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Abstract: Background: Myocardial infarction (MI) can range from mild to severe cardiovascular
events and typically develops through complex interactions between genetic and lifestyle factors.
Objectives: We aimed to understand the genetic predisposition associated with MI through genetic
correlation, colocalization analysis, and cells’ gene expression values to develop more effective
prevention and treatment strategies to reduce its burden. Methods: A polygenic risk score (PRS)
was employed to estimate the genetic risk for MI and to analyze the dietary interactions with PRS
that affect MI risk in adults over 45 years (n = 58,701). Genetic correlation (rg) between MI and
metabolic syndrome-related traits was estimated with linkage disequilibrium score regression. Single-
cell RNA sequencing (scRNA-seq) analysis was performed to investigate cellular heterogeneity in
MI-associated genes. Results: Ten significant genetic variants associated with MI risk were related to
cardiac, immune, and brain functions. A high PRS was associated with a threefold increase in MI risk
(OR: 3.074, 95% CI: 2.354–4.014, p < 0.001). This increased the risk of MI plus obesity, hyperglycemia,
dyslipidemia, and hypertension by about twofold after adjusting for MI-related covariates (p < 0.001).
The PRS interacted with moderate fat intake (>15 energy percent), alcohol consumption (<30 g/day),
and non-smoking, reducing MI risk in participants with a high PRS. MI was negatively correlated
with the consumption of olive oil, sesame oil, and perilla oil used for cooking (rg = −0.364). MI
risk was associated with storkhead box 1 (STOX1) and vacuolar protein sorting-associated protein
26A (VPS26A) in atrial and ventricular cardiomyocytes and fibroblasts. Conclusions: This study
identified novel genetic variants and gene expression patterns associated with MI risk, influenced
by their interaction with fat and alcohol intake, and smoking status. Our findings provide insights
for developing personalized prevention and treatment strategies targeting this complex clinical
presentation of MI.

Keywords: myocardial infarction; polygenic risk score; metabolic syndrome; single-cell RNA sequencing;
precision medicine; fat

1. Background

Myocardial infarction (MI) is as a multifaceted pathological condition driven by a com-
plex and dynamic interplay of genetic predispositions, environmental exposures, chronic
inflammatory processes, metabolic dysregulation, and lifestyle-associated risk factors. Re-
cent genomic and epidemiological studies have revealed MI as a sophisticated molecular
disease beyond traditional risk factor models [1,2]. East Asian populations present a unique
MI epidemiological profile distinct from Western countries, characterized by lower overall
incidence rates but increasingly alarming trends [3,4]. Specifically, East Asian populations
demonstrate several notable characteristics: MI onset at younger ages, a more pronounced
genetic component, and distinctly different metabolic risk factor distributions compared to
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Western populations [5,6]. These differences are driven by rapid urbanization, significant
dietary transitions, and evolving lifestyle patterns in countries like China, South Korea,
and Japan [7]. The complex interplay of genetic and environmental factors in East Asian
populations offers unprecedented opportunities to enhance MI risk prediction, prevention,
and personalized treatment strategies.

The intricate relationship between lifestyle factors and genetic susceptibility to MI
represents a critical area of scientific investigation. Emerging research demonstrates that
adherence to healthy lifestyle habits can significantly mitigate MI risk, particularly in
individuals with genetic predispositions [8]. Tailored lifestyle interventions have shown
promising potential in reducing MI risk, especially among high-risk populations. Integrat-
ing genetic markers with lifestyle interventions offers a more comprehensive approach to
MI prevention and management [9,10].

The complex relationship between myocardial infarction (MI), metabolic diseases, and
lifestyle factors reveals multiple influences on cardiovascular health. Extensive epidemi-
ological studies, such as the Wisconsin Longitudinal Study, have consistently identified
critical risk factors for MI, including hypertension, dyslipidemia, type 2 diabetes (T2DM),
and obesity [11]. An Australian study further highlighted how the duration of T2DM can
predict cardiovascular events and mortality, especially in older populations [12]. These
findings emphasize the need for a comprehensive approach integrating genetic and lifestyle
factors in MI prevention. Our study uniquely investigates the genetic correlations between
MI and multiple metabolic conditions, focusing on the interactions of three or more chronic
metabolic conditions (3GO).

Genetic research has identified specific variants associated with MI, such as rs11614913
in the microRNA 196a-2 (MIR196A2) gene, which has been linked to increased MI risk in
European populations [13]. This variant potentially influences MI pathology by regulating
genes involved in atherosclerosis and coronary artery disease [13,14]. Colocalization
analysis has further illuminated the complex interactions between genetic variants and
regulatory elements in MI development.

Cutting-edge single-cell RNA sequencing (scRNA-seq) techniques have enabled re-
searchers to map gene expression profiles related to MI [15], providing unprecedented
insights into cell-specific genetic factors. Our primary objective was to comprehensively
examine the genetic determinants of MI and associated comorbidities in East Asian pop-
ulations. By employing genetic correlation, colocalization analysis, and cell-type-specific
expression pattern investigations, we sought to uncover the intricate genetic architecture of
MI. Ultimately, our research aims to contribute to more precise and efficient preventive and
therapeutic approaches tailored specifically to East Asian populations.

2. Methods
2.1. Data Sources and Preprocessing

This study utilized MI data from the Korean Genome and Epidemiology Study (Ko-
GES) [16], a population-based cohort study conducted by the Korea National Institute of
Health (KNIH) and the Korea Centers for Disease Control and Prevention (KCDC). The
KoGES included 58,701 adults recruited between 2004 and 2013. The study protocol was
approved by the institutional review board (IRB) of the KNIH (KBP-2015-055), and partici-
pants provided written informed consent. Additional approval was obtained from the IRB
of Hoseo University (1041231-150811-HR-034-01). Information on the participants’ charac-
teristics, lifestyle, and medications was collected through a questionnaire [16], providing
comprehensive genotypic data of MI patients and control subjects.

The KoGES study collected sociodemographic characteristics, anthropometric mea-
surements, and biochemical data. The sociodemographic questionnaire captured the
participants’ residence area, gender, and age, as well as smoking, drinking, and exercise
habits. Physical activity was assessed based on participants engaging in moderate-intensity
physical activity for at least 150 min per week [17,18]. Smoking status was categorized
as current, former, or non-smoking, determined by whether participants had smoked
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more than 20 cigarettes over their lifetime, with former smokers defined as those who had
previously smoked but had not done so in the last 6 months [19]. Alcohol consumption
was calculated by multiplying the reported amount and type, such as beer, soju, rice wine,
wine, or whisky, consumed during each alcohol-drinking event by the frequency of those
events [20]. Body mass index (BMI) was calculated by body weight (kg)/height (m)2 [21].
Blood pressure was measured using a standardized protocol, and fasting blood samples
from the participants after no food for at least 12 h were collected for biochemical analysis,
including the measurement of glucose and HbA1C, total cholesterol, high-density lipopro-
tein cholesterol (HDL), and triglycerides using an automatic analyzer [19]. Serum LDL
concentration was calculated using the Freidman equation, which remains the most widely
used method for estimating LDL concentration levels in clinical practice [22]. When serum
triglyceride concentration was greater than 500 mg/dL, serum LDL concentration was not
calculated. The characteristics and health indicators of the participants were measured
while adhering to established standard methods to ensure reliability and validity.

