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Abstract: Nutrition is one of the most influential environmental factors in both taxonomical shifts
in gut microbiota as well as in the development of type 2 diabetes mellitus (T2DM). Emerging
evidence has shown that the effects of nutrition on both these parameters is not mutually exclusive
and that changes in gut microbiota and related metabolites such as short-chain fatty acids (SCFAs)
and branched-chain amino acids (BCAAs) may influence systemic inflammation and signaling path-
ways that contribute to pathophysiological processes associated with T2DM. With this background,
our review highlights the effects of macronutrients, carbohydrates, proteins, and lipids, as well
as micronutrients, vitamins, and minerals, on T2DM, specifically through their alterations in gut
microbiota and the metabolites they produce. Additionally, we describe the influences of common
food groups, which incorporate varying combinations of these macronutrients and micronutrients,
on both microbiota and metabolic parameters in the context of diabetes mellitus. Overall, nutrition is
one of the first line modifiable therapies in the management of T2DM and a better understanding of
the mechanisms by which gut microbiota influence its pathophysiology provides opportunities for
optimizing dietary interventions.
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1. Introduction

The human gastrointestinal (GI) tract harbors trillions of gut microbiota, compris-
ing about 500–1000 different bacterial species, which collectively weigh approximately
1–2 kg [1,2]. Analysis of the human microbial composition has shown that the gut micro-
biota of adults contains six phyla, with 90% of these bacterial species belonging to the phyla
Bacteroidetes and Firmicutes, while the phyla Actinobacteria, Proteobacteria, Fusobacteria,
and Verrucomicrobia make up the rest [3]. The balance of the gut microbiota, namely
eubiosis, is important in maintaining health and preventing diseases [4]. It has been well
documented that the profile of the gut microbiota is unique to each individual host, and its
composition is influenced by a variety of factors, resulting in taxonomical shifts in microbial
species throughout a person’s lifetime [5,6]. This includes both extrinsic factors such as
lifestyle, stress, medication, diet, and disease status, as well as intrinsic factors, such as ge-
netics, immune, or metabolic factors [5,7], with extrinsic factors having the greatest effect on
gut microbiota [7]. The influence of gut microbiota on homeostatic processes in the human
body is multifaceted, with important roles in modulating metabolic processes [8], regulating
immune responses [9], and maintaining overall host health [5]. More specifically, the effects
of gut microbiota have been linked to a myriad of non-communicable diseases including
type 2 diabetes mellitus (T2DM), dyslipidemia, obesity, and Parkinson’s disease [10–13],
to name a few. In particular, T2DM, a multifactorial chronic metabolic condition that is
characterized by hyperglycemia, lipid imbalance, and insulin resistance [14], remains a
major global health threat affecting approximately 6% of the world’s population [15] and
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contributing significantly to the worldwide socio-economic burden [10]. The prevalence of
T2DM continues to increase, with an estimated 530 million individuals being affected by
the disease, of which 22% are above the age of 70 [15]. Therefore, gaining a deeper under-
standing of the factors and mechanisms controlling hyperglycemia and insulin resistance is
critical in the prevention, management, and effective therapeutic interventions of diabetes.

