequate supply of carbohydrates (CHO)
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for the fetus and consequently maintaining the necessary glucose levels to meet its energy
demands, a state of peripheral insulin resistance (IR) is gradually established [2]. As a result,
blood glucose is slightly elevated across the placenta to fuel the growth of the fetus [3].
Thus, as the pregnancy progresses, a surge of hormones, including estrogen, progesterone,
leptin, cortisol, placental lactogen, and placental growth hormones together promote a
state of IR [3]. As part of the normal response, maternal tissues such as muscle and fat
become relatively insulin-resistant. These maternal tissues increase the use of other fuel
sources, such as fatty acids and ketone bodies [4]. Increased estrogen, progesterone, and
insulin favor lipid deposition and the accumulation of maternal fat stores in early and
mid-pregnancy and enhance fat mobilization in late pregnancy [5]. Protein catabolism is
decreased as fat stores are used to provide energy for metabolism [6–8]. Hyperinsulinemia
ensues as a compensatory response to the increased insulin production by β-cells as a
means of compensating for the IR [1]. In addition to the hormonal imbalance, gestational IR
is further exacerbated by genetic and epigenetic variables [9], increased visceral fat, altered
gut microbiota [10], and obesity (Figure 1). Gestational IR is more evident in mid- to late
pregnancy and typically resolves after delivery.
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Figure 1. Factors influencing the periods of preconception, pregnancy, and post-pregnancy, leading to
GDM. GDM, gestational diabetes mellitus; DM, diabetes mellitus; CHO, carbohydrates; GI, glycemic
index; GL, glycemic load, IR; insulin resistance.

Also, a number of signaling pathways may play a role in the pathophysiology of GDM;
NF-κB contributes to the development of GDM by promoting adipocyte inflammation
and impairing insulin-related functions, such as glucose uptake, peroxisome proliferator-
activated receptors (PPARs), sirtuins (SIRTs), 5′ AMP-activated protein kinase (AMPK),
glycogen synthase kinase 3 (GSK3), PI3K/mTOR, inflammasomes, and the endoplasmic
reticulum (ER) [11]. These key pathways often interact with and alongside each other, as
T2DM studies have shown. Unfortunately, there is no clear evidence to indicate that these
pathways act and contribute to GDM development [12]. Many biomolecules circulating in
the blood or contained in the saliva have been studied as potential predictive markers in the
diagnosis of GDM. In addition to adiponectin and leptin, these include galectins, growth
differentiation factor-15, chemerin, omentin-1, osteocalcin, resistin, visfatin, vaspin, irisin,
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apelin, fatty acid-binding protein 4 (FABP4), fibroblast growth factor 21, and lipocalin-
2 [13,14]. It has been found that high levels of FABP4 and low levels of irisin in the serum
of pregnant women can be used as predictive markers. Levels of chemerin and resistin
contained in the saliva are reported to be significantly higher in women with GDM than in
healthy women [13].

A growing body of research highlights that hyperglycemia during pregnancy influ-
ences epigenetic processes, inducing changes through histone modification, DNA methy-
lation, and the disrupted function of non-coding ribonucleic acid (ncRNA), including
microRNAs (miRNAs) [15,16]. Mainly epigenetic changes lead to the dysregulation of
gene transcription, modifying the phenotype of the developing child [17,18]. Short-term
effects on offspring include respiratory distress syndrome, hypoglycemia, hyperbiliru-
binemia, hypocalcemia, hypomagnesemia, polycythemia, and adverse fetal programming,
contributing to long-term risks including childhood obesity, T2DM, hypertension, and
CVD in adolescence and adulthood [19–21]. Children of mothers with GDM or pregnant
women with preexisting diabetes of any type (T1DM, T2DM, MODY, LADA, etc.) have
an eight-times-higher risk of developing prediabetes or diabetes, compared to children of
non-diabetic mothers [20]. Several studies report a high cardio-metabolic risk in children
exposed to GDM in the womb, considering it an independent risk factor for glucose intoler-
ance and CVD [11]. The risk of obesity (BMI ≥ 95th centile for age) is elevated in offspring
exposed to gestational diabetes, type 1 diabetes, or type 2 diabetes in utero [22]. Also,
the severity of diabetes (GDM requiring medications) during pregnancy may increase the
vulnerability of offspring for depression or anxiety [23]. Preventing the epigenetic changes
associated with metabolic and inflammatory processes in offspring underscores the critical
importance of maintaining glucose control during GDM [17].

