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Abstract: Associations between mineral intake and mortality in non-Western countries have not been
studied adequately. This study evaluated these associations in the Golestan Cohort Study, featuring
a Middle Eastern population. The mineral intake was estimated from the baseline food frequency
questionnaire, adjusted by using the nutrient density method, and divided into quintiles. We used Cox
proportional hazards models to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the
mortality. We analyzed 41,863 subjects with a mean age of 51.46 ± 8.73 years at the baseline. During
578,694 person-years of follow-up (median: 14.1 Years), 7217 deaths were recorded. Dietary calcium
intake was inversely associated with the all-cause mortality (HRQ5 vs. Q1 = 0.91, 95%CI = 0.85–0.99).
We observed significant associations between calcium (HRQ5 vs. Q1 = 0.82, 95% CI = 0.73–0.93), copper
(HRQ5 vs. Q1 = 1.11, 95% CI = 0.99–1.26), and selenium intake (HRQ5 vs. Q1 = 1.14, 95% CI = 1.01–1.29)
and CVD mortality. Dietary phosphorus (HRQ5 vs. Q1 = 0.81, 95%CI = 0.69–0.96) and copper intake
(HRQ5 vs. Q1 = 0.84, 95%CI = 0.71–0.99) were inversely associated with cancer mortality. In this study
within a Middle Eastern population, a higher dietary intake of calcium exhibited an inverse association
with all-cause mortality. Furthermore, nuanced associations were observed in the cause-specific
mortality, suggesting potential avenues for dietary interventions and emphasizing the importance of
considering dietary factors in public health strategies.

Keywords: mortality; cardiovascular disease; cancer; dietary mineral intake; Iran

1. Introduction

Noncommunicable diseases (NCD), such as cardiovascular disease (CVD) and cancer,
are the world’s leading causes of death. CVDs account for the most NCD deaths, with
17.9 million people annually, followed by various cancers (9.3 million). Of all NCD deaths,
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77% take place in low- and middle-income countries [1]. More than 2.8 million people died
from NCDs in the Eastern Mediterranean region in 2019 [2].

Modifiable lifestyle risk factors, such as unhealthy nutrition, inactivity, obesity, being
overweight, smoking, and excessive alcohol consumption are associated with major NCDs
(cancers and cardiovascular diseases) [3–5]. Micronutrient deficits are a prevalent dietary
issue in the general population, and they are more common in individuals who have
comorbidities [6]. These flaws will significantly impact current and future health outcomes
and healthcare expenditures.

In a study of 30,899 US adults, it has been suggested that a lower all-cause mortality
is associated with an adequate intake of magnesium and also that a lower CVD mortality
is associated with adequate intakes of zinc and copper from foods [7]. In a sizeable Pan-
European cohort, without taking into account lifestyle, sociodemographic characteristics,
or other established dietary risk factors, the micronutrient sufficiency of diets was inversely
correlated with the overall and cause-specific death rates [8]. Still, there is a very limited
number of studies that evaluated the associations between mineral intake and CVD and
cancer mortality in Middle Eastern countries with a different diet. Understanding the
Middle East’s unique context allows us to compare and contrast findings with other
regions, providing a broader perspective on the relationship between dietary mineral
intake and mortality. Also, prior research has revealed the high prevalence of mineral
deficiencies within the Golestan Cohort Study (GCS), in Iran, the most extensive cohort
study in the Middle East. This extensive dataset offers a valuable opportunity to investigate
the correlation between mineral deficiencies and their impact on health.

We aimed to study the association of element intakes such as calcium, zinc, iron,
magnesium, phosphorus, potassium, copper, manganese, and selenium with all-cause and
cause-specific mortality in the GCS.

2. Materials and Methods
2.1. Study Population

The GCS was conducted in north-eastern Iran to primarily investigate the potential
risk factors of upper gastrointestinal cancers; however, all major causes of death were
also investigated. Details on the research methodology have already been published [9].
Around 50,000 individuals, mostly rural populations, between the ages of 40 and 75 were
enlisted from 2004 to 2008.

At the baseline, written informed consent was provided and a food frequency ques-
tionnaire (FFQ) was completed. Also, trained interviewers utilized a general questionnaire
to gather baseline information on demographic characteristics, residential history, marital
status, ethnicity, education, medical history, and lifestyle habits such as opium usage,
cigarette use, and alcohol use. Height and weight were also measured. We calculated the
body mass index (BMI) by dividing the weight of a participant (in kg) by the square of their
height (in m2).

In this longitudinal study, all subjects of the GCS with available data on their FFQ were
entered into the study. Those with missing data on baseline characteristics and previous
medical conditions (cancer, heart disease, a previous stroke, and diabetes) at the baseline
and subjects with less than 2 years of follow-up data were excluded. Also, participants
reporting extreme intakes of total energy (energy intake is more than two interquartile
ranges above the 75th or below the 25th percentile of energy intake) and participants
who had more than 30 items missing in the FFQ were excluded (total exclusion = 7310)
(Figure S1).

Physical activity during work and leisure time were utilized to calculate the metabolic
equivalent of each task [10]. Based on home furnishings, vehicles, and other wealth-related
data, a multiple correspondence analysis was employed to determine a wealth score. The
classification of wealth scores and physical activity was made in tertiles. Single or married
were the two categories for marital status. People who had been divorced or widowed were
rare; thus, they were grouped as single. We categorized regular opium users as individuals
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who had consumed opium at least once a week for a minimum duration of 6 months. The
Digestive Diseases Research Institute’s ethical review committee (Ref: FWA00001331), the
International Agency for Research on Cancer (Ref: CN/23/3), and the US National Cancer
Institute approved the study protocol.

2.2. Dietary Intake

We utilized a 116-item semiquantitative FFQ at the baseline to evaluate dietary intake.
Prior research on this population indicated that the FFQ was valid and reliable [11]. This
population predominantly follows a traditional dietary pattern. The participants were
asked to describe their frequency of consumption of each food item from a list of foods
with standard serving sizes on a daily, weekly, or monthly basis, over the preceding year.
The portion sizes were converted from units of measurement to grams. By multiplying
each food’s daily intake by its nutrient content, the nutrient intakes were estimated [12].
The nutrient density model was used to adjust the mineral intakes for energy intake [13]. In
this region, supplement use is uncommon; hence, only mineral intakes from food sources
were included.