2.2. Definition of MI and Comorbid Diseases

Participants were stratified into an MI group based on the presence of a documented,
hospital-confirmed diagnosis of MI within their medical history, comprising a total of 1998
subjects. MI diagnosis was confirmed through comprehensive medical documentation,
requiring a definitive physician diagnosis, while those without MI and three or more
comorbidities (3GO) constituted the non-MI group (n = 26,032). Further, subgroups were
established based on specific comorbidities (3GO). The MI + HT group comprised individ-
uals with a history of MI and hypertension, with hypertension determined according to the
criteria outlined by the International Society of Hypertension (systolic blood pressure [SBP]
≥ 140 mmHg and diastolic blood pressure [DBP] ≥ 90 mmHg) and taking hypertension
medication [23]. The MI + T2DM group comprised individuals with a history of MI, fasting
blood glucose levels ≥ 126 mg/dL, and taking anti-diabetic agents [24]. Individuals in the
MI + DL group included those with a history of MI and dyslipidemia, characterized by
serum triglycerides, total cholesterol, or HDL concentrations ≥ 200 mg/dL, ≥ 250 mg/dL,
or <40 mg/dL, respectively, and taking hypolipidemic agents as per the guidelines of the
International Society of Endocrinology [19]. The MI + OB group comprised individuals
with a history of MI and obesity, the latter defined by a BMI ≥ 25.0 kg/m2 [17]. Lastly, the
3GO category encompassed individuals with three or more of the following conditions:
hypertension, T2DM, dyslipidemia, and obesity. Notably, 3GO represents a severe state of
metabolic syndrome (MetS).

2.3. Food and Nutrient Intake Assessments

The Semi-Quantitative Food Frequency Questionnaire (SQFFQ), containing 106 every-
day Korean food items, was employed and validated for the KoGES. Participants reported
their food intake frequency and portion sizes over the past year to a skilled technician.
Intake for each item was calculated by multiplying the consumption frequency by portion
size, with the daily intake being the sum of all 106 items. Nutrient intake was analyzed
using the CAN-Pro 3.0 program developed by the Korean Nutrition Society [11] and
compared with dietary reference intake standards.

2.4. Genotyping and Quality Control: Genomic Analysis and Quality Assurance Procedures

Genomic DNA was extracted from peripheral blood monocytes following standard
protocols. Single-nucleotide polymorphisms (SNPs) were determined using the Korean
Chip (K-CHIP) [25], which is tailored for the Korean population and contains 830,000 SNPs
(Affymetrix, Santa Clara, CA, USA). The K-CHIP was developed with stringent quality
control by the Center for Genome Science at KNIH to ensure data reliability. Genotyping
accuracy was assessed using Bayesian Robust Linear Modeling with the Mahalanobis
(BRLMM) Distance algorithm, with rigorous quality control measures that excluded low-
quality SNPs. The SNP exclusion criteria included genotyping accuracy < 98%, missing



Nutrients 2024, 16, 4273 4 of 19

genotype calls (≥4%), excessive heterozygosity (>30%), an unsatisfied Hardy–Weinberg
equilibrium (HWE; p < 0.05), and minor allele frequency (MAF) below 1%. Only high-
quality SNPs meeting the criteria were retained for subsequent analyses, ensuring robust
and meaningful results [26].

The SNP-related genes were identified using the SNP and copy number variant (CNV)
Annotation Database (SCAN) site (http://scandb.org/newinterface/, accessed on 24 April
2024), with linkage disequilibrium (LD) confirmation using LocusZoom [27] (r2 < 0.3). We
extensively explored biological datasets and utilized GeneMANIA (http://genemania.org/,
accessed on 16 May 2024) for gene identification, including protein–protein, protein–DNA,
genetic interaction, pathway, response, and gene and protein expression data.

2.5. PRS Generation via the GMDR Program

From the carefully selected SNPs associated with MI onset, we utilized the generalized
multifactor dimensionality reduction (GMDR) program available at http://ibi.zju.edu.
cn/software to generate a PRS predicting genetic predisposition to MI [28]. The GMDR
method offers a unique advantage in handling complex gene–gene interactions, providing
a more comprehensive genetic risk assessment than traditional single-gene association
analyses. The PRS represents the cumulative impact of multiple SNPs on MI risk. Based on
meeting the criteria for training balance accuracy (TRBA), test balance accuracy (TEBA),
and cross-validation consistency, the optimal model guided our selection of the SNPs
associated with MI to construct the PRS. Genetic variants in the chosen model exhibited a
strong association of gene–gene interactions with MI risk. The PRS calculation involved
summing the risk alleles from the SNPs in the best model, with minor alleles counted as
1 for SNPs with an odds ratio (OR) > 1, indicating increased MI risk. Conversely, major
alleles were counted as 1 for SNPs with an OR between 0 and 1.

We encoded selected genotype data for GMDR analysis to identify the synergistic
genetic variant combinations linked to MI. The PRS calculation considers the complex
nature of genetic variants, which are composed of non-risk, heterozygote, and risk alleles.
Our PRS construction method carefully accounts for the genetic variant composition,
categorizing participants based on their allele configurations. Each genetic variant was
evaluated considering non-risk, heterozygote, and risk alleles, with the categorization into
low PRS (2–7), medium PRS (8–10), and high PRS (11–15) directly corresponding to genetic
variant allele combinations. This approach allows a more precise translation of genetic
risk into clinically meaningful categories. By stratifying the PRS based on the underlying
genetic variant allele types, we can more accurately reflect the nuanced genetic risk profiles,
provide a robust method for risk stratification, and improve the potential for personalized
risk assessment. The PRS calculation involved summing the weighted number of risk alleles
for each variant according to its encoded genotype in the predefined gene combination.
This method transforms complex genetic data into a structured, interpretable format that
can be more directly applied to understanding individual MI risk.

2.6. Descriptive Statistical Analysis and Lifestyle Interaction Analysis

We utilized Stata Statistical Software (Release 17: StataCorp LLC, College Station, TX,
USA) to examine categorical variable frequency distributions and conducted Chi-square
tests for variables such as gender, smoking status, and alcohol consumption. Frequen-
cies and percentages were calculated for each categorical variable. Descriptive statistical
analysis, using Stata, assessed continuous variables like age, physical activity level, and
income. After adjustments for covariates, including age, gender, residence area, BMI, daily
energy intake, physical activity, smoking status, and alcohol consumption, we computed
the mean and standard deviation (SD). Significance was determined at p < 0.05, with values
below this indicating statistical significance. We employed Chi-square tests for categorical
variable frequency distribution analysis. The continuous variables were assessed through
a one-way analysis of variance (ANOVA), with covariate adjustments for age, gender,
residence area, and BMI to identify the differences between the control and MI groups.

http://scandb.org/newinterface/
http://genemania.org/
http://ibi.zju.edu.cn/software
http://ibi.zju.edu.cn/software
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Significant differences among the PRS categories were assessed using one-way ANOVA
with the same adjustments. Multiple comparisons among the groups were conducted
using Duncan’s multiple comparison test. GWASs were used to find the SNPs associated
with MI risk, and Bonferroni correction was applied to the level of statistical significance
to find significant SNPs. Logistic regression in Stata explored PRS-MI associations, with
PRS as an independent variable, MI onset status as the dependent variable, and covariates
including residential area, age, gender, physical activity, education, income, smoking, and
alcohol consumption. The adjusted OR and 95% confidence intervals (CIs) were calculated
for the medium-PRS and high-PRS groups, with the low-PRS group as the reference. To
ensure the statistical reliability of our research, we conducted a rigorous sample size calcu-
lation. The calculation process detected the parameters with the minimum genetic effect,
as well as variations in genotype and allele frequency. Considering the heterogeneity of the
population’s genetic background, minimum sample requirements were assessed to detect
statistically significant associations.