GDM is linked to complications for the mother as well, such as an elevated risk of
GDM in future pregnancies, an increased risk of developing T2DM and early cardiovascular
disease (CVD), as well as an increased risk of delivery through cesarean section [24].

Identifying modifiable risk factors for GDM prevention and management is, thus,
crucial for the medium- and long-term well-being of both the mother and child [25]. Modi-
fiable risk factors include maternal overweight or obesity, specific dietary choices, physical
inactivity before or during pregnancy, and maintaining appropriate weight throughout
pregnancy [19,26].

First-line therapies focus on major lifestyle adjustments, especially in nutrition. A
balanced diet during pregnancy can keep gestational IR levels as low as possible to prevent
GDM [24]. The timing and composition of food intake play a significant role, influenc-
ing circadian rhythms that regulate various physiological functions crucial to human
health [27]. Food preparation might also produce advanced glycation end-products (AGEs),
a major cause of oxidative stress in diabetes [28–30]. It is generally advised to consume
macronutrients in moderation and balance while limiting your overall calorie intake [31].

The role of CHO has been extensively studied, with the type and amount affecting
postprandial glucose levels and IR potential. A large number of dietary CHOs (glucose;
sucrose; and cooked starches in pasta, potatoes, and white bread) are quickly digested and
absorbed in the small intestine, causing a sharp increase in blood sugar levels. Higher-
quality, nutrient-dense CHOs result in controlled fasting and postprandial glucose, as well
as improved insulin action [21].

The glycemic index (GI) and glycemic load (GL) are measures proposed to assess
CHOs’ effects on health in general and pregnancy, in particular [32,33]. The GI functions
as an evaluative system for foods containing CHOs, illustrating the speed at which each
consumed food impacts postprandial blood glucose levels. The GL, derived from the GI, is
computed by multiplying the weight of available CHOs in the food (in grams) by the food’s
GI and subsequently dividing by 100. In the context of glucose homeostasis, both indices
precisely outline the type and quantity of CHOs present in a diet. By definition, foods with
a high GI exhibit moderate to high levels of CHOs. Notably, certain items, such as fruits,
whole grains in their natural state, and dairy products, also boast significant micronutrient
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contents [34]. High-GI and -GL diets have been associated with conditions such as obesity,
diabetes, and CVD, all of which share IR as an underlying pathogenetic mechanism [25].
Conversely, meals with low GI and GL values contribute to the enhancement of insulin
sensitivity and glucose homeostasis [18]. It is worth noting that in existing studies, a
unanimous consensus on what defines a low GI/GL diet has yet to be reached. A list of
basic foods with low GI and GL estimates is shown in Table 1 [25,35].

Table 1. Representative foods low in GI (<55) and GL (<10).