The gut microbiota has been long recognized as a key component in regulating host
health and specific bacteria have been causally linked with the onset and progression
of diseases, including diabetes. The extent of the effects of gut bacteria on T2DM has
been attributed to both taxonomical shifts in gut microbiota as well as the differential
production of important gut metabolites including short-chain fatty acids (SCFAs), bile
acids (BAs), and amino acids (AAs), which are shown to contribute to or protect against
hyperglycemia and insulin resistance [10]. For example, bacterial species belonging to
the genera Bifidobacterium and Lactobacillus, which are significant producers of SCFAs,
have been correlated with a reduction in HbA1c serum levels [16]. Similarly, the altered
absorption of SCFAs and BAs have been observed in patients with T2DM as a result of
increased gut barrier permeability induced by the dysbiosis of gut flora [17]. Importantly,
nutrition has been shown to be the primary modifiable factor of gut microbiota remodeling
and the development of T2DM, with various diets, food groups, macronutrients, and
micronutrients exerting different effects on its composition [18,19]. For example, beneficial
diets such as the Mediterranean diet, primarily composed of plant-based products, are
inversely related with HgbA1c levels, waist circumference, and insulin resistance [20],
while animal-based product diets promote opposite effects [21]. Further, the type of food
as well as the macronutrient and micronutrient composition of the diet exert distinct
effects on gut microbiota and related metabolites, with major consequences on mechanisms
regulating hyperglycemia and insulin resistance [21–23]. This review describes the key
role of nutrients at the intersection between gut microbial eubiosis and the development of
T2DM. It presents changes in the gut microbiota composition profile of individuals with
T2DM and how specific gut bacteria and related metabolites contribute to, or safeguard
against, diabetes. Further, the effects of various macronutrients and micronutrients on
the microbiota–T2DM relationship and the impact of the common food groups on the gut
microbial composition and T2DM are discussed.

2. Influence of Gut Microbiota on Hyperglycemia, Insulin Resistance, and T2DM

Over the past several years, numerous studies have linked gut microbiota and
T2DM, with factors such as systemic inflammation through the production of
lipopolysaccharides (LPSs) [24], changes in gut membrane permeability, and bile acid
metabolism [25] all playing significant roles in the degree of insulin resistance in the
host [1,10]. Gut bacteria have been associated with glucose intolerance as germ-free
mice show differential resistance against high fat diet-induced insulin resistance and
adiposity [26–28]. More specifically, studies evaluating conventional gut microbial
composition in T2DM showed important trends in taxonomical shifts in gut bacteria
that may have strong associations with the pathogenesis of condition. For example,
an increase in the Firmicutes-to-Bacteroidetes ratio has been linked to conditions asso-
ciated with low-grade inflammation such as obesity and T2DM [29,30]. Further, the
dysbiosis in T2DM has been characterized by a decrease in butyrate-producing bacte-
rial species, mainly Roseburia intestinalis, Bifidobacterium spp., Akkermansia spp., and
Faecalibacterium prausnitzii, and an increase in the abundance of unfavorable bacteria
such as Clostridium clostridioforme, Clostridium hathewayi, Clostridium ramosum, Clostrid-
ium symbiosum, Bacteroides caccae, Escherichia Coli, Eggerthella spp., Fusobacterium, and
mucin-degrading bacterial genera, Ruminococcus [31–34]. Studies linking Lactobacillus
spp. with type 2 diabetes have been inconsistent [31].

The collective taxonomical shifts in gut microbiota composition are associated with
increased gut and systemic inflammation, further contributing to the pathogenesis of
T2DM [35]. For example, an increase in the pathogenic Gram-negative bacteria leads to
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the release of lipopolysaccharides (LPSs), which is known to activate toll-like receptor
4 (TLR4) in adipocytes, promoting inflammatory signaling and cytokine expression [36].
Previous data have shown that LPS binding to TLR4 is associated with insulin resistance,
because mice lacking TLR4 are protected from suppressed insulin signaling and insulin-
mediated changes in glucose metabolism [37]. Further studies have shown that adipocytes
expressing TLR4 promote the induction of pro-inflammatory cytokines, particularly IL-6
and IL-8, which decreased insulin-induced glucose uptake through downregulation of
insulin-receptor substrate 1 (IRS-1) and glucose transporter 4 (GLUT4) [38]. Serine kinases,
such as c-Jun-N-terminal Kinase (JNK) and inhibitor of nuclear factor kappa-B kinase sub-
unit beta (IKKβ), contribute to insulin resistance through phosphorylation of IRS-1 [39,40].
Additionally, the mechanism behind increased insulin resistance, adiposity, and lipid ab-
normalities is also thought to be due to the LPS-induced increase in gut permeability by the
reduced expression of tight junction proteins, primarily zonula occludens-1 and minimally
to claudin and occluden [41]. The impaired gut barrier integrity leads to the translocation
of LPS into the bloodstream and the development of metabolic endotoxemia [42]. This, in
turn, contributes to a sustained low-grade inflammation, via central insulin resistance and
activation of the hypothalamic c-Jun N-terminal Kinase (JNK) cascade [43]. Taken together,
these findings provide strong evidence for the influence of bacteria and its byproducts in
altered insulin sensitivity (Figure 1).