We investigated the interaction between lifestyle factors (nutrient intake, physical ac-
tivity, smoking, alcohol consumption) and PRS in MI risk using logistic regression models,
including covariates such as residential area, age, gender, BMI, smoking, alcohol consump-
tion, coffee consumption, energy intake, fat and carbohydrate intake, and physical activity
to mitigate confounding effects. Lifestyle factors were categorized into low and high groups
based on designated levels. The smoking category was divided into current and former
smokers and non-smokers. Daily energy, protein, fat, carbohydrate, calcium, sodium, and
coffee consumption were also used as interaction factors. Statistical significance was set at
p ≤ 0.05.

2.7. Estimating Genetic Correlation Between MI and Other Phenotypes in East Asian Populations
Using LDSC Software

Using the GWAS datasets available in the public domain, we utilized the linkage dise-
quilibrium score regression (LDSC v1.0.1) software, downloaded from https://github.com/
bulik/ldsc, to estimate the genetic correlation between MI and various phenotypes [29]. The
LDSC analysis provided systematic insights into cross-phenotype genetic associations, help-
ing to uncover potential shared genetic mechanisms. These datasets include reference SNP
cluster ID (rs) number, chromosome number, position, effect allele, null allele, and the OR,
along with the p-value of the HWE for both MI and other traits. Japanese population GWAS
data were sourced from the BioBank Japan (BBJ) Project [30] (http://jenger.riken.jp/result),
and Korean population data were obtained from KoGES [16] (https://koges.leelabsg.org/).
We utilized East Asian ancestry population data from the 1000 Genomes East Asian dataset
as a reference [31]. Precomputed LD scores and weights for East Asian populations were
obtained from the 1000 Genomes Project Phase 3 data (https://console.cloud.google.com/
storage/browser/broad-alkesgroup-public-requester-pays). The data underwent quality
control procedures, including ensuring MAF > 0.05 in HapMap 3 and removing low-
imputation-quality SNPs and non-matching alleles [32]. SNPs with χ2 > 80 were excluded
to minimize the outlier effect in LD score regression [33]. The traits data were categorized
into health indicators, diet, and lifestyle factors. The genetic correlation, representing the
extent of shared genetic influence between two phenotypes, ranged from −1 to 1 [34].

2.8. Colocalization Analysis Based on Bayesian Inference

The colocalization employed a Bayesian framework, incorporating data from GWASs
and expression quantitative trait loci (eQTL) mapping to assess the consistency of the
shared causal variation among two or more independently associated signals within a
region [35]. This approach enabled us to identify potential gene regulatory mechanisms
crucial in MI pathogenesis. Our research approach aimed to identify SNPs significantly
associated with MI from GWASs while ensuring that their linkage equilibrium did not
exceed a predetermined threshold (r2 < 0.2). Subsequently, colocalization analysis was
conducted for each SNP, integrating both GWAS and eQTL signals and assessing their

https://github.com/bulik/ldsc
https://github.com/bulik/ldsc
http://jenger.riken.jp/result
https://koges.leelabsg.org/
https://console.cloud.google.com/storage/browser/broad-alkesgroup-public-requester-pays
https://console.cloud.google.com/storage/browser/broad-alkesgroup-public-requester-pays
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overlap within a 1-megabase (mb) range upstream and downstream of the gene. We
leveraged the eQTL data from the Genotype-Tissue Expression (GTEx) project v6−v8
datasets, along with additional datasets from 37 sources, comprising a total of 31,684 in-
dividuals (http://www.eqtlgen.org/eqts.html). Using MAGMA v1.10, we identified
the SNPs significantly associated with MI [36]. Trait selection for analysis was based
on genotype–phenotype associations obtained from the PhenoScanner database (https:
//github.com/phenoscanner/phenoscanner). The Coloc package in R language computed
posterior probabilities and approximate Bayes factors for each SNP [37], providing insights
into evidence of colocalization (https://chr1swallace.github.io/coloc). Colocalization pos-
terior probability was determined based on SNP statistics, such as the p value, MAF, and
sample size. Finally, regional association maps were generated using LocusZoom.js (https:
//github.com/statgen/locuszoom), incorporating linkage disequilibrium information from
the GTEx data [38]. The code for the plots of colocalization is available at the provided
GitHub repository (https://github.com/Benjamin-JHou/postGWAS_Colocalization).

2.9. MI-Related Gene Expression and Scoring in Single-Cell RNA-Seq Datasets

The scRNA-seq data from myocardial tissue samples were analyzed to explore cell-
type-specific gene expression profiles related to MI [39]; the data can be downloaded at
https://www.heartcellatlas.org/#publication. Raw data in H5AD format, containing ex-
pression matrices and metadata, were processed using scanpy in Python 3.11. Additionally,
a z-score file for MI-associated genes was integrated to compute a custom disease relevance
score for each cell. This score, reflecting each cell’s association with the MI phenotype,
was calculated as the weighted sum of expression levels for genes common to both the
scRNA-seq data and the MI gene set. Weights were derived from the MI scores, indicating
each gene’s contribution to the disease phenotype. The disease relevance score for each
cell was computed using a weighted sum of the expression levels of the MI-associated
genes. Specifically, for a cell c and a set of common genes G, the disease relevance score Sc
is calculated as follows:

Sc = ∑
g∈G

Ec,g · Wg

where Ec,g represents the expression level of gene g in cell c, and Wg is the MI score of gene
g, reflecting its contribution to the MI phenotype. The relevance scores were normalized to
a 0–10 scale to facilitate comparison across cells using the following formula:

Sc,norm =
Sc − min(S)

max(S)− min(S)
× 10

The specific methods and steps are explained in detail in GZSper (GWAS Z-score to
Single-cell Phenotypes for Expression Research). The code for the analysis and plots is avail-
able at the provided GitHub repository (https://github.com/Benjamin-JHou/GZSper).

Dimensionality reduction was performed using Principal Component Analysis (PCA),
followed by Uniform Manifold Approximation and Projection (UMAP) to visualize cellular
heterogeneity. These steps allowed for examining disease relevance across various cell
types, providing insights into the molecular mechanisms underlying MI.