Food GI GL Food GI GL

Apples 40 6 Barley 28 13

Oranges 40 4 Rice noodles 54 22

Cherries 20 5 Full-fat milk 27 3

Raspberries 32 3 Low-fat milk 32 4

Grapefruits 25 3 Soy milk 55 6

Kiwis 53 9 Skim milk 32 4

Dates 54 21 Yogurt 15 1

Pear 33 3 Chocolate 43 7

Apricot 34 3 Fructose 23 2

Apple juice 40 12 Peanuts 14 1

Orange juice 55 14 Walnuts 20 1

Chickpeas 28 8 Almonds 10 <1

Kidney beans 28 7 Pecans 10 <1

Lentils 30 11 Hazelnuts 15 <1

Soybeans 16 9 Eggplant 15 2

Mushrooms 10 1 Celery 15 1

Zucchini 15 1 Spinach 15 1

Asparagus 32 2 Carrots 39 2

Cucumber 15 0 Tomatoes 15 1

Onion 15 <1 Lettuce 15 1

In this narrative review, we gathered available data on the effects of CHO diets, partic-
ularly GI/GL diets, on women with GDM. We aim to enhance our understanding of the
optimal dietary recommendations for treating GDM, ensuring strict glycemic control while
guaranteeing an adequate glucose supply for the fetus and addressing health issues affect-
ing GDM patients and their offspring. The information utilized for this narrative review
was collected following a comprehensive literature search using electronic databases.

2. Preconception

All women contemplating pregnancy, regardless of age, health status, and other
risk factors, should be educated about the significance of adopting a healthy lifestyle
and managing preexisting medical conditions prior to conception. Specifically, lifestyle
interventions should be initiated approximately 6–12 months before conception to mitigate
the risk of first-trimester miscarriage, perinatal mortality, and various other pregnancy-
related complications [21,36,37].

Dietary habits, physical activity, and sleep cycles can impact ovarian quality, menstrual
cycles, and ovulation. Conditions such as overweight, obesity, hypertension, T1DM, T2DM,
hyperlipidemia, anemia, and vitamin deficiencies should be addressed and effectively
managed before embarking on pregnancy [38].
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Women who are underweight, overweight or obese, with known polycystic ovary
syndrome (PCOS), or with poor eating habits are more prone to developing GDM [39].
These situations elevate the risk of IR and chronic inflammation, predisposing GDM to
manifest earlier in pregnancy. Prospective observational studies have also discovered a link
between prenatal high-GL diets and a higher incidence of GDM in US women [40]. Pre-
pregnancy maternal obesity triggers a systemic inflammatory response [40–42], which may
lead to downstream metabolic effects such as IR and glucose dysregulation, contributing to
gestational hyperglycemia [41].

The early initiation of interventions, including dietary adjustments, exercise, and
lifestyle counseling, can potentially reduce the risk of GDM [21]. Prior to conception,
adopting a “healthy” diet, such as the Mediterranean diet or the DASH diet, has been linked
to improved outcomes, particularly for obese and overweight women [43]. Preference is
given to low-GI and -GL diets, especially when combined with plant-based proteins and
fat, while caution is advised against low CHOs and high intake of animal-based products,
as they may elevate the risk of GDM [44,45].

3. Pregnancy
3.1. Gestational IR

Insulin resistance is commonly observed during pregnancy, although the processes
underlying its pathogenesis are complex and not yet fully understood [46]. In a typical
pregnancy, maternal tissues gradually become more insensitive to insulin, resulting in a
50–60% decrease in insulin sensitivity as gestation progresses [47,48]. During the second
half of pregnancy, when IR is at its peak, GDM is believed to develop when β-cells fail
to adapt to the increasing demand for insulin [47]. Both women with and without GDM
experience similar increases in insulin production during pregnancy; however, women with
GDM start at a lower level. Consequently, the β-cell abnormality in GDM is considered
more of a chronic condition than a development during pregnancy. Overt T2DM may
develop postpartum as a result of this β-cell malfunction in GDM [49]. Prior to and
independently of changes in insulin sensitivity, the insulin secretory response significantly
increases in the early stages of pregnancy. This metabolic adaptation may be mediated by
circulating hormones, with placental hormones and/or cytokines likely responsible for
these changes in maternal physiology [50].

Mostly women with preexisting IR and predisposing risk factors develop GDM. These
risk factors include PCOS, low- or high-birth-weight fetuses, a family history of T2DM
or GDM, multiparity, advanced maternal age, and a prior GDM diagnosis [51]. However,
women with no preexisting IR may also develop GDM because they have defective β-cell
function due to genetic or idiopathic reasons. IR in early pregnancy and a positive glucose
challenge test in later pregnancy, irrespective of BMI, were also found to be associated with
visceral adipose tissue depth evaluated by ultrasound that exceeded the top quartile in
early pregnancy [52].

