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Abstract: The loss of functional beta-cell mass in diabetes is directly linked to the development of
diabetic complications. Although dietary flavonoids have demonstrated antidiabetic properties, their
potential effects on pancreatic beta-cell preservation and their synergistic benefits with antidiabetic
drugs remain underexplored. We have developed a potential functional food enriched in flavonoids
by combining cocoa powder and carob flour (CCB), which has shown antidiabetic effects. Here, we
investigated the ability of the CCB, alone or in combination with metformin, to preserve pancreatic
beta cells in an established diabetic context and their potential synergistic effect. Zucker diabetic fatty
rats (ZDF) were fed a CCB-rich diet or a control diet, with or without metformin, for 12 weeks. Mark-
ers of pancreatic oxidative stress and inflammation, as well as relative beta-cell mass and beta-cell
apoptosis, were analyzed. Results demonstrated that CCB feeding counteracted pancreatic oxidative
stress by enhancing the antioxidant defense and reducing reactive oxygen species. Moreover, the CCB
suppressed islet inflammation by preventing macrophage infiltration into islets and overproduction
of pro-inflammatory cytokines, along with the inactivation of nuclear factor kappa B (NFκB). As
a result, the CCB supplementation prevented beta-cell apoptosis and the loss of beta cells in ZDF
diabetic animals. The observed additive effect when combining the CCB with metformin underscores
its potential as an adjuvant therapy to delay the progression of type 2 diabetes.

Keywords: type 2 diabetes; pancreatic beta cells; macrophages; oxidative stress; inflammation; flavonoids

1. Introduction

Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by dysregulation
of glucose homeostasis leading to hyperglycemia. This condition is associated with a
gradual decline in the ability to produce and release insulin, frequently on the background
of insulin resistance [1]. In this context, pancreatic beta cells, which are responsible for
insulin secretion, play a central role in maintaining glucose homeostasis [2] but their
progressive deterioration and loss, exacerbated by prolonged hyperglycemia, contribute
significantly to the development of diabetes and its associated complications [3]. Therefore,
the preservation of beta-cell function and mass is fundamental for controlling T2D, restoring
proper glucose control, and improving metabolic regulation.

Oxidative stress induced by prolonged hyperglycemia is one of the factors contributing
to the destruction of beta cells in diabetes [4]. Moreover, the intrinsically low expression of
antioxidant enzymes in pancreatic islets exacerbates the impact of oxidative stress, resulting
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in consequences for beta cells [5,6]. Similarly, pancreatic inflammation, frequently observed
in individuals with obesity and/or T2D [7,8], also contributes to the progressive loss of beta-
cell function. The increase in macrophage accumulation in the islets during T2D provides
signals that primarily drive beta-cell hyperplasia, but also increase the production of
inflammatory cytokines, further accelerating beta-cell damage [9]. However, there is limited
evidence supporting the beneficial effects of existing antidiabetic therapies in augmenting
intracellular antioxidant defenses or reducing inflammation to ameliorate beta-cell damage
in T2D. In the context of T2D therapeutics, metformin, the primary glucose-lowering agent,
has been suggested to be effective in maintaining beta-cell function. Its potential efficacy
seems to be more pronounced when used alongside other pharmacological therapies [10,11].
Interestingly, an increasing body of literature suggests that combining metformin with
natural bioactive compounds may provide enhanced protection against diabetes-related
complications [12,13]. Nevertheless, the specific impact of metformin in combination
with dietary natural bioactive molecules on the preservation of beta-cell mass remains
poorly studied.

Polyphenols are food-derived compounds that have attracted significant attention in
recent years due to their demonstrated antioxidant, anti-inflammatory, and antidiabetic
properties [14,15]. Cocoa is recognized as one of the most plentiful sources of dietary
polyphenols, mainly flavonoids, known for their beneficial effects against T2D and its
related complications [16]. In particular, cocoa flavonoids have been demonstrated to
protect the integrity of pancreatic beta cells against oxidative damage both in vitro [17] and
in vivo in young prediabetic rats [18]. Likewise, carob, a Mediterranean legume with a
high flavonoid content, has also demonstrated positive effects in the context of T2D [19].
Accordingly, we have developed a potential functional food, rich in high-molecular-weight
polyphenols, combining cocoa powder and carob flour [20]. Our recent findings have
demonstrated the effectiveness of this cocoa–carob blend (CCB) in combating T2D and
shown its cardioprotective effects [13]. These results were obtained using Zucker diabetic
fatty (ZDF) rats, a well-recognized preclinical model of T2D. Within the frame of this
previous study, herein, we have investigated whether the antidiabetic properties of the
CCB extend its beneficial impact on pancreatic beta cells in an established diabetic milieu.
Furthermore, we explored the potential additive effect of this dietary supplement when
administered in combination with metformin.