3. Results
3.1. Anthropometric and Biochemical Characteristics of MI and Its Comorbidities

As seen in Supplementary Table S1, compared to the control group, the patients in
the MI group had higher waist circumferences by 4.2 cm, body fat by 2.8%, fasting blood
glucose by 6.1 mg/dL, HbA1c by 0.45%, and SBP by 3 mmHg (healthy participants). The
MI plus comorbidity groups also showed worse metabolic dysfunctions than the MI group.
The average age of the patients in the MI + T2DM subgroup was higher than the other
subgroups at 61.3 years (Supplementary Table S1). Discrepancies in gender distribution
were observed across the control, MI, and MI plus comorbidity subgroups, with women

http://www.eqtlgen.org/eqts.html
https://github.com/phenoscanner/phenoscanner
https://github.com/phenoscanner/phenoscanner
https://chr1swallace.github.io/coloc
https://github.com/statgen/locuszoom
https://github.com/statgen/locuszoom
https://github.com/Benjamin-JHou/postGWAS_Colocalization
https://www.heartcellatlas.org/#publication
https://github.com/Benjamin-JHou/GZSper
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predominantly represented in the control group, whereas the prevalence of men was higher
in the MI plus comorbidity subgroups (Supplementary Table S1). Among all the subgroups,
patients in the MI + T2DM group were the least active, with the lowest frequency of
performing physical exercise, while those in the MI + 3GO group showed the highest
frequencies of coffee and alcohol intake (Supplementary Table S2). Conversely, smoking
frequency was lowest in the control group, but fat intake as part of total daily intake was
the highest in this group (Supplementary Table S2).

3.2. MI-Risk Genes from GWASs and GMDR

To investigate the genomic distribution of significant SNPs, we analyzed their density
across chromosomes 1 to 22 within a 1 Mb window size (Figure 1A). After applying a
significance threshold of p-value < 0.0001, the SNPs were visualized by density. Regions
with high SNP density (≥50 SNPs) are prominently marked in red, indicating potential
hotspots of genetic association. In contrast, regions with fewer significant SNPs are marked
by a gradient from red to blue, with blue representing lower SNP densities. Non-significant
SNPs that did not meet the p-value threshold are plotted in gray, revealing background
genomic variation. This distribution highlights key loci for further investigation and sug-
gests regions with potential biological significance. We identified 10 significant SNPs that
met the SNP quality and SNP-SNP interaction criteria. These SNPs, detailed in Supple-
mentary Table S3, included ligand of numb-protein X 1 (LNX1), ELOVL fatty acid elongase
2 (ELOVL2), sarcoglycan zeta (SGCZ), KIF-binding protein (KIFBP), makorin ring finger
protein 3 (MKRN3), chromodomain-helicase-DNA-binding protein (CHD2), chromobox
protein homolog 2 (CBX2), ring finger protein 213 (RNF213), regulatory-associated protein of
mTOR (RPTOR), and dopa decarboxylase (DDC). Figure 1B illustrates the interaction among
these ten genes, demonstrating shared protein domains, genetic interactions, co-expression,
and physical interactions. Using the GMDR method, the genetic variants of the SNPs of
the 10 genes with intricate genetic interactions were identified. Model 9, including nine
genetic variants, presented in Supplementary Table S4, satisfied the criteria for GMDR, with
an adjusted test equilibrium accuracy of 10 (p = 0.0010). This result explains the significant
and potentially synergistic roles of these nine genetic variants in influencing MI risk.

Nutrients 2024, 16, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 1. SNP-SNP interactions and PRS and lifestyle interactions. (A) Distribution of SNPs within a 1 
Mb window size across chromosomes 1 to 22. SNPs were filtered based on a significance threshold of p-
value < 0.0001. Adjacent regions with high SNP density (≥50 SNPs) are highlighted in red, while locations 
with fewer SNPs are displayed in a gradient from red to blue, indicating decreasing density. SNPs 
that did not pass the filtering criteria are shown in gray, serving as a reference for genomic regions 
without significant associations. (B) Interaction of genes: a comprehensive interaction diagram of 
ten key genetic elements. (C) Frequencies of MI in participants with low, medium, and high poly-
genic risk score (PRS) based on the optimal 9 risk alleles: LNX1_rs2616417, ELOVL2_rs75105616, 
SGCZ_rs73201298, KIFBP_rs3864814, MKRN3_rs56730421, CHD2_rs201915192, 
RNF213_rs1410411669, RPTOR_rs7224758, and DDC_rs77235945. (a) Participants categorized by al-
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of p-value < 0.0001. Adjacent regions with high SNP density (≥50 SNPs) are highlighted in red,
while locations with fewer SNPs are displayed in a gradient from red to blue, indicating decreasing
density. SNPs that did not pass the filtering criteria are shown in gray, serving as a reference
for genomic regions without significant associations. (B) Interaction of genes: a comprehensive
interaction diagram of ten key genetic elements. (C) Frequencies of MI in participants with low,
medium, and high polygenic risk score (PRS) based on the optimal 9 risk alleles: LNX1_rs2616417,
ELOVL2_rs75105616, SGCZ_rs73201298, KIFBP_rs3864814, MKRN3_rs56730421, CHD2_rs201915192,
RNF213_rs1410411669, RPTOR_rs7224758, and DDC_rs77235945. (a) Participants categorized by
alcohol intake (cut-off: 30 g/d). (b) Participants categorized by smoking status (non-smokers versus
current and former smokers). (c) Participants categorized by fat intake (cut-off: 15% of daily energy
consumption). Significant differences between low- and high-PRS groups: * p < 0.01, ** p < 0.001. MI:
myocardial infarction; LNX1: ligand of numb-protein X 1; ELOVL2: ELOVL fatty acid elongase 2;
SGCZ: sarcoglycan zeta; KIFBP: KIF-binding protein; MKRN3: makorin ring finger protein 3; CHD2:
chromodomain-helicase-DNA-binding protein; CBX2: chromobox protein homolog 2; RNF213: ring
finger protein 213; RPTOR: regulatory-associated protein of mTOR; DDC: dopa decarboxylase.

3.3. Correlations with Physiological Characteristics in Participants with High PRS

Table 1 presents the metabolic characteristics of the participants in the three PRS
groups across the control and MI groups. Compared to the low-PRS group, individuals
with a high PRS demonstrated higher BMI, waist circumference, hip circumference, blood
HbA1c, fasting blood glucose, total cholesterol, triglycerides, SBP, and DBP only in the MI
group (not in the control group). Conversely, in participants with MI, the high-PRS group
exhibited lower serum HDL cholesterol levels than the low-PRS group.

Table 1. Baseline characteristics of subjects stratified by PRS utilizing the final selection of nine
optimal risk alleles: LNX1_rs2616417, ELOVL2_rs75105616, SGCZ_rs73201298, KIFBP_rs3864814,
MKRN3_rs56730421, CHD2_rs201915192, RNF213_rs1410411669, RPTOR_rs7224758, and
DDC_rs77235945.