The gut microbiota byproducts have been shown to exert generally protective ef-
fects on hyperglycemia and insulin resistance. Among them, SCFAs, the enzymatically
degraded end-product of the anaerobic fermentation reactions of indigestible complex
carbohydrates [44] such as butyrate, propionate, and acetate, are the most metabolically
important [45]. For example, the oral supplementation of butyrate in a diabetic rodent
model significantly decreased serum hemoglobin A1c, LPS, and pro-inflammatory cy-
tokine levels, while concomitantly improving gut integrity through the measurement of
intracellular adhesion molecules [46]. Importantly, these findings were accompanied by
an increased Firmicutes-to-Bacteroidetes ratio, which correlates with previous data show-
ing the interplay between SCFA production and increases in gut microbial diversity [47].
Similar findings have been demonstrated with the administration of a butyric acid
derivative attenuating LPS-induced inflammation and insulin resistance with decreased
phosphorylated IRS-1 measured in mouse adipocytes [48]. This involves the activated
protein kinase (AMPK)-dependent signaling, with beneficial effects including decreased
inflammation, the survival of β cells, inhibition of insulin resistance, and promotion
of glucose metabolism and uptake [49]. Of note, acetate is also shown to have similar
benefits, with increased AMPK signaling activity in the liver leading to hypoglycemic
effects [49]. Similarly, SCFAs have been shown to mitigate inflammatory processes,
specifically through reprogramming the metabolic activity of T lymphocytes [50]. For
example, propionate enhanced the expression of T regulatory cells, particularly Th17
helper cells and interleukin 10 (IL-10), ameliorating the negative effects of high-fat diet
feeding [51]. T regulatory cells in adipocytes are shown to reduce adipose tissue inflam-
mation and improve insulin resistance, further supporting the anti-inflammatory effects
of SCFAs on metabolic disease [52]. In addition to their anti-inflammatory effects and
improvement of hyperglycemia, SCFAs also exert antidiabetic effects through insulin
secretion in a glucose-dependent manner by stimulating the secretion of glucagon-like
peptide 1 (GLP-1) via the free fatty acid receptors, FFAR2 and FFAR3, located on en-
teroendocrine cells [53]. Probiotic administration increased the levels of both SCFAs
and SCFA-producing bacterial species, while decreasing pathogenic Escherichia coli and
LPS [54]. Interestingly, it has also been shown that metformin, one of the first-line treat-
ments for T2DM, promotes the abundance of SCFA-producing gut microbiota, which
is correlated to the secretion of GLP-1 [55]. Therefore, SCFAs play an integral role in
ameliorating T2DM through improving inflammation, activating important signaling
pathways and the modulation of gut peptides (Figure 1).
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creased GLUT-4 uptake, thereby increasing serum blood glucose and worsening peripheral insulin 
resistance. LPS/TLR-4 binding contributes to pro-inflammatory cytokine release and metabolic en-
dotoxemia. Metabolic endotoxemia contributes to the hypothalamic JNK cascade and c-JUN activity. 
c-JUN interacts with IRS-1 to promote central insulin resistance. (B) SCFA-producing microbiota 
have the capability to enzymatically catalyze fermentation reactions to produce SCFA; butyrate, 
propionate, and acetate. SCFAs enhance GLP-1 secretion, increase relative abundances of beneficial 