2. Materials and Methods
2.1. Cocoa–Carob Blend Diet

The cocoa–carob blend (CCB) consisted of a mixture of cocoa powder generously
provided by Idilia (Idilia S.L., Barcelona, Spain) and carob flour (sourced from Casa Ruiz
Granel Selecto S.L., Madrid, Spain) in a 60:40 ratio. This product is notable for its high
content of flavonoid-type polyphenols (16.7 g/100 g). More detailed information regarding
the composition of the CCB is provided elsewhere [20]. The CCB-enriched diet (10%) was
prepared by incorporating 100 g/kg of the CCB into the standard diet (AIN-93G diet), and
both the control and CCB diets were adjusted to be isoenergetic.

2.2. Animals and Experimental Design

This study is an extension of a prior investigation aimed at exploring the cardiopro-
tective effects of CCB supplementation in Zucker diabetic fatty (ZDF) rats, a preclinical
model of T2D. The metabolic characteristics and the pathophysiology of the ZDF rats are
very similar to those of humans with T2D, which makes this model highly suitable for the
evaluation of the consequences of a CCB-rich diet on pancreatic beta cells in a diabetic
context. We have chosen to use this animal model because it is not possible to carry out such
experiments in humans with T2D. Detailed descriptions of the animals and experimental
designs have been previously documented [13]. Briefly, male Zucker diabetic fatty (ZDF)
rats and their corresponding lean Zucker (ZL) controls were used. Animals were purchased
from Charles River Laboratories (L’arbresle, France) at 11 weeks of age and were acclimated
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under standard controlled conditions for a week. The ZDF rats were randomly assorted
in the following groups of rats: ZDF Group: Zucker diabetic fatty rats that received the
standard diet; ZDF (M) Group: diabetic rats that received the standard diet and metformin
(300 mg/kg/day); ZDF (CB) Group: diabetic rats that received a 10% CCB supplementation
in their diet; ZDF (CB + M) Group: diabetic rats that received both a 10% CCB supplemen-
tation in their diet and metformin (300 mg/kg/day). The ZL non-diabetic group received
the standard diet (ZL). Animals had ad libitum access to water and food throughout the
12-week study period. At 24 weeks of age, the animals were fasted overnight and then
euthanized. Pancreases were removed and stored under different conditions depending
on the analyses to be performed. A portion of the pancreas was fixed overnight in 4%
p-formaldehyde (PFA) in 0.1 M phosphate buffer (pH 7.4) and embedded in paraffin for
histological and immunohistochemical analyses. Another part of the pancreas was frozen
at −80 ◦C for subsequent analyses.

All experiments were conducted in accordance with European standards and com-
munity legislation [21] and Spanish regulations [22] and with the approval of the Com-
mittee on Animal Care and Use for Experimental Purposes of the Community of Madrid
(PROEX 079/19).

2.3. Biochemical Determinations

Blood glucose levels were measured using an Accounted Glucose Analyzer (LifeScan
España, Madrid, Spain). To analyze serum insulin and HbA1c levels, commercial kits were
employed (Rat Insulin, Mercodia, Uppsala, Sweden; HbA1c Kit Spinreact, BioAnalitica,
Madrid, Spain). Fasting glycemia and insulinemia were employed to calculate the homeo-
static model assessment indices for insulin resistance (HOMA-IR) and secretion (HOMA-B).

2.4. Pancreas Homogenates

Frozen pancreas samples were homogenized at a 1:10 (w/v) ratio in extraction buffer [18].
Subsequently, they were centrifuged at 14,000× g for 60 min, and the supernatants were
collected. The protein content in the homogenates was determined using the Bio-Rad
protein assay (Bio-Rad, Madrid, Spain), following the manufacturer’s instructions.

2.5. Determination of Pancreatic Insulin Content

The total insulin content of the pancreas was determined as previously described [18].
Glands were minced and disrupted ultrasonically in acid ethanol (1.5 mL of 12 M HCl/l00 mL
ethanol) in a 10 mL/g pancreas ratio, extracted overnight at 4 ◦C and centrifuged. After
that, insulin was determined in the supernatant using an ELISA kit (Rat Insulin, Mercodia,
Uppsala, Sweden).

2.6. Reactive Oxygen Species (ROS) Determination

ROS were quantified using a fluorometric assay based on the oxidation of reduced
dichlorofluorescein (DCFH) to oxidized dichlorofluorescein (DCF) (Sigma-Aldrich) by
cellular oxidants, resulting in fluorescence emission [23]. Pancreatic homogenates (20 µg
of protein) were diluted with Locke’s buffer and incubated with 5 mM DCFH for 30 min
in the dark. Fluorescence was measured at an excitation wavelength of 485 nm and an
emission wavelength of 530 nm.