Control
(n = 26,032)

Case (MI)
(n = 1998)

Low PRS
(n = 4303)

Medium PRS
(n = 16,546)

High PRS
(n = 4983)

Low PRS
(n = 318)

Medium PRS
(n = 1131)

High PRS
(n = 549)

BMI a (kg/m2) 23.9 ± 2.91 c 23.9 ± 2.88 c 23.8 ± 2.89 c 24.7 ± 2.65 b 24.9 ± 2.95 b 25.1 ± 3.06 a*++

Waist circumference (cm) 80.9 ± 8.71 c 80.7 ± 8.63 c 80.4 ± 8.59 c 84.1 ± 7.98 b 84.8 ± 8.47 ab 85.3 ± 8.65 a**+++

Hip circumference (cm) 94.1 ± 5.91 c 94.1 ± 5.81 c 93.9 ± 5.74 c 94.8 ± 5.64 b 95.3 ± 5.92 ab 95.6 ± 6.08 a*++

Fasting serum glucose
(mg/dL) 95.3 ± 20.5 c 95.0 ± 20.3 c 94.6 ± 18.5 c 99.9 ± 22.7 b 101 ± 26.8 ab 103 ± 25.2 a**+++

HbA1c b (%) 5.73 ± 0.74 c 5.70 ± 0.73 c 5.72 ± 0.74 c 6.14 ± 1.04 b 6.17 ± 1.08 b 6.29 ± 1.15 a*+++

Total cholesterol (mg/dL) 194 ± 38.1 bc 195 ± 37.3 b 195 ± 37.2 b 194 ± 35.5 bc 196 ± 35.4 b 199 ± 35.0 a***+++

HDL c (mg/dL) 53.8 ± 13.1 ab 53.9 ± 13.2 a 54.1 ± 13.2 a 49.5 ± 11.9 b 49.1 ± 12.0 bc 48.7 ± 12.8 c**+++

TG d (mg/dL) 120 ± 66.5 bc 119 ± 65.2 bc 118 ± 62.8 c 123 ± 64.5 b 126 ± 63.3 ab 129 ± 67.1 a***+++

SBP e (mmHg) 122 ± 15.1 c 122 ± 14.9 c 123 ± 14.9 bc 124 ± 15.1 b 125 ± 14.5 ab 127 ± 15.6 a**++

DBP f (mmHg) 75.7 ± 9.94 c 75.8 ± 9.76 bc 75.9 ± 9.78 bc 75.8 ± 9.60 bc 76.1 ± 9.62 b 78.5 ± 9.21 a**+

Values represent means ± standard deviations. PRS generated with 9 SNPs was divided into 3 categories: low
(2−7), medium (8−10), and high (11−15). * Significantly different from low-PRS group at p < 0.05; ** p < 0.01;
*** p < 0.001. + Significantly different within MI groups at p < 0.05; ++ p < 0.01; +++ p < 0.001. a,b,c Means without a
common letter differ in the same row by Tukey test at p < 0.05. a BMI, body mass index; b HbA1c, hemoglobin
A1c (glycated hemoglobin); c HDL, high-density lipoprotein; d TG, triglyceride; e SBP, systolic blood pressure;
f DBP, diastolic blood pressure.

3.4. Logistic Regression Analysis of PRS and MI with Comorbid Diseases

There was a positive significant association of high PRS with MI risk (OR: 3.074, 95%
CI: 2.354–4.014, p < 0.001) in the logistic regression, adjusting for confounding variables
such as age, sex, residence area, BMI, energy intake, alcohol and coffee consumption, and
physical activity (Table 2). Additionally, MI + HT (OR: 2.045, 95% CI: 1.747–2.429, p < 0.001),
MI + T2DM (OR: 2.428, 95% CI: 1.675–3.492, p < 0.001), MI + DL (OR: 1.975, 95% CI: 1.499–
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2.447, p < 0.001), MI + OB (OR: 2.238, 95% CI: 1.648–2.776, p < 0.001) and 3GO (OR: 1.915,
95% CI: 1.132–2.019, p < 0.01) also showed a positive association with high PRS.

Table 2. Logistic regression analysis of MI and its subgroups stratified by specific comorbidities using
PRSs from nine-SNP model.

Model 1 Model 2

Low PRS
(n = 4712)

Medium PRS
(n = 17,568)

High PRS
(n = 5423)

Medium PRS
(n = 17,568)

High PRS
(n = 5423)

MI a 1 1.597
(1.258–2.027) ***

2.765
(2.143–3.568) ***

1.716
(1.329–2.198) ***

3.074
(2.354–4.014) ***

MI + HT b 1 1.331
(1.145–1.547) **

1.916
(1.621–2.264) ***

1.389
(1.189–1.624) **

2.045
(1.747–2.429) ***

MI + T2DM c 1 1.488
(1.071–2.069) *

2.325
(1.628–3.324) ***

1.552
(1.107–2.176) **

2.428
(1.675–3.492) ***

MI + DL d 1 1.224
(0.989–1.515)

1.767
(1.393–2.243) ***

1.282
(1.027–1.598) *

1.975
(1.499–2.447) ***

MI + OB e 1 1.377
(1.194–1.636) **

2.135
(1.589–2.627) ***

1.419
(1.129–1.786) **

2.238
(1.648–2.776) ***

MI + 3GO f 1 1.288
(0.775–2.162)

1.865
(1.048–2.081) *

1.295
(0.795–2.151)

1.915
(1.132–2.019) **

Values represent odd ratios and 95% confidence intervals. a Myocardial infarction. b Myocardial infarction
with hypertension (HT). c Myocardial infarction with type 2 diabetes (T2DM). d Myocardial infarction with
dyslipidemia (DL). e Myocardial infarction with obesity (OB). f Myocardial infarction with three or more of HT,
T2DM, DL, and OB. The diagnostic criteria for hypertension were SBP≥ 140 mmHg and DBP ≥ 90 mmHg; for
T2DM, fasting serum glucose ≥ 126 mg/dL; for DL, serum triglyceride, total cholesterol, or HDL concentration
≥200, ≥250, or <40 mg/dL, respectively; for OB, BMI > 25.0. PRS generated with 9 SNPs was divided into
3 categories: low (2−7), medium (8−10), and high (11−15). Low PRS was the reference for both model 1 and
model 2. * Significantly different from the low-PRS group in logistic regression analysis at p < 0.05; ** p < 0.01;
*** p < 0.001. Model 1: adjusted for age, gender, residence area, and BMI. Model 2: adjusted for age, gender,
residence area, BMI, intake of energy, alcohol, and coffee, and physical activity.

3.5. Interaction Between PRS and Lifestyle Factors Influencing MI Risk

Table 3 details the interaction between the PRS and key lifestyle factors after adjusting
for MI and relevant covariates. Dietary fat intake, alcohol, and smoking revealed complex
genetic (PRS)–lifestyle interactions that are crucial for understanding MI pathogenesis and
risk accumulation. Figure 1C illustrates the distribution of low-, medium-, and high-PRS
participants across the MI and MI plus comorbidity groups. High-PRS participants were at
an increased risk of MI with low fat intake, high alcohol intake, and smoking.

Table 3. Adjusted MI risk and related parameters according to PRS based on optimal nine risk alleles
of LNX1_rs2616417, ELOVL2_rs75105616, SGCZ_rs73201298, KIFBP_rs3864814, MKRN3_rs56730421,
CHD2_rs201915192, RNF213_rs1410411669, RPTOR_rs7224758, and DDC_rs77235945 and interactions
with the environment.

Low PRS
(n = 4712)

Medium PRS
(n = 17,568)

High PRS
(n = 5423)

PRS–Environmental
Interaction p Value

Low energy
1

1.524 (1.188~1.954) ** 2.419 (1.871~3.107) ***
0.181

High energy 2.064 (1.206~3.861) ** 3.458 (1.871~4.729) ***

Low protein
1

1.779 (1.219~2.495) ** 2.857 (2.035~4.061) ***
0.816

High protein 1.442 (1.018~2.147) * 2.795 (1.902~3.989) ***

Low CHO
1

1.545 (1.053~2.249) * 2.697 (1.789~4.062) ***
0.243

High CHO 1.662 (1.225~2.255) ** 2.886 (2.077~4.018) ***

Low fat
1

1.535 (1.103~2.137) ** 2.658 (1.866~3.786) ***
0.041 *

High fat 1.661 (1.176~2.344) ** 2.869 (1.987~4.145) ***
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Table 3. Cont.