2.3. Outcome

Every year, we followed up with each participant by phone. Family, friends, or
local healthcare providers reported deaths in the participants, and a team visited their
homes to identify any reported deaths by completing a verbal autopsy questionnaire that
had been validated for this population [14]. Available relevant medical records, such
as medical charts, radiographs, pathology reports, hospital discharge records, etc., were
collected from the appropriate hospitals or pathology centers, either in the province or in
neighboring provinces. All the records were evaluated, and the International Classification
of Diseases, Tenth Revision (ICD-10), was used to determine the primary cause of death
by two physicians separately. A third expert physician determined the cause of death
in case of any discrepancies. If a final diagnosis could not be made for any reason, the
cause of death was recorded as “unknown”. In this study, we considered deaths due to
CVD (ICD-10 codes I00–I99) and total cancer (ICD-10 codes C00–C97). Follow-up for this
analysis continued until the subjects were lost to follow-up, death occurred, or the 15th of
January 2021, whichever came first.

2.4. Statistical Analysis

Cox proportional hazards regression models were used for obtaining hazard ratios
(HRs) and 95% confidence intervals (CIs). Aalen plots and the Schoenfeld residuals test
confirmed the proportional hazards assumption for each mineral intake. The underlying
temporal metric was age at the baseline. Multi-variable models were adjusted for baseline
age (year), sex (male or female), smoking (yes or no), opium use (yes or no), BMI (kg/m2,
continuous), wealth score (low, medium, high), physical activity level (low, intermediate,
high), place of residence (urban or rural), ethnicity (Turkman or other), marital status
(single, married), education (with or without formal education), history of hypertension
(yes or no), and total energy intake (Kcal/day).

Multi-variate HRs were reported within quintiles, with the lowest quintiles used as
the reference category. For the linear trend tests, the median value of each quintile was
used. Also, the linear continuous variable of the intake of minerals was evaluated in Cox
proportional hazards regression models. The HRs for the continuous scale were reported
for each 100 mg/d increase in calcium, potassium, and magnesium intake, each 50 mg/d
increase in phosphorus intake, each 1 mg/d increase in zinc, iron, and manganese intake,
each 0.1 mg/d increase in copper intake, and each 10 µg/d increase in selenium intake
(according to the IQR of the intakes of each mineral in the population). Additionally, we
tested and plotted the association between each mineral and mortality using restricted
cubic spline (RCS) functions. We utilized five knots and the median of the first quartile



Nutrients 2024, 16, 344 4 of 23

of intake as the reference point for each mineral in the RCS functions. The overall and
nonlinear associations were evaluated using four and three df tests, respectively [15].

We also conducted interaction analyses by age, sex, BMI, and smoking, and none of
them showed significant interactions. Due to the high prevalence of hypertension in this
population (n = 6685, 15.97%), we did not exclude them from the main analyses; however,
we conducted sensitivity analyses. The sensitivity analyses were performed by limiting the
participants to those without a self-reported history of hypertension. We also re-performed
the analyses excluding the subjects with reported alcohol consumption. Moreover, we made
mutual adjustments for other elements (rather than the element of interest). The statistical
analyses were carried out using the Stata software (version 14.1; StataCorp, College Station,
TX, USA). Significant p-values were considered to be <0.05.

3. Results

In this study, a total of 41,863 subjects (42.6% male) with a total mean ± SD age
at baseline of 51.46 ± 8.73 years were evaluated. During a median follow-up of 14.13
(IQR 1.64) years, 7217 deaths were recorded, with 39.2% (n = 2831) and 22.1% (n = 1595) of
deaths related to CVD and cancer, respectively.

The baseline characteristics of the subjects in the GCS by quintiles of calcium intake
per 1000 Kcal energy per day have been shown in Table 1. The participants in the highest
quintile of calcium intake, compared to individuals in the lowest quintile, were significantly
older, lived in urban settings, had formal education, were less likely to be smokers or opium
users and more likely to be overweight, had higher wealth scores, and were physically
active (<0.001). Among the minerals studied, only the mean calcium intakes in both genders
and the mean zinc intakes in males were below the US Recommended Dietary Allowance
(RDA) (Supplementary Materials, Table S1). We provided the correlation coefficients
between the minerals in Supplementary Materials, Table S2.

3.1. All-Cause Mortality

Dietary calcium intake was inversely associated with all-cause mortality, compar-
ing the highest quintile with the lowest quintile (HRQ5 vs. Q1 = 0.91, 95%CI = 0.85–0.99,
ptrend < 0.05). For all the other minerals, there was no significant association between
mineral intakes when comparing the highest quintile of intakes with the lowest quintile
(Table 2). Using the continuous linear models, the mineral intakes were not associated with
the risk of mortality (Figure 1, Table S3).

3.2. CVD Mortality

After adjustment for potential confounders, dietary calcium intake was inversely asso-
ciated with CVD mortality when comparing the highest quintile of intake with the lowest
quintile (HRQ5 vs. Q1 = 0.82, 95%CI = 0.73–0.93, ptrend < 0.01). In contrast, dietary selenium in-
take was positively associated with CVD mortality in the quintile model (HRQ5 vs. Q1 = 1.14,
95%CI = 1.01–1.29, ptrend < 0.05). More details are shown in Table 3. In the continuous linear
models, as Figure 1 shows, calcium (per 100 mg/1000 Kcal/d increase) showed an inverse
association (HR = 0.93, 95%CI = 0.88–0.97, p-value < 0.01), while iron (per 1 mg/1000 Kcal/d
increase), copper (per 0.1 mg/1000 Kcal/d increase), and selenium (per 10 µg/1000 Kcal/d
increase) were positively associated with CVD mortality (p-value < 0.05) (Table S4).

3.3. Cancer Mortality

Dietary phosphorus intake (HRQ5 vs. Q1 = 0.81, 95%CI = 0.69–0.96, ptrend < 0.05) and
copper intake (HRQ5 vs. Q1 = 0.84, 95%CI = 0.71–0.99, ptrend < 0.05) were inversely asso-
ciated with cancer mortality in the quintile models (Table 4). Moreover, there were no
significant associations between mineral intakes and cancer mortality in the continuous
models (Figure 1). More details on the continuous models have been provided in the
Supplementary Materials (Table S5).
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Table 1. Baseline characteristics of the subjects (n = 41,863) in the Golestan Cohort Study by quintiles of calcium intake per 1000 Kcal energy per day and
total population.