2.7. Determination of Carbonyl Group Content

Protein oxidation in pancreatic homogenates was measured as the content of car-
bonyl groups present in the samples [23]. Each pancreas sample (500 µg of protein) was
derivatized with 0.2% 2,4-dinitrophenylhydrazine (DNPH) in 2 M HCl, with a parallel
blank treated only with 2 M HCl. Proteins were precipitated using 20% trichloroacetic acid
and centrifuged for 5 min at 10,500 rpm. The precipitates were washed twice with ethyl
acetate:ethanol (1:1, v/v) and resuspended in 6 M guanidine. Absorbance was measured at
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a wavelength of 360 nm, with each sample corrected using its respective blank. Results are
expressed as nmol/mg of protein, using a coefficient of extinction of 22,000 nmol L−1 cm−1.

2.8. Determination of Glutathione (GSH) Levels

The concentration of GSH was assessed using a fluorometric assay based on the
reaction of GSH with o-phthalaldehyde (Sigma-Aldrich) at pH 8.0 [23]. Pancreas samples
(300 µg of protein) were mixed in 50 mM phosphate buffer at pH 7.0 and precipitated with
trichloroacetic acid. They were then centrifuged at 1400 rpm for 30 min. Fluorescence
was measured at 460 nm emission and 340 nm excitation in a microplate reader (Bio-Tek,
Winooski, VT, USA). The results were interpolated on a GSH standard curve (5–1000 ng).

2.9. Determination of Glutathione Peroxidase (GPx) and Glutathione Reductase (GR) Activity

To determine the activity of the antioxidant enzymes GPx and GR, pancreas samples
(400 µg of protein) were mixed in Tris buffer 0.25 M, sucrose 0.2 M, and DTT buffer
5 mM at pH 7.4, and then centrifuged at 3000× g for 15 min. GPx activity is based on
the oxidation of GSH by GPx (Sigma-Aldrich) using tert-butylhydroperoxide (t-BOOH,
Sigma-Aldrich, Madrid, Spain) as a substrate, coupled to the disappearance of nicotine
adenine dinucleotide phosphate reduced salt (NADPH, Sigma Aldrich, Madrid, Spain) by
GR. GR activity was analyzed by monitoring the oxidation of NADPH, which is used in
the reduction of GSSG [23].

2.10. Western Blot Analysis

Pancreas samples were lysed at 4 ◦C in a lysis buffer. Afterward, supernatants were
collected, and protein concentration was determined. These protein samples were then
aliquoted and stored at −80 ◦C until they were utilized for Western blot analyses. SDS-
polyacrylamide gel electrophoresis was employed to separate equal amounts of proteins,
which were subsequently transferred onto polyvinylidene difluoride filters (Bio-Rad).
Next, the membranes were probed with anti-TNF-α (sc-52746, Santa Cruz Biotechnol-
ogy), anti-IL-6 (sc-57315, Santa Cruz Biotechnology, Quimigen, Madrid, Spain), anti-p65
nuclear factor kappa B (NFκB) (8242S, Cell Signaling, Madrid, Spain) and anti-phospho
(Ser 536)-p65 NFκB (3033, Cell Signaling, Madrid, Spain), followed by incubation with
peroxide-conjugated anti-rabbit (A6154, Sigma-Aldrich, Madrid, Spain) or anti-mouse
(A4416, Sigma-Aldrich, Madrid, Spain) immunoglobulin. Protein bands were visualized us-
ing the SuperSignal™ West Pico PLUS Chemiluminescent Substrate (34580, ThermoFisher
Scientific, Madrid, Spain) in an Imager2Imager CHEMI Premium (VWR). Band densitome-
try was quantified using ImageJ Software (v1.52a, National Institute of Health, Bethesda,
MD, USA). To ensure the Western blot’s normalization, β-actin was employed.

2.11. Activity of Caspase-3

The activation of caspase-3 was assessed following a previously established proto-
col [18]. In brief, pancreatic tissues were lysed and 50 µg of protein for each condition were
mixed with 20 mM HEPES (pH 7), 10% glycerol, 2 mM DTT, and 20 µM Ac-DEV-DAMC as
the substrate. Enzymatic activity was determined by measuring fluorescence (excitation
wavelength 380 nm and emission wavelength 440 nm).