3.1.1. Gestational Weight Status

Maternal weight is a crucial factor that significantly influences pregnancy progression,
in conjunction with maternal age. Extensive studies have examined weight, calculating
BMI in early pregnancy and the percentage of weight gained during pregnancy. Being
overweight and obese are established contributors to GDM. A high antenatal BMI and ex-
cessive weight gain during pregnancy are recognized risk factors for various complications,
including postpartum weight retention, GDM in subsequent pregnancies, future obesity,
T2DM, and long-term CVD [53,54]. Additionally, these factors contribute to obstetrical
complications such as pre-eclampsia, eclampsia, macrosomia, hemorrhage, and cesarean
delivery [55]. Moreover, a higher maternal BMI is associated with an increased risk of
perinatal mortality [56]. Weight gain during pregnancy is also linked to functional impacts
on maternal glucose metabolism, particularly in obese and overweight women. While there
are no changes in insulin secretion or clearance, there is a notable increase in IR [57].
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Regarding maternal body fat levels, a significant correlation with maternal leptin
levels during pregnancy has been observed. Leptin, a hormone produced by adipose tissue,
has various metabolic effects, including decreased insulin sensitivity in non-pregnant
individuals [58]. Mothers with elevated body fat levels are also more likely to give birth to
newborns who have a higher likelihood of being obese in adulthood [59]. Visceral adipose
tissue (VAT) in the abdomen is associated with metabolic syndrome, IR, and an elevated
risk of CVD in the future [60,61].

The detection of IR and glucose dysregulation in mid-pregnancy is correlated with
an increased depth of VAT in the first trimester of pregnancy [25,37]. According to a study
by Rocha et al., VAT measured by ultrasound, placed from the aortic anterior wall to the
linea alba, during the first half of pregnancy can predict the occurrence of GDM during the
third trimester, even in non-obese pregnant women. VAT could thus be used as an accurate
marker for GDM, regardless of BMI [56].

Specific recommendations now exist regarding the proportion of weight gain during
pregnancy based on the woman’s BMI to prevent complications for both the mother and
the fetus [62,63].

3.1.2. Effects of Diet on Gestational IR

Diet, encompassing total calorie consumption, dietary plans, food processing, and
preparation, as well as exposure to endocrine-disrupting chemicals [64,65], appears to
exert a significant impact on the onset or exacerbation of IR, particularly in cases where IR
already exists, such as in obesity or PCOS [66]. Systemic inflammation and IR are believed
to be influenced by the quality and content of dietary fibers [67], while studies also indicate
that diets rich in sucrose or fructose negatively affect IR [68].

A high-fat, Western-style diet characterized by a high caloric intake is a major risk
factor for developing IR, prediabetes, T2DM, and obesity [69]. A diet rich in fats or sugars
may also significantly alter the diversity of intestinal microbial flora. However, most diet-
related alterations to the gut microbiota appear to be reversible with appropriate dietary
modifications [70].

The diet recommended for expectant women with GDM should aim to promote
healthy maternal weight gain while minimizing postprandial glucose spikes and fostering
fetal development. Various dietary recommendations for GDM have been compared in
numerous studies, including energy-restricted versus unrestricted diets; low-CHO, -GI,
and -GL diets versus high-CHO, -GI, and -GL diets; diets rich in monounsaturated fats
versus high-CHO diets [71]; and conventional diets versus fiber-enriched diets.