Total Population Calcium Quintiles p-Value

1 2 3 4 5

Calcium, mg/1000 kcal/day 321.68 ± 85.03 222.08 ± 26.90 272.99 ± 10.63 309.26 ± 10.59 352.46 ± 15.24 451.12 ± 69.61 <0.001

Energy Intake (Kcal/day) 2160 ± 558 2065 ± 594 2159 ± 538 2206 ± 535 2220 ± 543 2151 ± 565 <0.001

Age, Years 51.46 ± 8.73 51.62 ± 8.76 51.01 ± 8.58 51.03 ± 8.48 51.33 ± 8.71 52.3 3 ± 9.05 <0.001

Sex, Male 17,870 (42.69) 3135 (37.56) 3544 (42.38) 3733 (44.51) 3788 (45.15) 3670 (43.81) <0.001

Current smoker 7136 (17.05) 1457 (17.46) 1479 (17.69) 1467 (17.49) 1445 (17.22) 1288 (15.37) <0.001

Opium user 6838 (16.33) 1834 (21.97) 1525 (18.24) 1326 (15.81) 1193 (14.22) 960 (11.46) <0.001

BMI (Kg/m2) 26.47 ± 5.40 25.40 ± 5.38 26.15 ± 5.31 26.53 ± 5.38 26.93 ± 5.40 27.32 ± 5.33 <0.001

Wealth score

<0.001
Low 16,041 (38.32) 4800 (57.51) 3759 (44.95) 3025 (36.07) 2448 (29.18) 2009 (23.98)

Medium 12,092 (28.88) 2222 (26.62) 2586 (30.93) 2548 (30.38) 2502 (29.82) 2234 (26.67)

High 13,730 (32.80) 1325 (15.87) 2017 (24.17) 2813 (33.54) 3440 (41.0) 4135 (49.36)

Physical Activity (MET)

<0.001
Low 13,044 (32.42) 2739 (34.53) 2539 (31.68) 2463 (30.44) 2555 (31.57) 2748 (33.90)

Intermediate 13,250 (32.93) 2363 (29.79) 2550 (31.82) 2661 (32.88) 2790 (34.47) 2886 (35.60)

High 13,945 (34.66) 2831 (35.69) 2926 (36.51) 2968 (36.68) 2748 (33.96) 2472 (30.50)

Rural place of residence 33,730 (80.57) 7677 (91.97) 7328 (87.63) 6885 (82.10) 6363 (75.84) 5447 (65.37) <0.001

Turkman Ethnicity 31,486 (75.21) 6154 (73.73) 6308 (75.44) 6352 (75.75) 6465 (77.06) 6207 (74.09) <0.001

Married Status 37,045 (88.65) 7014 (84.21) 7389 (88.58) 7543 (90.08) 7574 (90.40) 7525 (89.94) <0.001

No formal education 29,022 (69.33) 6815 (81.65) 6188 (74.00) 5710 (68.09) 5375 (64.06) 4934 (58.89) <0.001

History of hypertension 6685 (15.97) 1295 (15.51) 1262 (15.09) 1280 (15.26) 1374 (16.38) 1474 (17.59) <0.001

All the results are reported as mean ± standard deviation or number (%). Significant p-values were bolded. BMI = body mass index; MET = metabolic equivalent for task.
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Table 2. HRs (95% CIs) of all-cause mortality by quintile of mineral intake.

Quintile p-Value

Elements

1 2 3 4 5 Trend

Calcium

Intake (mg/1000 Kcal/day) 222.08 ± 26.90 272.99 ± 10.63 309.26 ± 10.59 352.46 ± 15.24 451.12 ± 69.61 0.031

Person years 113,424 114,506 116,035 116,885 117,841

Cases, n 1648 1437 1350 1350 1432

Unadjusted HR Ref 0.86 (0.80–0.92) a 0.79 (0.73–0.85) a 0.78 (0.72–0.83) a 0.80 (0.75–0.86) a

Age- and Sex-adjusted HR Ref 0.86 (0.83–0.96) b 0.80 (0.75–0.86) a 0.76 (0.70–0.81) a 0.72 (0.67–0.77) a

Multi-variable-adjusted HR Ref 0.94 (0.88–1.02) 0.93 (0.86–1.00) 0.91 (0.84–0.98) c 0.91 (0.85–0.99) c

Zinc

Intake (mg/1000 Kcal/day) 3.86 ± 0.29 4.32 ± 0.08 4.57 ± 0.06 4.83 ± 0.08 5.33 ± 0.36 0.253

Person years 116,557 116,502 116,105 115,380 114,148

Cases, n 1556 1356 1350 1392 1563

Unadjusted HR Ref 0.88 (0.81–0.94) b 0.88 (0.82–0.94) b 0.91 (0.85–0.98) c 1.04 (0.97–1.12)

Age- and Sex-adjusted HR Ref 0.92 (0.85–0.99) c 0.91 (0.85–0.98) c 0.93 (0.87–1.00) 0.96 (0.90–1.03)

Multi-variable-adjusted HR Ref 0.97 (0.90–1.05) 0.97 (0.90–1.05) 1.00 (0.93–1.08) 1.03 (0.96–1.11)

Iron

Intake (mg/1000 Kcal/day) 6.23 ± 0.63 7.30 ± 0.18 7.86 ± 0.14 8.40 ± 0.17 9.33 ± 0.53 0.722

Person years 116,246 116,471 116,155 115,389 114,431

Cases, n 1597 1417 1359 1357 1487

Unadjusted HR Ref 0.89 (0.83–0.95) b 0.86 (0.80–0.92) a 0.86 (0.80–0.93) a 0.96 (0.89–1.03)

Age- and Sex-adjusted HR Ref 0.96 (0.89–1.03) 0.94 (0.87–1.01) 0.99 (0.92–1.06) 1.01 (0.94–1.08)

Multi-variable-adjusted HR Ref 0.98 (0.90–1.05) 0.96 (0.89–1.04) 0.97 (0.90–1.05) 0.98 (0.91–1.06)
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Table 2. Cont.

Quintile p-Value

1 2 3 4 5 Trend

Elements

Magnesium

Intake (mg/1000 Kcal/day) 163.20 ± 17.50 192.96 ± 5.03 208.32 ± 4.11 223.47 ± 4.86 249.63 ± 15.84 0.475

Person years 115,220 116,729 116,688 115,944 114,111

Cases, n 1558 1357 1323 1381 1598

Unadjusted HR Ref 0.85 (0.79–0.92) a 0.83 (0.77–0.90) a 0.88 (0.82–0.95) b 1.04 (0.97–1.12)

Age- and Sex-adjusted HR Ref 0.91 (0.85–0.98) c 0.89 (0.82–0.95) b 0.95 (0.88–1.02) 1.05 (0.97–1.12)

Multi-variable-adjusted HR Ref 0.92 (0.85–0.99) c 0.90 (0.84–0.98) c 0.93 (0.86–1.00) 0.96 (0.89–1.04)

Phosphorus

Intake (mg/1000 Kcal/day) 508.09 ± 41.18 572.14 ± 11.23 607.38 ± 9.52 642.78 ± 11.50 710.50 ± 46.25 0.647

Person years 115,949 115,658 115,715 115,409 115,961

Cases, n 1517 1414 1390 1376 1520

Unadjusted HR Ref 0.94 (0.87–1.01) 0.92 (0.86–0.99) c 0.91 (0.85–0.98) c 1.00 (0.93–1.07)