2.12. Histological and Immunohistochemical Analysis

Pancreas samples embedded in paraffin (Panreac, Madrid, Spain) were cut into serial
sections with a thickness of 5 µm using a microtome (Leica RM2125RT, Leica Biosystem,
Madrid, Spain) and mounted on glass slides. For immunohistochemical analysis, serial
sections of the samples were blocked with goat serum (S-1000, Vector Laboratories, Madrid,
Spain) and incubated with a primary mouse antibody against insulin (I2018, Sigma-Aldrich)
overnight at 4 ◦C. Subsequently, a secondary goat anti-mouse antibody conjugated with
peroxidase (A4416, Sigma-Aldrich, Madrid, Spain) was added, and the sections were
finally developed with DAB substrate (SK-4100, Palex Medical, Madrid, Spain) and coun-
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terstained with Harris hematoxylin (HHS32-1L). For fibrosis quantification, serial sections
from samples of each condition were subjected to Masson’s trichrome staining (HT15-1KT,
Sigma-Aldrich, Madrid, Spain), which stains fibrotic areas in blue. Images of the sections
were acquired using a digital camera connected to a microscope (NIKON Eclipse 80i, Izasa,
Barcelona, Spain). The percentage of beta-cell fractional area (brown) was analyzed using
ImageJ v1.8 software and is expressed relative to the total pancreatic area measured from
the sections of each condition. At least 30 sections per condition were analyzed. The
percentage of fibrotic area was analyzed using the same software and is expressed as the
percentage of collagen area (blue) relative to the total pancreatic area measured from the
sections of each condition. At least 4 sections per animal and per group were analyzed.

Beta-cell apoptosis was estimated using the TUNEL method (ApopTag Peroxidase In
Situ Apoptosis Detection Kit, Millipore, Madrid, Spain) coupled to insulin immunostaining,
which was developed after incubation with the alkaline phosphatase secondary antibody
with an alkaline substrate kit (SK-5100, Palex Medical, Madrid, Spain). The tissue was then
counterstained with Harris hematoxylin. The beta-cell apoptosis rate is expressed as the
percentage of apoptotic beta cells. At least 1500 beta cells were counted per pancreas. For
cluster of differentiation 68-positive (CD68+) cell staining, rabbit anti-rat CD68 (ab125212,
Abcam, Madrid, Spain) antibody was used coupled to insulin immunostaining as described
for the TUNEL assay. The number of CD68+ cells was counted and is expressed per mm2

of total pancreatic surface area or as the number of CD68+ cells per islet distinguishing
between islet peripheric localization, defined as CD68+ cells around the periphery of the
islet, and intra-islet distribution, when CD68+ cells were located within the islet among
the endocrine cells. Clusters of 6 or more beta cells were considered islets. A minimum of
60 islets were analyzed per animal.

2.13. Statistical Analysis

Data underwent statistical analysis using GraphPad Prism v8.2.1 software (GraphPad
Software, Boston, MA, USA). The normality of the distribution was assessed through the
Shapiro–Wilk test, and data were analyzed using one-way analysis of variance (ANOVA).
Significant differences among the means of each condition were identified using the
Tukey post-hoc test, with a significance level of 95% (p < 0.05). Results are expressed
as mean ± standard error of the mean (SEM).

3. Results
3.1. Biochemical Characteristics of Diabetic Animals

At the study’s outset, ZDF animals exhibited a significantly higher body weight
compared to ZL animals (340.3 ± 12.1 vs. 268.4 ± 9.8 g, respectively; p < 0.05), confirming
their obese state. Additionally, at this initial time point, ZDF animals were diabetic, as
evidenced by significantly elevated fasting glycemia when compared to the ZL group
(182.2 ± 12.1 vs. 94.3 ± 8.1 mg/dL, respectively; p < 0.05).

Administration of the CCB, metformin, or both together over 12 weeks significantly
reduced glucose, insulin, and glycosylated hemoglobin (HbA1c) levels, as well as decreased
insulin resistance (HOMA-IR) and increased pancreatic function (HOMA-B) in ZDF animals
(Supplementary Table S1). Notably, the combination of the CCB with metformin achieved
values for both fasting glucose and HbA1c similar to those observed in the non-diabetic
ZL group [13]. Altogether, these results indicated that the CCB diet effectively improved
glucose homeostasis in ZDF rats, with the combined treatment of the CCB and metformin
exhibiting even more robust protective effects than the other treatments.