Low PRS
(n = 4712)

Medium PRS
(n = 17,568)

High PRS
(n = 5423)

PRS–Environmental
Interaction p Value

Low natrium
1

1.726 (1.345~2.715) ** 3.275 (2.258~4.756) ***
0.528

High natrium 2.062 (1.157~2.986) ** 4.681 (1.036~7.645) *

Low alcohol
1

1.775 (1.259~2.506) ** 3.203 (2.229~4.609) ***
0.014 *

High alcohol 1.721 (1.165~2.558) ** 2.689 (1.756~4.168) ***

Low exercise
1

1.533 (1.078~2.159) ** 2.659 (1.827~3.871) ***
0.318

High exercise 1.495 (1.051~2.479) * 2.776 (1.614~4.761) ***

Low coffee
1

1.668 (1.185~2.811) ** 3.117 (1.525~6.338) **
0.964

High coffee 1.624 (1.212~2.176) ** 2.867 (2.158~3.914) ***

Non-smoker
1

1.917 (1.183~3.562) ** 3.161 (1.579~5.786) **
0.017 *

Smoker + past smoker 1.871 (1.007~3.542) * 4.069 (1.375~6.942) **

Values represent odd ratios and 95% confidence intervals. Adjusted for age, gender, residence area, BMI, intake of
energy, alcohol, and coffee, and physical activity without corresponding variables. PRS generated with 9 SNPs
was divided into 3 categories: low (2−7), medium (8−10), and high (11−15). The reference was the low-PRS
group. CHO, carbohydrates. Criteria for low and high definition of each parameter in interaction analysis: lower
than estimated daily consumption of energy intake—less than 13% protein, 70% carbohydrate, and 15% fat;
high daily energy consumption—Na intake > 2300 mg, alcohol drinking > 20 g, coffee intake > 1 cup/day, and
90 min/day moderate physical activity. * Significantly different from the major allele in logistic regression analysis
at p < 0.05; ** p < 0.01; *** p < 0.001.

3.6. Genetic Correlations of MI with Health Indicators, Diet, and Lifestyle Factors

The genetic correlation coefficients between MI and other traits, including MI-related
diseases, diets, and lifestyles, are shown in Figure 2, and their false discovery rates (FDR) are
available in Supplementary Table S5. Significant associations between MI and various traits
that met rg > 0.4 or <−0.2 (FDR < 5%) were found for coronary artery disease (rg = 0.76,
p = 3.55 × 10−130), peripheral artery disease (rg = 0.61, p = 1.15 × 10−32), atrial fibrillation
(rg = 0.61, p = 1. 52 × 10−51), hyper-LDL cholesterolemia (rg = 0.54, p = 8.47 × 10−28),
arrhythmia (rg = 0.46, p = 4.34 × 10−09), hypertension (rg = 0.43, p = 1.72 × 10−30), and
current smoking status (rg = 0.41, p = 1.59 × 10−06). These associations indicate the complex
genetic mechanisms underlying MI. Conversely, certain dietary habits, including the use of
olive oil, sesame oil, and perilla oil for cooking (rg = −0.36, p = 1.78 × 10−7), the frequent
consumption of eggs/quail eggs (rg = −0.32, p = 3.53 × 10−7), peanuts, almonds, pine
nuts (rg = −0.31, p = 1.39 × 10−7), and milk (rg = −0.30, p = 5.09 × 10−7), as well as coffee
(rg = −0.25, p = 2.95 × 10−5) and tea intake (rg= −0.23, p = 0.002), had negative associations
with MI risk. This suggests that specific ingredients in our diet could be potential protective
modulators of MI.

3.7. Regulatory Mechanisms of MI-Associated Genetic Variants Through Colocalization Analysis

In the colocalization analysis, to understand the regulatory mechanisms of MI-associated
variants, the eQTL of the genetic variants was divided into four different categories, namely,
no association between the eQTL of the genetic variant and the trait (H0), association with trait
1 only (H1) or trait 2 only (H2), association with both traits with distinct causal variants (H3),
and association with both traits with shared common causal variants (H4) (Figure 3A). A low
p-value of the eQTL value and trait indicated a significant association. We identified 12 distinct
loci and 28 genome-wide significantly associated SNPs (p < 5 × 10−8), as shown in Figure 3B.
The selected SNPs and associated signals are depicted in Figure 3C. Among them, the posterior
probability 3 (PP3) values for rs3864814_storkhead box 1 (STOX1), rs3864814_vacuolar protein
sorting-associated protein 26A (VPS26A), and rs2081208_RP11-744D14.2 are relatively low at
0.00, 0.09, and 0.17, respectively, indicating a lower probability of potentially different causal
variants. In contrast, the PP4 values, all greater than 0.80 (specifically, 1.00, 0.91, and 0.82,
respectively), suggest a high probability of association with both traits with shared causal
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variants. This robust colocalization implies that the same genetic variants are associated with
both traits. The genetic variants have a causal relationship with MI. Functionally annotated
SNPs (rs3864814 and rs208120) were assigned to genes based on genomic location and chro-
matin interactions (Figure 3D). GWAS SNP −log10 p-values corresponding to GTEx, eQTL
−log10 p-values for rs3864814_STOX1 and rs2081208_RP11-744D14.2, and evidence of causal
variation in the posterior probabilities were aligned (Figure 3E). Our analysis highlighted an
independent association signal at rs3864814, colocalizing with two genes: STOX1 and VPS26A.
rs3864814 shares a common causal variant with these genes.
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3.8. MI-Related Gene Score and Expression of Top Genes Across Different Cell Types

We applied our gene expression analysis pipeline to the Heart Cell Atlas v2 scRNA-
seq dataset, which contains 704,296 cells across various regions of the heart, including
the left and right ventricular free walls, left and right atria, apex, septum, sinoatrial node,
and atrioventricular node. Using advanced machine learning techniques for clustering
and visualization, we identified 12 distinct major cardiac cell types in the UMAP plot
(Figure 4A).