Age- and Sex-adjusted HR Ref 0.94 (0.88–1.01) 0.91 (0.84–0.97) c 0.88 (0.81–0.94) b 0.86 (0.80–0.93) a

Multi-variable-adjusted HR Ref 0.99 (0.92–1.07) 0.99 (0.91–1.06) 0.97 (0.89–1.05) 0.98 (0.91–1.06)

Potassium

Intake (mg/1000 Kcal/day) 1086.39 ± 71.36 1204.04 ± 22.82 1281.61 ± 22.92 1373.97 ± 32.33 1597.58 ± 179.11 0.405

Person years 115,763 116,108 115,930 115,719 115,172

Cases, n 1491 1348 1352 1435 1591

Unadjusted HR Ref 0.90 (0.84–0.97) b 0.91 (0.84–0.97) c 0.96 (0.89–1.03) 1.07 (0.99–1.14)

Age- and Sex-adjusted HR Ref 0.92 (0.85–0.99) c 0.92 (0.85–0.99) c 0.92 (0.86–0.99) c 0.99 (0.92–1.06)

Multi-variable-adjusted HR Ref 0.93 (0.86–1.00) 0.93 (0.87–1.01) 0.96 (0.89–1.04) 1.00 (0.93–1.08)
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Table 2. Cont.

Quintile p-Value

1 2 3 4 5 Trend

Elements

Copper

Intake (mg/1000 Kcal/day) 0.64 ± 0.04 0.71 ± 0.01 0.76 ± 0.1 0.80 ± 0.01 0.93 ± 0.16 0.297

Person years 116,094 116,396 116,237 115,665 114,300

Cases, n 1497 1369 1367 1433 1551

Unadjusted HR Ref 0.91 (0.85–0.98) c 0.92 (0.85–0.99) c 0.97 (0.90–1.04) 1.06 (0.99–1.14)

Age- and Sex-adjusted HR Ref 0.98 (0.91–1.05) 0.99 (0.92–1.06) 1.01 (0.94–1.09) 1.10 (1.02–1.18) b

Multi-variable-adjusted HR Ref 0.98 (0.90–1.05) 0.98 (0.90–1.05) 0.97 (0.90–1.04) 1.06 (0.96–1.12)

Manganese

Intake (mg/1000 Kcal/day) 2.96 ± 0.47 3.79 ± 0.14 4.26 ± 0.12 4.75 ± 0.16 5.75 ± 0.77 0.337

Person years 116,690 116,977 116,353 115,909 112,763

Cases, n 1431 1306 1382 1399 1699

Unadjusted HR Ref 0.91 (0.84–0.98) c 0.97 (0.90–1.05) 0.99 (0.92–1.07) 1.25 (1.17–1.35) c

Age- and Sex-adjusted HR Ref 0.96 (0.89–1.04) 1.02 (0.94–1.09) 1.04 (0.96–1.12) 1.23 (1.15–1.32) a

Multi-variable-adjusted HR Ref 0.94 (0.87–1.02) 0.98 (0.91–1.06) 0.93 (0.86–1.01) 1.03 (0.96–1.12)

Selenium

Intake (mg/1000 Kcal/day) 49.54 ± 7.19 62.28 ± 2.21 68.99 ± 1.75 75.30 ± 1.98 86.20 ± 6.30 0.366

Person years 116,703 116,773 116,093 115,596 113,567

Cases, n 1463 1397 1396 1391 1570

Unadjusted HR Ref 0.96 (0.89–1.03) 0.97 (0.90–1.04) 0.97 (0.90–1.05) 1.13 (1.05–1.21) a

Age- and Sex-adjusted HR Ref 0.99 (0.92–1.07) 1.02 (0.95–1.10) 1.02 (0.95–1.10) 1.11 (1.03–1.19) b

Multi-variable-adjusted HR Ref 0.99 (0.91–1.07) 1.03 (0.96–1.12) 1.02 (0.95–1.11) 1.02 (0.94–1.10)

Data presented as the hazard ratio (95%CI). p-value a < 0.001, b < 0.01, c < 0.05. Significant HRs were bolded. The multi-variable models were adjusted for age (year), sex (male or female),
place of residence (urban or rural), education (with or without formal education), married status (yes or no), ethnicity (Turkman or others), history of hypertension, BMI, physical activity
level (low, intermediate, high), opium use (yes or no), smoking (yes or no), energy (Kcal), and wealth score (low, medium, high). The p trend has been reported for the multi-variable
adjusted model. Elements are bolded for enhanced clarity and ease of understanding.
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Table 3. HRs (95% CIs) of cardiovascular mortality by quintile of mineral intake.

Quintile p-Value

1 2 3 4 5 Trend

Elements

Calcium

Intake (mg/1000 Kcal/day) 222.08 ± 26.90 272.99 ± 10.63 309.26 ± 10.59 352.46 ± 15.24 451.12 ± 69.61 0.003

Person years 113,424 114,506 116,035 116,885 117,841

Cases, n 672 554 549 515 541

Unadjusted HR Ref 0.81 (0.72–0.91) a 0.79 (0.70–0.88) a 0.73 (0.65–0.82) a 0.75 (0.67–0.84) a

Age- and Sex-adjusted HR Ref 0.85 (0.76–0.95) b 0.81 (0.72–0.91) a 0.71 (0.64–0.80) a 0.67 (0.59–0.75) a

Multi-variable-adjusted HR Ref 0.88 (0.78–0.99) c 0.92 (0.82–1.04) 0.84 (0.74–0.95) b 0.82 (0.73–0.93) b

Zinc

Intake (mg/1000 Kcal/day) 3.86 ± 0.29 4.32 ± 0.08 4.57 ± 0.06 4.83 ± 0.08 5.33 ± 0.36 0.073

Person years 116,557 116,502 116,105 115,380 114,148

Cases, n 583 518 519 553 658

Unadjusted HR Ref 0.81 (0.72–0.92) b 0.82 (0.73–0.92) b 0.84 (0.75–0.95) b 1.12 (1.00–1.25) c

Age- and Sex-adjusted HR Ref 0.94 (0.84–1.06) 0.94 (0.84–1.06) 1.00 (0.89–1.12) 1.08 (0.96–1.20)

Multi-variable-adjusted HR Ref 1.00 (0.88–1.13) 0.98 (0.86–1.11) 1.04 (0.92–1.18) 1.10 (0.98–1.24)

Iron

Intake (mg/1000 Kcal/day) 6.23 ± 0.63 7.30 ± 0.18 7.86 ± 0.14 8.40 ± 0.17 9.33 ± 0.53 0.191

Person years 116,246 116,471 116,155 115,389 114,431

Cases, n 609 532 510 531 649

Unadjusted HR Ref 0.87 (0.78–0.98) c 0.84 (0.75–0.95) c 0.89 (0.79–1.00) 1.10 (0.98–1.23)

Age- and Sex-adjusted HR Ref 0.95 (0.85–1.07) 0.94 (0.83–1.05) 1.03 (0.91–1.16) 1.17 (1.05–1.31) b

Multi-variable-adjusted HR Ref 0.95 (0.84–1.07) 0.94 (0.83–1.06) 0.98 (0.86–1.10) 1.08 (0.96–1.22)
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Table 3. Cont.