3.2. Effect of the CCB and Metformin on Oxidative Stress Markers in the Pancreas of Diabetic Rats

In the context of T2D, oxidative stress induced by hyperglycemia plays a pivotal role
in beta-cell dysfunction and apoptosis. Therefore, our initial focus was on investigating the
oxidative state of the pancreas in diabetic animals. As illustrated in Figure 1a, a significant
increase in ROS generation was observed in the pancreas of untreated diabetic rats (ZDF).
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However, treatment with metformin and the CCB diet led to a substantial reduction in
ROS levels, effectively restoring them to levels comparable to those in non-diabetic ZL rats.
Furthermore, we observed evidence of oxidative damage, as indicated by elevated protein
carbonyl levels, in the pancreas of untreated diabetic rats (ZDF) but not in rats treated with
metformin, the CCB, or the combination of both (Figure 1b). Likewise, the levels of the
antioxidant molecule GSH were significantly reduced in ZDF rats compared to non-diabetic
ZL rats, but treatment with metformin and the CCB significantly increased GSH levels,
with a further improvement seen with the combination of both (Figure 1c). Regarding
antioxidant enzymes, a notable increase in the activity of GPx was observed in all treated
diabetic groups, with the most significant effect in ZDF rats fed the CCB-enriched diet
(Figure 1d). The activity of the GR enzyme was significantly lower in ZDF rats, but not in
other treated conditions, with similar levels to those found in the non-diabetic ZL group
(Figure 1e). Collectively, these findings provide strong evidence that the CCB-enriched diet
has the potential to enhance the activity of antioxidant defenses in the pancreas, particularly
GPx, and reduce the oxidative stress induced by the diabetic condition.
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Figure 1. Effect of the CCB, metformin, and their combination on pancreatic oxidative stress. Per-
centage levels of ROS (a), carbonyl groups (b), GSH (c), GPx activity (d), and GR activity (e) relative
to the control condition. Values are expressed as mean ± SEM of n = 6–8 animals. * p < 0.05 vs. ZL;
# p < 0.05 vs. ZDF; $ p < 0.05 ZDF (CCB + M) vs. ZDF (M); & p < 0.05 ZDF (CCB + M) vs. ZDF (CCB).
ZL: Zucker lean; ZDF: Zucker diabetic rats; ZDF (M): Zucker diabetic rats treated with metformin;
ZDF (CCB): Zucker diabetic rats fed with a CCB-rich diet; ZDF (CCB + M): Zucker diabetic rats
treated with metformin and fed with a CCB-rich diet.

3.3. Effect of the CCB and Metformin on Inflammatory and Apoptotic Markers in the Pancreas of
Diabetic Rats

The pro-oxidant environment in the diabetic pancreas can also instigate inflammatory
responses by activating the nuclear factor kappa B (NF-κB) signaling pathway, resulting in
the upregulation of specific pro-inflammatory cytokines and pancreatic apoptosis. Conse-
quently, our next step was to examine the impact of metformin and the CCB on markers
of pancreatic inflammation (IL-6, TNF-α, and p-p65) and apoptosis (caspase-3 activity).
Figure 2a,b, show a marked increase in the levels of IL-6 and TNF-α in the pancreas of
non-treated ZDF rats. Both metformin and the CCB-rich diet were able to significantly
decrease the levels of pro-inflammatory cytokines with a further significant reduction by
their combination. Accordingly, treatment of ZDF rats with metformin and the CCB diet
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was also able to significantly diminish the activation of the NF-κB cascade by decreasing
the levels of the phosphorylated p65 subunit (Figure 2c). Similarly, the activity of caspase-3
(Figure 2d), which is involved in the final steps of cell apoptosis, was significantly elevated
in the pancreas of ZDF rats. However, CCB supplementation and metformin treatment
partially prevented this increase. More importantly, the combination of the CCB with
metformin totally avoided the increase in caspase-3 activity in the pancreas of diabetic
animals. Taken together, these results provide strong evidence for the ability of the CCB to
attenuate inflammation and apoptosis in the pancreas in a diabetic environment.
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Figure 2. Effect of the CCB, metformin, and their combination on pancreatic inflammation and
apoptosis. Representative Western blot analyses and levels of (a) IL-6, (b) TNF-α, and (c) P(Ser536)-
p65 NF-κB in pancreatic tissues. Three independent experiments with two samples in each Western
blot analysis were performed. (d) Fluorescent measurement of caspase-3 activity in pancreatic tissues.
Values are expressed as mean ± SEM of n = 6–8 animals. * p < 0.05 vs. ZL; # p < 0.05 vs. ZDF;
$ p < 0.05 ZDF (CCB + M) vs. ZDF (M); & p < 0.05 ZDF (CCB + M) vs. ZDF (CCB). ZL: Zucker lean;
ZDF: Zucker diabetic rats; ZDF (M): Zucker diabetic rats treated with metformin; ZDF (CCB): Zucker
diabetic rats fed with a CCB-rich diet; ZDF (CCB + M): Zucker diabetic rats treated with metformin
and fed with a CCB-rich diet.