In the disease relevance UMAP, atrial and ventricular cardiomyocytes, fibroblasts,
endothelial cells, and mural cells exhibited notably high disease relevance scores, indicating
their significant involvement in myocardial infarction pathology (Figure 4B). Among the
cell types, ventricular cardiomyocytes were the most frequent cell types associated with
higher disease relevance scores, as seen in the violin plot (Figure 4C). Interestingly, atrial
cardiomyocytes displayed the highest average disease relevance score, suggesting a strong
link to the MI phenotype in this cell type.
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Figure 3. Colocalization analysis of SNPs associated with MI in eQTL datasets. (A) Schematic
diagram of colocalization analysis under different hypotheses (H0, H1/H2, H3, H4). A binary vector
representing the number of shared variants in each feature’s region. The value on the y-axis indicates
whether the variation has a causal relationship with the disease. Matching positions of eQTL (red)
and biomarkers (blue) indicate the same causal SNP, while different positions indicate that the causal
SNP of the dataset is different. (B) Combined Manhattan plot showing 12 mapped distinct loci and
28 genome-wide significantly associated SNPs (p < 5 × 10−8), as well as the number of suggestive
SNPs identified in each genome. (C) Data supporting a single variant (PP4 > 80%) affecting both traits
are identified by a red border. High association evidence genes (eQTL ± 1MB) from extended range
analysis are marked as moderate (*) or strong (**). −Log 10 FDR p plots of eQTL representing the
tissue expression of significantly associated SNPs with corresponding posterior probabilities for GTEx.
(D) LocusZoom plots mapping the genomic locations of significantly associated SNPs (rs3864814,
rs2081208) on chromosome 10 and chr16, providing reliable evidence supporting a colocalization
signal on STOX1-VPS26A and RP11-744D4.2. (E) eQTL association plots of colocalization of rs3864814,
rs2081208 with STOX1, RP11-744D4.2 in the corresponding GTEx dataset. GWAS −log 10 p for SNPs
corresponding to GTEx, eQTL −log 10 p for STOX1 and RP11-744D4.2, and evidence of causal
variation in posterior probabilities are shown, respectively. SNPs: single-nucleotide polymorphisms;
MI: myocardial infarction; eQTL: expression quantitative trait loci; PP4: posterior probability 4; FDR:
false discovery rates; STOX1-VPS26A: storkhead box 1_vacuolar protein sorting-associated protein
26A; GTex: Genotype-Tissue Expression.
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Figure 4. UMAP and gene expression analysis of cardiac cell types and disease relevance scores
for MI. (A) UMAP visualization of major cardiac cell types; UMAP plot showing 12 major cardiac
cell types identified from the Heart Cell Atlas v2 dataset. Each color represents a different cell type,
including cardiomyocytes, fibroblasts, endothelial cells, mural cells, and others. (B) UMAP of disease
relevance scores across cardiac cell types. Cells with higher scores are marked by warmer colors,
indicating a stronger association with disease relevance. (C) Violin plot of disease relevance scores
by cell type. The width of each violin corresponds to the frequency of cells with scores in each cell
type. (D) Dot plot of key gene expression across cardiac cell types. The size of each dot represents the
expression level, while the color intensity indicates the relative gene expression in each cell type.

The expression patterns of key genes across different cell types were visualized using
dot plots. Notably, CHD2 and RPTOR showed the highest expression levels in neural cells,
DCC in fibroblasts, CBX2 in mesothelial cells, RNF213 in lymphoid cells, and KIFBP in
myeloid cells (Figure 4D). These gene-specific expression profiles provide further insights
into the molecular mechanisms operating within these diverse cell populations in the
context of MI.

4. Discussion

Metabolic disturbances are a critical aspect of the pathophysiology of MI and are
accompanied by obesity, T2DM, dyslipidemia, and hypertension [40]. T2DM significantly
increases the risk of recurrent cardiovascular events and predisposes individuals to complex
MI presentation with acute left ventricular dysfunction and arrhythmias [41]. Dyslipidemia
and obesity are interrelated conditions that significantly increase the risk of MI [42]. Con-
versely, MI worsens metabolic disruptions, creating a vicious cycle. Unhealthy dietary
patterns and lifestyles are associated with cardiovascular disease, including MI, affect-
ing the metabolic pathways [43]. Therefore, a comparison between the incidence of MI
with and without metabolic disorders is needed to understand the risks associated with
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MI. The present study aimed to identify the genetic factors influencing MI and comorbid
diseases in East Asian populations. Through the genetic correlation, colocalization, and
gene expression analysis of scRNA-seq data related to MI risk, we sought to provide com-
prehensive insights into the genetic architecture of MI. Our findings could facilitate the
development of more targeted preventive and therapeutic strategies for MI risk tailored to
East Asian populations.

There is a complex interaction between genetic predisposition, lifestyle, and pharmaco-
logical treatment that influences MI risk. While our study focused on the PRS, showing the
cumulative genetic impact on MI risk, we acknowledge that medication use, particularly
statins for hyperlipidemia and antihypertensive agents, could modify these outcomes. We
found that the PRS played a crucial role in understanding MI pathogenesis, interacting
with dietary fat intake, alcohol consumption, and smoking habits. The results demonstrate
how genetic predispositions influence MI susceptibility under different lifestyle habits,
though these associations may be modulated by pharmacological interventions. Notably,
individuals with a high PRS face increased MI risk, particularly when accompanied with
low fat intake, high alcohol consumption, and current smoking. Understanding these
complex interactions between genetics, lifestyle factors, and medication use enhances our
knowledge of MI pathogenesis and aids in developing targeted interventions for suscepti-
ble populations. This aligns with previous studies that demonstrated that hyperglycemia
and dyslipidemia are associated with PRS, interacting with low fat intake, high alcohol
consumption, and current smoking [19]. However, future research should incorporate
detailed medication data, especially regarding anti-dyslipidemic medication such as statins
and anti-hypertensive medication, to better understand how pharmacological treatments
might modify these genetic and lifestyle interactions.

In the present study, the genetic correlation analysis revealed significant associations
between MI and metabolic disturbance. These findings partly clarify the complex role
of genetics in MI susceptibility and its interaction with related cardiovascular conditions.
Notably, specific dietary habits, such as using certain cooking oils like olive oil, have
demonstrated a negative genetic correlation coefficient (rg = −0.364) with MI risk, sug-
gesting a potential protective effect against MI. Moreover, the consumption of beneficial
oils rich in omega-3 and omega-6 fatty acids has been linked to various cardiovascular
benefits, including anti-inflammatory, vasodilatory, anti-arrhythmic, antithrombotic, an-
tioxidant, and anti-atherogenic effects, which could potentially lower the incidence of
MI [44]. Dietary practices have been shown to influence MI susceptibility, with genetic
interactions further influencing MI risk [45]. Understanding these genetic associations
could help develop personalized prevention and intervention strategies for mitigating MI
risk in susceptible individuals.

The colocalization analysis revealed a genetic landscape centered on rs3864814, demon-
strating convergence with STOX1 and VPS26A. While less established than the angiotensin-
converting enzyme (ACE) and nitric oxide synthase (NOS) isoforms, these genes show
critical links to MI pathogenesis through intricate interactions with ACE and NOS. STOX1,
a long non-coding RNA, is pivotal in vascular remodeling due to modulating vascular
smooth muscle cell (VSMC) phenotypic transformation [46]. Its interactions with ACE
suggest potential mechanisms for regulating blood pressure and cardiac function [47,48].
STOX1 influences VSMC plasticity through molecular pathways involving inflammatory
signaling and oxidative stress responses [49], with ACE inhibition potentially preventing
vascular restenosis. VPS26A, a retromer complex component, demonstrates significance in
cardiovascular health through interactions with NOS isoforms (neuronal nNOS, inducible
iNOS, and endothelial eNOS) [50,51]. Its involvement in mitochondrial dynamics and
cellular energy metabolism provides insights into the mechanisms of ischemic events [52],
highlighting potential roles in neuronal and cardiovascular processes.

The eQTL and colocalization analyses provide robust evidence for the functional
relevance of these genetic variants. The identified rs3864814 of KIFBP may serve as a
crucial genetic modifier of MI susceptibility, offering a mechanistic link between genetic
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variation and molecular dysfunction. These findings advance our understanding of MI’s
molecular mechanisms by highlighting STOX1 and VPS26A as potential genetic modulators,
suggesting promising avenues for future therapeutic interventions.