Quintile p-Value

1 2 3 4 5 Trend

Magnesium

Intake (mg/1000 Kcal/day) 163.20 ± 17.50 192.96 ± 5.03 208.32 ± 4.11 223.47 ± 4.86 249.63 ± 15.84 0.837

Person years 115,220 116,729 116,688 115,944 114,111

Elements

Cases, n 613 510 513 520 675

Unadjusted HR Ref 0.81 (0.72–0.92) b 0.82 (0.73–0.92) b 0.84 (0.75–0.95) b 1.12 (1.00–1.25) c

Age- and Sex-adjusted HR Ref 0.88 (0.79–1.00) 0.89 (0.79–1.00) 0.92 (0.82–1.04) 1.14 (1.02–1.27) b

Multi-variable-adjusted HR Ref 0.87 (0.77–0.99) c 0.92 (0.81–1.04) 0.88 (0.78–1.00) 1.01 (0.90–1.14)

Phosphorus

Intake (mg/1000 Kcal/day) 508.09 ± 41.18 572.14 ± 11.23 607.38 ± 9.52 642.78 ± 11.50 710.50 ± 46.25 0.626

Person years 115,949 115,658 115,715 115,409 115,961

Cases, n 581 560 540 537 613

Unadjusted HR Ref 0.97 (0.86–1.09) 0.93 (0.83–1.05) 0.93 (0.83–1.05) 1.05 (0.94–1.18)

Age- and Sex-adjusted HR Ref 0.98 (0.87–1.10) 0.92 (0.82–1.03) 0.89 (0.79–1.00) 0.90 (0.81–1.01)

Multi-variable-adjusted HR Ref 0.99 (0.88–1.12) 0.97 (0.86–1.10) 0.95 (0.84–1.07) 0.98 (0.87–1.11)

Potassium

Intake (mg/1000 Kcal/day) 1086.39 ± 71.36 1204.04 ± 22.82 1281.61 ± 22.92 1373.97 ± 32.33 1597.58 ± 179.11 0.772

Person years 115,763 116,108 115,930 115,719 115,172

Cases, n 597 520 511 585 618

Unadjusted HR Ref 0.87 (0.77–0.98) c 0.85 (0.76–0.96) c 0.98 (0.87–1.10) 1.03 (0.92–1.16)

Age- and Sex-adjusted HR Ref 0.89 (0.79–1.00) 0.87 (0.77–0.98) c 0.93 (0.83–1.05) 0.94 (0.84–1.06)

Multi-variable-adjusted HR Ref 0.89 (0.79–1.01) 0.88 (0.78–1.00) 0.96 (0.85–1.09) 0.94 (0.83–1.06)
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Table 3. Cont.

Quintile p-Value

1 2 3 4 5 Trend

Elements

Copper

Intake (mg/1000 Kcal/day) 0.64 ± 0.04 0.71 ± 0.01 0.76 ± 0.1 0.80 ± 0.01 0.93 ± 0.16 0.016

Person years 116,094 116,396 116,237 115,665 114,300

Cases, n 582 500 497 586 666

Unadjusted HR Ref 0.86 (0.76–0.97) a 0.86 (0.76–0.96) a 1.02 (0.91–1.14) 1.17 (1.05–1.31) b

Age- and Sex-adjusted HR Ref 0.92 (0.82–1.04) 0.93 (0.83–1.05) 1.08 (0.96–1.21) 1.23 (1.10–1.38) a

Multi-variable-adjusted HR Ref 0.91 (0.81–1.03) 0.91 (0.81–1.04) 0.99 (0.87–1.11) 1.11 (0.99–1.26)

Manganese

Intake (mg/1000 Kcal/day) 2.96 ± 0.47 3.79 ± 0.14 4.26 ± 0.12 4.75 ± 0.16 5.75 ± 0.77 0.293

Person years 116,690 116,977 116,353 115,909 112,763

Cases, n 566 502 544 526 693

Unadjusted HR Ref 0.88 (0.78–1.01) 0.97 (0.86–1.09) 0.94 (0.84–1.06) 1.29 (1.16–1.44) a

Age- and Sex-adjusted HR Ref 0.94 (0.84–1.07) 1.03 (0.91–1.16) 1.00 (0.88–1.12) 1.29 (1.15–1.44) a

Multi-variable-adjusted HR Ref 0.92 (0.81–1.04) 0.99 (0.87–1.12) 0.90 (0.79–1.02) 1.07 (0.87–1.20)

Selenium

Intake (mg/1000 Kcal/day) 49.54 ± 7.19 62.28 ± 2.21 68.99 ± 1.75 75.30 ± 1.98 86.20 ± 6.30 0.037

Person years 116,703 116,773 116,093 115,596 113,567

Cases, n 554 539 534 523 681

Unadjusted HR Ref 0.98 (0.87–1.10) 0.98 (0.87–1.10) 0.97 (0.86–1.09) 1.29 (1.15–1.44) a

Age- and Sex-adjusted HR Ref 1.02 (0.90–1.15) 1.05 (0.93–1.18) 1.03 (0.91–1.16) 1.28 (1.14–1.43) a

Multi-variable-adjusted HR Ref 1.01 (0.89–1.14) 1.05 (0.93–1.19) 1.00 (0.88–1.14) 1.14 (1.01–1.29) c

Data presented as the hazard ratio (95%CI). p-value a < 0.001 b < 0.01 c < 0.05. Significant HRs were bolded. The multi-variable models were adjusted for age (year), sex (male or female),
place of residence (urban or rural), education (with or without formal education), married status (yes or no), ethnicity (Turkman or others), history of hypertension, BMI, physical activity
level (low, intermediate, high), opium use (yes or no), smoking (yes or no), energy (Kcal), and wealth score (low, medium, high). The p trend has been reported for the multi-variable
adjusted model. Elements are bolded for enhanced clarity and ease of understanding.
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Table 4. HRs (95% CIs) of cancer mortality by quintile of mineral intake.