Recent research underscores the significance of replacing simple CHOs with complex
CHOs rich in dietary fiber, while limiting the intake of simple sugars, especially from sweet
drinks and treats, and avoiding excessive fruit juice consumption [72]. The inclusion of
whole grains, substantial amounts of non-starchy vegetables, and fruits is crucial in the
diet of individuals with IR [72]. A suitable diet for individuals who are insulin-resistant
should also emphasize gradual and mindful eating, according to numerous researchers [72].
Additionally, chrono-nutrition and sleep hygiene appear to have a significant impact on the
dietary habits of women with GDM [73]. Postprandial insulin responses have been shown
to be influenced by the endogenous circadian (24 h) rhythm and metabolism, affecting
various functions from intracellular biochemistry to whole-organism physiology [73,74].
However, the optimal diet remains a topic of ongoing debate.

3.1.3. Effects of CHO and GI/GL Estimates on Gestational IR

Women with gestational GDM should exercise extra caution regarding both the quan-
tity and type of CHOs they consume. All pregnant women require a minimum of 175 g
of dietary CHOs, 71 g of protein, and 28 g of fiber daily, as CHOs serve as a vital energy
source for both the mother and the fetus [75]. The nutrition plan should highlight mo-
nounsaturated and polyunsaturated fats while limiting saturated fats and avoiding trans
fats [21].
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A low-CHO diet is typically recommended for women with GDM, despite inconsistent
findings in several studies [76]. Especially for women with T1DM, optimal metabolic regu-
lation and more successful pregnancies seem to be achieved through CHO counting [77]. A
moderately low-CHO diet comprising 40% of the recommended daily calories improves
glycemic management in women with T2DM but does not demonstrate beneficial effects
on pregnancy outcomes [78]. While a low-CHO diet improves short-term glycemic control
in women with GDM, no impact on insulin requirements (in women receiving insulin
treatment) or the success of pregnancies has been observed [50,79]. However, caution is
advised when combining a low-CHO dietary pattern with a high consumption of animal-
based protein and fat, as it appears to be associated with a higher risk of GDM and T2DM
later in life [44,79]. Hernandez et al. also suggested that contrary to conventional advice, a
high-complex-CHO/low-fat diet may improve maternal IR and reduce newborn obesity
based on a dietary intervention pilot study [80].

A high GL diet has been associated with an increased risk of GDM in women, par-
ticularly when compared to those with the lowest tertile of dietary GL [81]. Younger
gestational ages, higher CHO proportions, and lower fiber intake were strongly linked to
high-GL diets [19]. In addition, a high-GI diet has been associated with elevated triglyceride
levels [82].

Diets with a low GI and GL, such as the DASH diet and the Mediterranean diet, have
demonstrated positive effects on various biochemical and health parameters [67,72,83].
Regarding obstetric and fetal outcomes in GDM patients, lower-GI diets have demonstrated
potential benefits, although the findings are still debatable [81]. Notably, lower insulin
utilization was observed in individuals adhering to a low-GI diet, characterized by the
consumption of high-quality, complex CHOs [18,84,85]. Additionally, a low-GI diet show-
cased a capacity to reduce post-meal blood glucose levels in healthy individuals [20] and
enhance lipid profiles in patients with GDM [86,87]. Moreover, women with normal glucose
tolerance, GDM, or T2DM may experience less maternal weight gain when following a
low-GI diet [18,52]. This dietary approach has also been linked to reduced glucose swings
and decreased inflammatory markers, as evidenced by lower C-reactive protein levels [18].
Notably, a low-GI diet emerged as the most suitable dietary intervention for GDM patients,
correlating once again with a lower frequency of insulin use [66,88].

Examining the impact on offspring, low-GI diets were associated with a decreased
incidence of large-for-gestational-age (LGA) babies [85], as well as influences on birth length
and early childhood arterial wall thickness [89]. The Homeostatic Model Assessment for
Insulin Resistance (HOMA-IR), insulin, and leptin levels in children were also significantly
were also significantly and positively correlatedwith dietary GI during pregnancy [90].