3.4. Effect of the CCB and Metformin on Islet-Infiltrating Macrophages in the Pancreas of
Diabetic Rats

Macrophages are recognized as the primary immune cells involved in islet inflam-
mation in both rodents and individuals with T2D. In fact, the infiltration of macrophages
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into islets during diabetes appears to mediate beta-cell destruction by secreting pro-
inflammatory cytokines in close proximity to islet cells. For this reason, the presence
of macrophages in the pancreas was investigated using CD68 staining (Figure 3a–c). In the
lean condition, islet macrophages were mainly localized in the periphery, surrounding the
islets. In contrast, the increased number of macrophages observed in non-treated ZDF pan-
creases (Figure 3b) was linked to a shift in the distribution of islet-associated macrophages
with higher localization of CD68+ cells into the islets (Figure 3c,d). Metformin treatment of
diabetic rats could not reduce the total number of pancreatic macrophages but substantially
decreased the number of islets infiltrated with CD68+ cells. However, administration of
the CCB-enriched diet, alone or in combination with metformin, normalized the number
and distribution of macrophages. Collectively, these findings point out the capacity of the
CCB to reduce islet macrophage infiltration and attenuate pancreatic inflammation in a
diabetic milieu.

3.5. Effect of the CCB and Metformin on Beta-Cell Damage

To further confirm that the antioxidant and anti-inflammatory properties of the CCB
contribute to protect pancreatic beta cells in diabetic rats, we conducted morphometrical
analyses of islets in both lean and diabetic Zucker rats. As depicted in Figure 4a, islets
in ZDF rats exhibited a loss of structural integrity compared to those in the control ZL
rats. They showed increased extent and irregularity in their borders, with numerous
extensions into the exocrine tissue and a heterogeneous staining pattern characterized
by intense or weak insulin immunostaining of individual beta cells. Additionally, the
sections analyzed in this condition revealed important peripancreatic fat accumulation and
infiltrations of adipose cells into the pancreatic tissue, which could contribute to a local
lipotoxicity. Moreover, the pancreas of ZDF rats exhibited a significantly higher percentage
of fibrotic tissue compared to the healthy control group (Figure 4b). Treatment of diabetic
rats with metformin alone failed to reverse the development of fibrosis. However, the
administration of the CCB to ZDF rats for 12 weeks resulted in a significant reduction
in the area of pancreatic fibrosis compared to untreated diabetic rats. Surprisingly, this
positive effect on overall fibrosis was not found when combining the dietary treatment
with metformin.

Consistent with these diabetes-induced structural changes, ZDF rats had significantly
reduced beta-cell fractional area compared to non-diabetic ZL rats (Figure 4c). Nevertheless,
all treatments tested resulted in a significant restoration of fractional beta cells compared
to untreated diabetic rats (ZDF), reaching levels similar to those of the control group (ZL).
Significantly, the CCB-enriched diet exerted the most pronounced effect. It is noteworthy
that in the ZDF (CCB) and ZDF (CCB + M) groups, numerous clusters of two to six beta cells
distributed throughout the pancreatic tissue were observed, indicating an active process of
regeneration. This is consistent with the significantly reduced total insulin content found in
the pancreas of ZDF rats that was completely avoided in all treatments (Figure 4d). These
results highlight that CCB supplementation prevents beta-cell loss in ZDF rats.