Quintile p-Value

Elements

1 2 3 4 5 Trend

Calcium

Intake (mg/1000 Kcal/day) 222.08 ± 26.90 272.99 ± 10.63 309.26 ± 10.59 352.46 ± 15.24 451.12 ± 69.61 0.132

Person years 113,424 114,506 116,035 116,885 117,841

Cases, n 355 336 285 311 308

Unadjusted HR Ref 0.93 (0.80–1.08) 0.78 (0.66–0.91) b 0.84 (0.72–0.98) c 0.82 (0.70–0.95) c

Age- and Sex-adjusted HR Ref 0.95 (0.82–1.10) 0.77 (0.66–0.90) b 0.81 (0.69–0.94) b 0.74 (0.63–0.86) a

Multi-variable-adjusted HR Ref 0.972 (0.83–1.14) 0.84 (0.71–0.99) c 0.91 (0.77–1.07) 0.88 (0.75–1.04)

Zinc

Intake (mg/1000 Kcal/day) 3.86 ± 0.29 4.32 ± 0.08 4.57 ± 0.06 4.83 ± 0.08 5.33 ± 0.36 0.085

Person years 116,557 116,502 116,105 115,380 114,148

Cases, n 371 332 293 293 303

Unadjusted HR Ref 0.89 (0.77–1.04) 0.79 (0.68–0.92) b 0.81 (0.69–0.94) b 0.84 (0.72–0.97) c

Age- and Sex-adjusted HR Ref 0.92 (0.79–1.07) 0.81 (0.69–0.94) b 0.81 (0.69–0.94) b 0.78 (0.67–0.91) b

Multi-variable-adjusted HR Ref 0.95 (0.81–1.11) 0.86 (0.73–1.01) 0.88 (0.75–1.03) 0.88 (0.75–1.03)

Iron

Intake (mg/1000 Kcal/day) 6.23 ± 0.63 7.30 ± 0.18 7.86 ± 0.14 8.40 ± 0.17 9.33 ± 0.53 0.109

Person years 116,246 116,471 116,155 115,389 114,431

Cases, n 355 331 323 296 290

Unadjusted HR Ref 0.93 (0.80–1.08) 0.91 (0.78–1.06) 0.84 (0.72–0.98) c 0.83 (0.71–0.97) c

Age- and Sex-adjusted HR Ref 0.97 (0.84–1.13) 0.96 (0.83–1.12) 0.92 (0.78–1.07) 0.85 (0.73–1.00)

Multi-variable-adjusted HR Ref 0.97 (0.83–1.14) 0.95 (0.81–1.11) 0.92 (0.78–1.08) 0.87 (0.74–1.03)
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Table 4. Cont.

Quintile p-Value

Elements

1 2 3 4 5 Trend

Magnesium

Intake (mg/1000 Kcal/day) 163.20 ± 17.50 192.96 ± 5.03 208.32 ± 4.11 223.47 ± 4.86 249.63 ± 15.84 0.263

Person years 115,220 116,729 116,688 115,944 114,111

Cases, n 332 334 300 304 325

Unadjusted HR Ref 0.99 (0.85–1.15) 0.89 (0.76–1.04) 0.90 (0.77–1.06) 0.99 (0.85–1.15)

Age- and Sex-adjusted HR Ref 1.02 (0.88–1.19) 0.91 (0.78–1.06) 0.93 (0.80–1.09) 0.96 (0.82–1.12)

Multi-variable-adjusted HR Ref 1.01 (0.86–1.18) 0.86 (0.73–1.01) 0.93 (0.79–1.09) 0.93 (0.79–1.10)

Phosphorus

Intake (mg/1000 Kcal/day) 508.09 ± 41.18 572.14 ± 11.23 607.38 ± 9.52 642.78 ± 11.50 710.50 ± 46.25 0.022

Person years 115,949 115,658 115,715 115,409 115,961

Cases, n 348 342 294 330 281

Unadjusted HR Ref 0.98 (0.85–1.14) 0.84 (0.72–0.99) c 0.95 (0.82–1.11) 0.80 (0.69–0.94) b

Age- and Sex-adjusted HR Ref 0.98 (0.85–1.14) 0.83 (0.71–0.97) c 0.91 (0.78–1.06) 0.71 (0.60–0.83) a

Multi-variable-adjusted HR Ref 1.01 (0.87–1.18) 0.89 (0.76–1.05) 1.00 (0.85–1.17) 0.81 (0.69–0.96) c

Potassium

Intake (mg/1000 Kcal/day) 1086.39 ± 71.36 1204.04 ± 22.82 1281.61 ± 22.92 1373.97 ± 32.33 1597.58 ± 179.11 0.648

Person years 115,763 116,108 115,930 115,719 115,172

Cases, n 331 330 296 298 340

Unadjusted HR Ref 0.99 (0.85–1.15) 0.89 (0.76–1.04) 0.90 (0.77–1.05) 1.03 (0.88–1.20)

Age- and Sex-adjusted HR Ref 1.00 (0.86–1.17) 0.90 (0.77–1.06) 0.88 (0.75–1.03) 0.99 (0.85–1.15)

Multi-variable-adjusted HR Ref 0.99 (0.85–1.16) 0.92 (0.78–1.08) 0.93 (0.79–1.09) 1.05 (0.89–1.23)
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Table 4. Cont.

Quintile p-Value

Elements

1 2 3 4 5 Trend

Copper

Intake (mg/1000 Kcal/day) 0.64 ± 0.04 0.71 ± 0.01 0.76 ± 0.011 0.80 ± 0.01 0.93 ± 0.16 0.028

Person years 116,094 116,396 116,237 115,665 114,300

Cases, n 355 325 321 297 297

Unadjusted HR Ref 0.91 (0.78–1.06) 0.90 (0.77–1.05) 0.84 (0.72–0.98) c 0.85 (0.73–0.99) c

Age- and Sex-adjusted HR Ref 0.95 (0.82–1.11) 0.94 (0.81–1.09) 0.85 (0.73–0.99) c 0.84 (0.72–0.98) c

Multi-variable-adjusted HR Ref 0.92 (0.79–1.08) 0.93 (0.79–1.08) 0.85 (0.72–1.00) 0.84 (0.71–0.99) c

Manganese

Intake (mg/1000 Kcal/day) 2.96 ± 0.47 3.79 ± 0.14 4.26 ± 0.12 4.75 ± 0.16 5.75 ± 0.77 0.628

Person years 116,690 116,977 116,353 115,909 112,763

Cases, n 322 276 318 317 362

Unadjusted HR Ref 0.85 (0.72–1.00) 0.99 (0.85–1.15) 0.99 (0.85–1.16) 1.17 (1.01–1.36) c

Age- and Sex-adjusted HR Ref 0.87 (0.74–1.03) 1.00 (0.85–1.17) 1.00 (0.85–1.17) 1.12 (0.96–1.31)