Contrary to these findings, several studies suggested that GI and GL indices were
not significantly associated with GDM risk [26,91]. In patients with T2DM, Ojo et al.
reported no notable differences in total cholesterol, HDL cholesterol, or LDL cholesterol [82].
Additionally, no distinctions were found in lipids [18,25], fructosamine, glycosylated
hemoglobin [18,25], overall glycemic control, or pregnancy outcomes in women with
GDM. Tieu et al. found no discernible changes in the risk of GDM or LGA prenatal births,
cesarean deliveries, or gestational weight gain between low- and moderate-to-high-GI
dietary groups [7,19]. Despite a successful reduction in dietary GL, the UK Pregnancy
Better Eating and Activity Trial (UPBEAT) intervention, a theoretically based intervention
in obese pregnant women, did not reduce the risk of GDM in women or the frequency of
LGA infant births [92]. Several other studies failed to report any substantial influence of
low-GI diets on birth weight, birth weight centile, the prevalence of macrosomia, adverse
pregnancy outcomes [93], or a baby’s development pattern throughout the first year of
life [18].

3.2. Inflammation in Gestation

Low-grade inflammation induced by cytokines is a typical feature of pregnancy, play-
ing a vital role in the finely controlled inflammatory response crucial for the development



Nutrients 2024, 16, 399 8 of 14

of placentation from implantation to labor [94]. Maternal obesity and GDM are strong risk
factors for persistent low-grade inflammation.

Proinflammatory cytokines have been consistently linked to inflammation induced
by obesity, showing higher levels in affected individuals [90]. In pregnancies affected by
obesity, the placenta may undergo changes in shape and function as an adaptive response,
acting as both a target and a source of inflammatory cytokines [94]. Adipose tissue also
produces several inflammatory factors that regulate hunger and fat synthesis. These pro-
inflammatory mediators play a role in the development of IR, overt diabetes mellitus, and
other complications related to obesity [95–98].

Regardless of maternal BMI, specific inflammatory markers have been found elevated
during pregnancy in women with a history of GDM and those who later develop GDM.
Circulating tumor necrosis factor-alpha (TNF-α), as a biomarker of inflammation, decreases
in early pregnancy, accompanied by an increase in insulin sensitivity [40]. In a study
by Challier et al., obese women exhibited a 2–3-fold increase in placental macrophages
along with elevated mRNA expressions of interleukin-1 (IL-1), TNF-α, and interleukin-6
(IL-6) [73]. While lean, overweight, and obese women show similar patterns of cytokine
changes, those with a higher BMI tend to exhibit an increase in specific inflammatory
markers (CRP and IL-6), although not consistently across all markers [94]. Serum C-reactive
protein (CRP) levels during the late second and early third trimesters are associated with
GDM and weight gain, whereas elevated highly sensitive CRP levels in GDM patients may
indicate an increased risk of later developing T2DM [99].

Effects of Diet, CHOs, and GI/GL Indices on Gestational Inflammation

Subclinical inflammation during pregnancy is influenced by dietary patterns [100].
A high intake of saturated fats can induce inflammation and endothelial dysfunction,
disrupting insulin signaling [68].

In women with a previous history of GDM, macronutrient intake, particularly diets
low in protein, high in cholesterol, and rich in monounsaturated fatty acids, significantly
contributes to gut microbial dysbiosis. This imbalance is linked to obesity, low-grade
inflammation, and inadequate glycemic control. Therefore, modifying dietary habits to
alter the gut microbiota composition could be a promising strategy for preventing T2DM in
this population [42]. Notably, micronutrients and polyunsaturated fats, especially those
found in fish and seafood, exhibit anti-inflammatory properties and are associated with a
reduced risk of GDM [75].

Regarding specific inflammatory markers, a low-GI diet significantly reduces IL-6 in
diabetic women compared to that in a higher-GI diet [82]. According to the ROLO study,
a randomized control trial involving 621 individuals, leptin and inflammation-related
biomarkers are not significantly affected by a low-GI diet during pregnancy. However,
individuals adhering to low-GI recommendations exhibit a diminished response to the
typical increase in IR observed in pregnancy with advancing gestation [52]. Undoubtedly,
further research is needed in this area.