Previous studies have highlighted the pivotal role of cardiomyocytes, particularly
those responsible for cardiac contraction, in the context of MI and ischemic injury [53].
These studies have identified key gene expression patterns that define the response of
cardiomyocytes to ischemic stress, suggesting their central involvement in both the initia-
tion of MI and the progression of injury [54]. Consistent with these findings, our analysis
revealed that ventricular and atrial cardiomyocytes exhibit high disease relevance scores,
confirming their significant role in the MI phenotype. The elevated expression of disease-
associated genes in these cells further supports their contribution to the pathophysiology of
MI, particularly in the regions of the heart responsible for contractile function. Endothelial
cells, known for their critical role in maintaining vascular homeostasis [55], have also been
shown to be essential players in MI, particularly in post-infarct remodeling and inflam-
mation [56]. Our study corroborates these findings, with endothelial cells displaying high
disease relevance scores, reinforcing the notion that these cells are not only integral to vascu-
lar stability, but also actively contribute to the heart’s response to ischemic damage. Post-MI,
endothelial cells are involved in neovascularization and the modulation of the inflamma-
tory response, which are crucial for the healing and repair of the infarcted myocardium.
These observations shed light on the complex molecular mechanisms underlying MI and
suggest potential therapeutic targets. Moreover, in alignment with previous research, our
study demonstrates that the candidate gene CHD2 exhibits significant and widespread
expression across heart-related cell types [57]. The prominence of CHD2 in neural and
cardiac cells suggests that it may influence the interplay between electrical signaling and
structural remodeling, both of which are vital in the progression of MI. Similarly, RPTOR,
DCC, CBX2, and RNF213 are key players in the disease’s molecular landscape.

5. Strengths and Limitations

This study offers several key strengths that enhance our understanding of MI. First,
our comprehensive approach integrates genetic correlation, colocalization analysis, and cell-
specific gene expression data, providing a comprehensive view of MI’s genetic basis. This
integration allows a more detailed understanding of the complex interplay between genetics
and cellular function in MI risk. Second, the interactions between polygenic risk scores
and lifestyle factors offer valuable insights for personalized prevention strategies. Finally,
gene expression patterns in specific cell types, particularly cardiomyocytes and endothelial
cells, identify potential cellular targets for future therapeutic interventions. These strengths
collectively contribute to advancing personalized approaches in cardiovascular medicine.

However, several limitations should be acknowledged. First, the PRS was derived
from GWASs of East Asian populations. The applicability and predictive performance of
this PRS in other ethnic populations might be limited due to differences in genetic archi-
tecture and LD patterns across diverse populations. Second, although the colocalization
analysis revealed the potential functional significance of MI-associated variants, it relied
on assumptions and annotations [58]. Incomplete or underpowered datasets could lead to
underestimation or missed associations, affecting the interpretation of the results. Third,
lifestyle data, especially dietary intake, were self-reported and subject to potential biases
and inaccuracies. However, it is worth noting that dietary intake was measured using an
SQFFQ reflecting the participants’ diet patterns and was validated with three-day dietary
records [59]. Fourth, while our study included both male and female participants, the
analysis did not specifically examine gender-specific differences in genetic risk and lifestyle
interactions. Given the well-documented differences in MI presentation, risk factors, and
outcomes between men and women, and across age groups, future studies should consider
gender-stratified as well as age-based analyses to better understand how PRS and lifestyle
interactions may vary by gender and age. Fifth, while medication status was identified as
a factor of metabolic disturbance (T2DM, hypertension, and dyslipidemia), its potential
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moderating effect on genetic risk was not fully explored. Future studies should implement
more nuanced approaches to assess how specific pharmacological interventions interact
with genetic predispositions to influence MI risk. Furthermore, while the MI-related gene
enrichment and gene set analysis of scRNA-seq datasets elucidated cellular heterogeneity
and pathways [60], the limitations of scRNA-seq, such as biases and incomplete capture of
myocardial complexity, should be acknowledged. Experimental validation is needed to
confirm these findings.

6. Clinical Implications

The findings of this study have significant clinical implications for the prevention and
management of MI. The PRS developed in our research offers a more precise and dynamic
tool for identifying individuals at high genetic risk, enabling earlier and more targeted
preventive interventions. By integrating comprehensive genetic markers and advanced
statistical modeling, our PRS demonstrates enhanced predictive accuracy compared to
traditional risk assessment methods. Our results on gene–environment interactions provide
nuanced insights, suggesting that tailored lifestyle recommendations may be particularly
beneficial for individuals with high genetic susceptibility. Specifically, we observed that
targeted interventions such as moderate fat intake, controlled alcohol consumption, and
smoking cessation could potentially modulate genetic risk factors. These findings un-
derscore the critical importance of personalized prevention strategies, highlighting that
individuals’ unique genetic profiles should be considered. Identifying cell-specific gene
expressions, particularly in cardiomyocytes and endothelial cells, illuminates potential
novel targets for pharmaceutical intervention. Genes like STOX1 and VPS26A emerge
as promising candidates warranting further mechanistic exploration. Our transcriptomic
analysis revealed intricate regulatory networks that could potentially be manipulated to
mitigate cardiovascular risk, suggesting a paradigm shift from generic to precision-based
therapeutic approaches. Moreover, our comprehensive analysis of the genetic correlation
between MI and metabolic syndrome-related traits provides a more holistic understand-
ing of cardiovascular pathogenesis. By elucidating shared genetic architectures, we can
develop more integrated and comprehensive prevention strategies that address underlying
molecular mechanisms rather than isolated clinical manifestations.

These translational insights could significantly transform clinical practice by enabling
improved patient stratification in clinical trials and more refined treatment selection. The
potential to enhance both preventive and therapeutic interventions through genetic pro-
filing represents a crucial advancement in cardiovascular medicine. Our approach not
only offers a more nuanced risk assessment, but also provides a framework for developing
individualized intervention protocols. The methodological innovations and biological
insights presented in this study collectively suggest a transformative shift towards more
personalized and precise approaches in cardiovascular medicine. By bridging genetic
epidemiology, molecular biology, and clinical practice, we offer a comprehensive strategy
that could substantially improve MI prevention and treatment outcomes. Critically, while
our findings are promising, they also highlight the complexity of cardiovascular disease
etiology and the need for continued interdisciplinary research. Future studies should
focus on validating these genetic markers across diverse populations, investigating their
functional implications, and developing targeted therapeutic strategies.

7. Conclusions

Our comprehensive study of MI risk integrates genetic, physiological, and environ-
mental factors, revealing the complex interactions between the cardiac cells that underlie MI
pathogenesis. We identified significant MI-risk genes and genetic interactions influencing
disease susceptibility. Individuals with a high PRS showed adverse physiological profiles
and up to threefold increased MI risk, underscoring the importance of genetic predispo-
sition. Importantly, we found that lifestyle modifications, including a moderate intake
of dietary fat rich in heart-healthy oils (>15 energy %), limited alcohol consumption, and
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smoking cessation, can mitigate MI risk, especially in high-PRS individuals. These findings
enhance our understanding of MI determinants and offer insights into potential therapeutic
targets and personalized interventions, particularly for Asian populations. Future research
should validate these results across diverse ethnic groups and further explore the interplay
between genetics, physiology, and environmental factors in MI risk. Our study contributes
to developing more effective tailored prevention and treatment strategies for this complex
cardiovascular disease.
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