Multi-variable-adjusted HR Ref 0.83 (0.70–0.98) c 0.95 (0.81–1.12) 0.89 (0.76–1.05) 1.00 (0.85–1.18)

Selenium

Intake (mg/1000 Kcal/day) 49.54 ± 7.19 62.28 ± 2.21 68.99 ± 1.75 75.30 ± 1.98 86.20 ± 6.30 0.307

Person years 116,703 116,773 116,093 115,596 113,567

Cases, n 319 330 328 313 305

Unadjusted HR Ref 1.03 (0.88–1.20) 1.03 (0.89–1.21) 0.99 (0.85–1.16) 0.99 (0.84–1.16)

Age- and Sex-adjusted HR Ref 1.04 (0.89–1.22) 1.05 (0.90–1.23) 1.01 (0.86–1.18) 0.95 (0.81–1.11)

Multi-variable-adjusted HR Ref 0.98 (0.84–1.15) 1.02 (0.87–1.20) 0.99 (0.84–1.16) 0.90 (0.76–1.06)

Data presented as the hazard ratio (95%CI). p-value a < 0.001 b < 0.01 c < 0.05. Significant HRs were bolded. The multi-variable models were adjusted for age (year), sex (male or female),
place of residence (urban or rural), education (with or without formal education), married status (yes or no), ethnicity (Turkman or others), BMI, physical activity level (low, intermediate,
high), opium use (yes or no), smoking (yes or no), energy (Kcal), and wealth score (low, medium, high). The p trend has been reported for the multi-variable adjusted model. Elements
are bolded for enhanced clarity and ease of understanding.
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Figure 1. Hazard ratios and 95% confidence intervals of the highest quintile versus the lowest quintile
of element intake (Top) and continuous (Bottom) in the multi-variable adjusted models. * represents
a significant p-trend < 0.05.

3.4. Restricted Cubic Splines

Among the minerals evaluated, the RCS models suggest U-shaped associations be-
tween the intakes of copper, magnesium, and iron and CVD mortality, but the p value for a
nonlinear association was not significant for iron (Figure 2).

Figure 2. Cont.
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Figure 2. Associations between the intakes of copper, iron, and magnesium and cardiovascular
mortality. Curved solid lines represent adjusted HRs, and dashed lines indicate their 95% CIs based
on restricted cubic splines for specified amounts of intake for each mineral.

3.5. Sensitivity Analyses

In the non-hypertensive subjects (n = 35,178), there were no differences among sig-
nificant associations between mineral intake and all-cause mortality in the quintile model
compared to the results from the total subjects. Moreover, due to the very limited number
of subjects with reported alcohol consumption (n = 1367, 3.27%), we did not adjust for
drinking alcohol; however, we performed a sensitivity analysis. In the non-alcoholic sub-
jects (n = 40,496), there were no differences among significant associations between mineral
intake and all-cause mortality in the quintile models compared to the results from the total
subjects. The mutual adjustment did not change our results significantly.

4. Discussion

We found that dietary calcium intake was inversely associated with all-cause mortality.
Calcium intake was inversely associated, while selenium intake was positively associated
with CVD mortality. Also, U-shaped associations were suggested for iron, copper, and
magnesium and the risk of CVD mortality. Intakes of copper and phosphorus were also
negatively associated with cancer mortality.

4.1. Calcium

Our findings show an inverse association between calcium intake and both all-cause
and CVD mortality. This result has been previously reported in Sweden [16], Japan [17],
China [18], and England [19]. Dietary calcium was linked to a notably decreased risk
of all-cause mortality in a population of Swedish men [16]. Umesawa et al. observed a
27 and 23 percent decrease in the total CVD mortality of subjects with high vs. low calcium
intake in Japanese men and women, respectively [17]. Also, Van der Pols et al. found
that a high calcium intake in childhood is inversely linked to total mortality in adulthood
and that a 65-year-long follow-up study of children in Britain found a decreased stroke
mortality rate in children who had a family diet relatively high in calcium [19]. However,
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in some of the above studies, calcium intake was considered only from dairy products.
Moreover, several studies found positive [20–22] or no such associations [23,24]. It seems
that studies related to calcium intake and mortality are inconsistent. This discrepancy
could be due to low- vs. high-fat dairy products as the main source of calcium in different
populations. Asemi et al. [25], in a meta-analysis of observational studies, suggested that,
for studies with a mean follow-up of 10 years or less, there is a substantial protective link
between dietary calcium intake and all-cause and CVD mortality, while there is a significant
relationship between calcium intake and an elevated risk of CVD mortality for studies with
a longer follow-up. Furthermore, the mean calcium intakes for both genders in our study
were below the RDA, potentially contributing to the stronger associations observed among
the evaluated minerals.

There are some suggested mechanisms of action for the role of calcium in mortality.
Through its impact on dyslipidemia and insulin resistance, a low calcium intake may
increase the risk of CVD or mortality [26,27]. Calcium has a hypotensive impact, especially
in people who consume higher amounts of sodium. Calcium also inhibits the aggregation
of platelets [28,29]. Whey peptides, which are present in milk and dairy products, may
have a hypotensive effect by inhibiting the angiotensin-converting enzyme in addition to
possessing the health advantages of calcium, as milk and yogurt are the main sources of
dietary calcium consumption for this population [30]. Furthermore, there is no correlation
between calcium intake and vitamin D status in Iran since dairy products are not fortified
with vitamin D, which is a significant issue in previous research evaluating the impact of
calcium intake sources [31].

4.2. Iron

There was no association between iron intake and all-cause mortality, while previous
studies mentioned a positive association between a higher iron intake and mortality. In a
12-year-long cohort study on US adults, it was indicated that subjects with a higher iron
intake had a significantly increased all-cause mortality risk [32]. Moreover, Etemadi et al.
suggested that the overall mortality risk increased with a higher dietary intake of heme
iron [33]. In this population, the main source of iron was non-heme iron.

In this study, a suggestive U-shaped association between iron intake and CVD mor-
tality was observed (Figure 2). Zhang et al. [34] suggested that dietary intake of total iron
was positively associated with mortality from stroke and total CVD in Japanese men, and
Lee et al. [35] indicated that a higher intake of heme iron might be related to CVD mortality
in Iowa women. However, few studies suggested an inverse association between dietary
iron intake and cardiovascular outcome [36]. Regarding cancer mortality and iron intake, in
this study, we did not observe any significant association, which was in line with a previous
study on Chinese adults [37].