To provide additional confirmation regarding the involvement of apoptosis in the loss
of beta cells in Zucker diabetic animals, we specifically measured the apoptotic nuclei in
beta cells in samples from the different groups by combining TUNEL staining and insulin
detection. As illustrated in Figure 5a,b, positive TUNEL staining signals in the pancreatic
islets of ZDF rats were prominently present, while these signals were scarcely detectable in
the pancreatic islets of control ZL rats, pointing to a substantial increase in apoptotic beta
cells in the pancreatic islets of ZDF diabetic animals. However, treatment with metformin
or the CCB diet reduced the apoptotic effect, and the combined administration of both
completely prevented it (Figure 5a,b). These results highlight the effectiveness of the CCB-
enriched diet, alone or in combination with metformin, in preventing beta-cell apoptosis
and thereby reducing the loss of beta cells in ZDF rats.
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Scale bar = 50 µm. (b) Number of CD68+ cells expressed per mm2 of total pancreatic surface area.
(c) Number of peripheric CD68+ cells per islet. (d) Number of infiltrated CD68+ cells per islet. In the
images, intra-islet macrophages are marked with stars, peripheral macrophages are marked with a
closed arrowhead, and exocrine macrophages are marked with an open arrowhead. In the graphs,
values are expressed as mean ± SEM of n = 6–8 animals. * p < 0.05 vs. ZL; # p < 0.05 vs. ZDF;
$ p < 0.05 ZDF (CCB + M) vs. ZDF (M). ZL: Zucker lean; ZDF: Zucker diabetic rats; ZDF (M): Zucker
diabetic rats treated with metformin; ZDF (CCB): Zucker diabetic rats fed with a CCB-rich diet; ZDF
(CCB + M): Zucker diabetic rats treated with metformin and fed with a CCB-rich diet.
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Figure 4. Effect of the CCB, metformin, and their combination on fractional beta cells. (a) Representa-
tive pancreatic tissue sections stained with insulin (brown) and hematoxylin (scale bars: 200 µm).
(b) Quantification of fibrotic area expressed as the percentage of total pancreatic tissue. (c) Fractional
beta-cell area (stained brown) expressed as relative to the total pancreatic area (20× magnifications).
(d) Pancreatic insulin content. Values are expressed as mean ± SEM of n = 6–8 animals. * p < 0.05 vs.
ZL; # p < 0.05 vs. ZDF. ZL: Zucker lean; ZDF: Zucker diabetic rats; ZDF (M): Zucker diabetic rats
treated with metformin; ZDF (CCB): Zucker diabetic rats fed with a CCB-rich diet; ZDF (CCB + M):
Zucker diabetic rats treated with metformin and fed with a CCB-rich diet.
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Figure 5. Effect of the CCB, metformin, and their combination on beta-cell apoptosis. (a) Repre-
sentative immunohistochemical staining of terminal deoxynucleotidyl transferase dUTP nick end
labeling-positive beta cells. Scale bar: 50 µm. Arrows indicate apoptotic nuclei (in brown) of pan-
creatic beta cells (insulin-positive, pink-stained cytoplasm). (b) Beta-cell apoptotic index expressed
as the percentage of the total beta cells. Values are expressed as mean ± SEM of n = 6–8 animals.
* p < 0.05 vs. ZL; # p < 0.05 vs. ZL: Zucker lean; ZDF: Zucker diabetic rats; ZDF (M): Zucker dia-
betic rats treated with metformin; ZDF (CCB): Zucker diabetic rats fed with a CCB-rich diet; ZDF
(CCB + M): Zucker diabetic rats treated with metformin and fed with a CCB-rich diet.

4. Discussion

Numerous studies emphasize the protective role of residual beta-cell function against
the progression of diabetic complications, highlighting the significant value of treatments
capable of sustaining beta-cell mass and function over time [24]. In the present study, we
demonstrated that supplementation of diabetic animals with a promising flavonoid-rich
functional food (CCB) significantly reduced pancreatic oxidative stress and inflammation,
effectively preventing beta-cell loss and supporting better glycemic control. Importantly,
its combination with metformin produced a superior effect, underscoring the potential
advantages of combining natural bioactive compounds with antidiabetic drugs in diabetes
treatment [25].

Markers of oxidative stress, such as increased ROS generation and diminished intracel-
lular antioxidants, are consistent with pancreatic beta-cell damage in preclinical models and
individuals with T2D [26–28]. Furthermore, the naturally low expression of antioxidant
enzymes in pancreatic islets renders beta cells more susceptible to oxidative stress [29]. In
line with this, our findings demonstrate that the CCB can mitigate ROS generation and
oxidative damage in the pancreas of diabetic animals. Moreover, CCB supplementation
enhances pancreatic antioxidant capacity in diabetic animals by boosting both enzymatic
and non-enzymatic antioxidant defenses. Specifically, GSH levels exhibited a significant
increase, with an additional benefit observed in combination with metformin. Similarly,
CCB supplementation improved the activity of antioxidant enzymes, with a substantial
increase in GPx activity compared to other treatments. Previous studies have demon-
strated that polyphenols increase the expression and activity of these enzymes in various
tissues [13,23,30,31] and in pancreatic beta cells [32,33]. Importantly, it has been established
that overexpression of GPx-1 in beta cells of diabetic mice (db/db) preserved their mass
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and reversed the development of hyperglycemia [34]. In the same way, early treatment of
diabetic ZDF rats with ebselen, a GPx mimetic agent, prevented beta-cell deterioration [35].
Taken together, these findings strongly indicate that a CCB-rich diet augments the activity
of the antioxidant defenses in the pancreas, thereby reducing oxidative stress induced by
the diabetic condition.