4. Postpartum Period and Long-Term Management

Following delivery, women with GDM who were not previously diagnosed as diabetic
(with any type of DM, including T1DM, T2DM, MODY, and LADA) should discontinue
any treatment if needed. The recommended timeframe for glycemic reassessment is six
to thirteen weeks post-delivery [101], to decide if initiation of drug treatment is indicated.
This is particularly advised if future pregnancies are planned.

Healthcare providers should educate patients about the long-term risks of both
T2DM and GDM during the postpartum period. Both the American Diabetes Associ-
ation (ADA) [102] and the National Institute for Health and Care Excellence (NICE) [103]
recommend lifelong, annual glucose level evaluations. Various risk factors, such as fam-
ily history, a history of GDM in previous pregnancies, and the need for insulin or oral
glucose-lowering medications during pregnancy, influence the frequency of T2DM occur-
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rence [101]. The risk for type 2 diabetes among women with GDM is 10 times greater than
for women with a normoglycemic pregnancy [104]. Postpartum women with obesity are
also more susceptible to depression, venous thromboembolism, and challenges related to
breastfeeding [105].

Lifestyle modifications play a crucial role, especially for morbidly obese women with
IR, prior GDM, or prediabetes. A diet rich in protein and regular exercise are strongly
recommended, as they have proven to be more successful in reducing IR and improving
glycemic variability [106]. Diets such as the Mediterranean and DASH diets, low in complex
CHOs and GI/GL, particularly when combined with plant-based proteins and fats [44,45],
are employed to reduce the likelihood of GDM in future pregnancies and the risk of
developing T2DM.

5. Conclusions

The use of GI and GL estimates in the management of GDM has gained attention,
recognizing the substantial impact of diet on glycemic control and pregnancy outcomes for
GDM patients. Research indicates that low-CHO diets, particularly in the short term, have
proven beneficial for patients with T2DM. Considering that women with GDM typically
have diabetes for short durations (less than six months), low-CHO/low-GI diets may also
be advantageous for them. A low-GI diet, in contrast to one with a higher CHO content,
has been associated with improved glycemic control, reduced insulin requirements, lower
cholesterol levels, decreased inflammation markers, and enhanced obstetric outcomes.

However, the data remain contradictory, with several studies reporting no signifi-
cant associations. The limited number of studies examining the impact of GI and GL
on GDM, the absence of a consensus on what constitutes a preferred GL/GI diet, and
ethical constraints preventing the study of effects on infants and newborns except through
observational studies hinder our ability to fully assess these diets’ effects. Until larger-scale
intervention trials are conducted, a low-GI diet should not replace the current pregnancy
diets recommended by health organizations. Achieving a general consensus on what
constitutes a low-GI/-GL diet is essential to enhance clinical practice with specific dietary
recommendations for GDM patients.

6. Future Directions

There is an urgent need for expanded nutrition research to enhance our understanding
of precise dietary strategies for effectively managing GDM and improving glycemic control.
It is crucial to explore various elements of the ideal diet for GDM patients, including the
specific types of macronutrients and the necessity of particular micronutrients. Additionally,
it is vital to determine whether changes in the quality of dietary CHO correspond to
glycemic control in GDM, paralleling glycemic control in pregnant non-diabetic women.

Exploring whether there is a critical window for dietary CHO consumption, such as
intake before pregnancy or throughout the two trimesters, is essential for potential GDM
prevention. Subsequent studies could investigate the long-term effects of low-GI and -GL
diets on hormonal status, maintaining a healthy weight before pregnancy in populations
at high risk for GDM (such as obese, insulin-resistant, or PCOS patients) and preventing
complications in the first trimester. Through additional research in this area, we can refine
the dietary recommendations and develop unique management strategies for GDM that
leverage the potential benefits of the GI and GL.
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