Iron (heme and non-heme) intake can be involved in mortality via oxidative stress,
which contributes to the aging process [38]. Heme iron has pro-oxidant properties that
may encourage oxidative injury and inflammation in several organs [39]. Numerous health
consequences, including diabetes, CVD, and cancer, have been linked to heme iron [40–43].
Lipid peroxidation and oxidative stress indicators can be brought on by dietary iron [44,45].
Low-density lipoprotein (LDL) can oxidize with the help of heme iron, perhaps acting
as a catalyst. This can lead to inflammation that damages tissue and raises the risk of
cardiovascular disease (CVD) [44].

4.3. Copper

In our study, a weak positive linear association between copper intake and CVD
mortality was observed. The RCS models indicated a significant U-shaped association
with CVD mortality. A J-shaped relationship between dietary copper intake and all-cause
mortality in an adult Chinese population was demonstrated by Gan et al. in a recent
study [46]. In a research on 58,646 healthy adults, Eshaka et al. investigated the relationship
between dietary copper intake and the risk of death from CVD and found that it was
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positively linked with mortality from CVD in both genders [47], which was in line with our
results. In contrast to our findings, Bates et al., in a study on British subjects, showed an
inverse association with all-cause mortality [48]. They also reported an inverse association
with cancer mortality that was not statistically significant, while a significant inverse
association between copper intake and cancer mortality was observed in our study. In this
study, the main sources of copper are bread and organ meats, while, in the Chinese study,
grains and legumes were mentioned as the major sources. The other mentioned studies
have not reported the main source of copper in their work.

Uncertain mechanisms underlie how copper relates to CVD mortality in distinct ways;
however, copper oxidizes LDL cholesterol, increasing its atherogenicity [49]. By virtue of
its association with the acute-phase-reactant ceruloplasmin, copper could also be regarded
as an indicator of inflammatory risk [50,51].

4.4. Selenium

Dietary selenium intake in our study had a significant positive association with CVD
mortality. No previous studies have suggested this positive association between selenium
intake and CVD mortality. However, there are several studies evaluating selenium intake
and mortality risks. Sun et al., in a study on 133,957 Chinese adults, suggested that dietary
selenium intake was inversely associated with all-cause and CVD mortality in both genders
but not cancer mortality [52]. They indicated that the highest quintile of selenium intake
vs. the reference quintile was almost 20% less prone to all-cause and CVD mortality. In
a recent study on US adults, it was shown that selenium intake was inversely associated
with all-cause mortality [53]. Additionally, Xie et al. found a U-shaped association between
selenium intake in a diet and death from all causes [54], which we did not observe in our
results. Dietary adequacy could contribute to different results. The selenium intake in
our study is much higher than the RDA (Supplementary Table S1), and this could cause a
positive association between selenium intake and CVD mortality in this study. Also, a quite
high level of selenium in the soil of this area may synergize the associations we found [55].
The main sources of selenium in this population are bread and egg.

Although there are several suggested roles of selenium in CVD, such as in limiting
the oxidative alteration of lipids, decreasing platelet aggregation, lowering inflammation,
and enhancing functional capillary recruitment [56–58], selenium, in combination with
other antioxidants, has not been found to have a substantial protective impact on CVD
or death in randomized trials [59,60]. Furthermore, it has been discovered in animal re-
search that consuming too much selenium may increase DNA damage and cause oxidative
damage [61–63].

4.5. Phosphorus

Phosphorus dietary intake had a significant inverse association with cancer mortality
in our study. Chang et al. [64], evaluated dietary phosphorus intake and mortality in
9686 US adults and suggested that a higher phosphorus intake is associated with increased
mortality in a healthy US population. The phosphorus density in their study was related to
all-cause mortality at a phosphorus density amount >0.35 mg/kcal. Phosphorus density
was also associated with cardiovascular mortality in the above-mentioned study. The
source of phosphorous may contribute to the discrepancies observed. In our study, the
main source of phosphorous was grains, while it could be dairy, processed food, or soft
drinks in other populations.

4.6. Magnesium and Other Minerals

We found a suggestive U-shaped association between magnesium intake and cardio-
vascular mortality, while there are several studies with no association [16] or reduced [65–68]
risk of mortality. We found no association between zinc or other mineral intake and
all-cause and cause-specific mortality, which is in line with previous studies [69–71].
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4.7. Strengths and Limitations

The strengths of our study included the use of a large sample size with a long duration
of follow-up (median: 14.1 y), high retention rates, and detailed information on the partici-
pants’ diet. A significant number of elements’ intakes (10 elements) have been evaluated
with all-cause, CVD, and cancer mortality, which makes the findings of this study unique.
Also, another strength of our study was the restriction of our sample to a healthy population
to minimize confounding by reverse causation. Additionally, by analyzing the data with
energy adjustments, it is possible to gain the most insight possible into the relationships
between dietary mineral intake and mortality. In this study, we used the density model for
adjusting each element intake. We used three models (quintile, continuous, and RCS) to
evaluate the association between elements and mortality, which was carefully adjusted for
various plausible confounders.

Our study has some limitations that should be considered. First, the bioavailability of
minerals is a concern. This is because inorganic elements may be more bioavailable than
organic sources: for example, phosphate additives are more bioavailable (90–100% in inor-
ganic vs. 40–60% in organic). Also, it has been suggested that dietary-derived elements from
inorganic sources could have a more significant effect on serum concentrations [64,72,73].
Additionally, assessments of serum or plasma element levels are advised to obtain a better
estimate of element intake, because the element levels in meals may differ between geo-
graphic regions due to the composition of the soil and water where the food was grown.
Additionally, there might have been a measurement error because the nutrient databases
we used may have underestimated the element concentration of food products heavy in
inorganic element additions [74]. Also, dietary element intakes assessed at the baseline
may not reflect recent dietary exposure as the intakes of said elements might have been
changed during the long follow-up period. Moreover, it should be noted that our study
conducted multiple comparisons, which may have affected the interpretation of our results.

Last, there remains the possibility of residual confounding. Some of the variables
were self-reported: for example, the history of hypertension. Any high/low element intake
may represent other aspects of unhealthy dietary patterns, which can lead to unhealthy
outcomes [75]. Even after adjusting for various cofactors, unmeasured confounders such as
access to healthcare might still have caused confounding.

5. Conclusions

In conclusion, calcium was inversely associated with all-cause and CVD mortality.
Iron, copper, and magnesium showed a suggestive U-shaped association with CVD mor-
tality. Selenium intakes were in positive associations with CVD mortality. Moreover,
phosphorus and copper intakes were inversely associated with cancer mortality. In fu-
ture research, longitudinal studies with repeated measures of element intakes and serum
concentrations in different populations are needed to validate the findings. We suggest
that future studies explicitly reference the primary sources of each mineral, considering
that other components present in these foods may impact the outcomes and contribute to
making studies comparable.
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