Additionally, ZDF diabetic animals showed pancreatic inflammation evidenced by
increased levels of the inflammatory markers TNF-α, IL-6, and p-p65. Notably, CCB
supplementation significantly attenuated the expression of all these pro-inflammatory me-
diators. Macrophages are the primary contributors to immune cell-mediated inflammation
in islets [9]. Several studies have demonstrated an increased macrophage infiltration in
T2D islets, often correlating with beta-cell dysfunction [36–38]. In our study, ZDF ani-
mals showed an increased number of macrophages primarily localized within the islets.
Macrophages infiltrating diabetic islets express an M1-like pro-inflammatory phenotype,
contributing to local overproduction of inflammatory cytokines and activation of the NF-κB
signaling pathway, ultimately leading to beta-cell apoptosis and dysfunction [39]. Al-
though metformin treatment did not reduce macrophage numbers, it did decrease their
infiltration, thereby mitigating islet inflammation. This aligns with recent findings indi-
cating metformin’s ability to inhibit islet inflammatory response and islet cell apoptosis in
HFD/STZ-induced diabetic mice [40]. Importantly, both the number of macrophages and
their infiltration into islets significantly decreased in the pancreas of CCB supplemented
animals compared to untreated ZDF rats. In line with these data, other naturally derived
compounds have been reported to attenuate inflammation in various tissues by reducing
M1 polarization of macrophages in obesity and diabetes [41–46]. Notably, resveratrol, one
of the most studied polyphenols, attenuated macrophage infiltration in pancreatic islets of
T1D mice, thereby reducing beta-cell destruction [44]. More recently, it has been shown that
the carotenoid lycopene may ameliorate hyperglycemia and dyslipidemia and attenuate
beta-cell apoptosis by regulating the toll-like receptor 4 (TLR4)/NF-κB signaling pathway,
both in islets of diabetic mice and in Min6 beta cells stimulated with the conditioned
medium collected from RAW264.7 cells treated with glucose/palmitate [40]. Collectively
these findings suggest that CCB treatment could prevent beta-cell loss in ZDF diabetic rats
by inhibiting islet macrophage infiltration and intra-islet inflammation.

According to these results, the histological examination of the pancreas of ZDF animals
revealed a reduction in the beta-cell fractional area compared to non-diabetic ZL controls.
This decrease was accompanied by a lower cellular insulin content and structural changes
in their islets, in alignment with observations from prior studies [45,46]. Notably, the CCB-
enriched diet significantly prevented beta-cell loss, surpassing the efficacy of metformin
treatment. Moreover, we observed that both the CCB and metformin treatments had a
partial preventive effect on beta-cell apoptosis. These outcomes agree with prior studies
demonstrating the anti-apoptotic properties of polyphenols as a significant mechanism for
preventing beta-cell loss [5,32]. Unexpectedly, the beneficial effect of CCB supplementation
on pancreatic fibrosis was not observed when the dietary treatment was combined with
metformin; the mechanistic explanation for this requires further research. Altogether,
the present results highlight the effectiveness of the CCB in preventing beta-cell loss in
diabetic ZDF rats. Importantly, the combination of the CCB-rich diet with metformin was
proven to be more effective in reducing beta-cell apoptosis, suggesting that their combined
use may be therapeutically beneficial in reducing beta-cell loss during the progression
of diabetes. However, in this study, we focused on the effect on this treatment on the
whole pancreas, which is a limitation because it does not allow us to directly link the
treatment to the functional changes in islets. Further studies with isolated islets could
provide complementary information to elucidate the molecular mechanism involved in the
beneficial effect of the CCB and metformin on beta cells.

It is noteworthy to mention that ZDF animals also exhibited increased insulin re-
sistance, a condition that was significantly reduced by both CCB supplementation and
metformin treatment (as indicated by HOMA-IR values). Although we did not specifically
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evaluate the effect of CCBs on liver function in ZDF rats, the existing literature suggests that
cocoa flavanols may exert an insulin-like effect on human hepatic HepG2 cells under condi-
tions of insulin resistance. This effect involves attenuation of the blockade of the insulin
signaling cascade and modulation of glucose uptake and production [47]. Additionally, in
pre-diabetic rats, a cocoa-enriched diet demonstrated the ability to alleviate hepatic insulin
resistance by regulating key proteins of the insulin pathway and glucose metabolism in
the liver [48]. Therefore, it cannot be excluded that the observed antidiabetic properties of
CCB supplementation are partly due to the effects of flavanols on liver function and insulin
resistance, hallmarks of T2D development and progression.

5. Conclusions

The present study demonstrates that chronic supplementation with a potential func-
tional food rich in flavonoids (CCB) significantly prevents beta-cell apoptosis and the loss
of functional beta cells in the islets of ZDF rats, ultimately improving glucose homeostasis
in diabetic animals. The protective effect of the CCB appears to be partly mediated by its
ability to enhance pancreatic antioxidant defenses, thereby neutralizing oxidative stress.
Additionally, the action of the CCB in preventing macrophage infiltration into islets and
the subsequent local production of pro-inflammatory factors significantly contributes to its
beneficial effects on beta-cell apoptosis and dysfunction. It is interesting to remark on the
observed additive effect when combining CCB treatment with metformin, which highlights
its potential as an adjuvant therapy to delay the progression of diabetes.
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