Figure 1. Effects of microbiota and metabolites on glucose homeostasis and insulin resistance. (A) The
overgrowth of inflammatory microbial species, particularly Gram-negative bacteria, promotes in-
creased LPS and gut permeability. LPS/TLR-4 binding leads to IRS-1 phosphorylation and decreased
GLUT-4 uptake, thereby increasing serum blood glucose and worsening peripheral insulin resistance.
LPS/TLR-4 binding contributes to pro-inflammatory cytokine release and metabolic endotoxemia.
Metabolic endotoxemia contributes to the hypothalamic JNK cascade and c-JUN activity. c-JUN
interacts with IRS-1 to promote central insulin resistance. (B) SCFA-producing microbiota have the
capability to enzymatically catalyze fermentation reactions to produce SCFA; butyrate, propionate,
and acetate. SCFAs enhance GLP-1 secretion, increase relative abundances of beneficial bacteria,
improve gut barrier integrity, and reduce phosphorylation of IRS-1 to improve insulin resistance.
(C) Primary bile acids are created in the liver, which are further converted by gut microbiota into
secondary bile acids. Secondary bile acids bind to their receptors, FXR and TGR5, to enhance GLP-1
secretion and stimulate the FGF21 pathway to increase PPAR-γ, improving insulin resistance. At the
same time, they promote the activation of the Mtorc1 pathway, which uncouples IRS-1 and promotes
insulin resistance. Gut microbiota produce TMA, which are converted by FMO in the liver to TMA-O.
TMA-O contributes to atherosclerosis, inflammatory processes, bile acid dysregulation, and dysbiosis
leading to increased insulin resistance. Abbreviations: LPS, Lipopolysaccharides; TLR-4, Toll-like
receptor 4; IL-1, interleukin-1; TNF-α, Tumor necrosis factor alpha; IL-6, interleukin-6; IRS-1, Insulin
receptor substrate 1; p-IRS-1, phosphorylated insulin receptor substrate 1; GLUT-4, glucose transport
4; JNK, Jun amino terminal kinase; C4, 4 carbon; C3, 3 carbon; C2, 2 carbon; GLP-1, Glucagon-like
peptide 1; BA, bile acid; FGF21, Fibroblast Growth Factor 21; Mtorc1, Mammalian target of rapamycin
complex 1; PPAR-γ, Peroxisome proliferator-activated receptor gamma; FMO, Flavin-containing
monooxygenase; TMA, Trimethylamine N; TMA-O, Trimethylamine N-oxide.

In addition, crosstalk between bile acids and gut microbiota play significant roles in the
development or protection against hyperglycemia and insulin resistance [25]. Studies have
shown that gut microbiota are involved in enzymatically converting primary bile acids
into secondary bile acids [55], through the expression of bile salt hydrolase activity [25].
Secondary bile acid binding to the farsenoid X receptor (FXR) and Takeda G-protein cou-
pled receptor 5 (TGR5) are shown to restructure gut microbiota and influence markers of
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T2DM [56]. For example, TGR5 activation can enhance pancreatic and liver function, lead-
ing to enteroendocrine L-cell-mediated GLP-1 release and improved insulin resistance [57].
FXR agonists improve insulin resistance in diabetic animal models [58]; however, other
studies shown that FXR deficiency has a similar effect [59,60]. Further, bile acids have been
shown to increase insulin sensitivity through the fibroblast growth factor (FGF) activity,
with FGF21 signaling found to have beneficial effects both in the liver and in adipose
tissue, through the decreased activation of the mammalian target of rapamycin complex 1
(Mtorc1) pathway [61] and increased activation of peroxisome proliferator-activated recep-
tor γ (PPARγ) [62], respectively. Specifically, signaling via the Mtorc1 pathway promotes
the serine phosphorylation of IRS-1 (p-IRS-1), a known marker of insulin resistance [61].
Conversely, the activation of PPARγ improves insulin-mediated skeletal muscle glucose
uptake and hepatic glucose production to enhance insulin sensitivity [63]. Overall, it is
evident that these receptors and pathways influenced by the enterohepatic circulation of
bile acids and gut microbiota are heavily implicated in glucose homeostasis and insulin
sensitivity (Figure 1).

3. Influence of Nutrition in Modulating Gut Microbiota and Markers of T2DM

Nutrition plays a critical role in the intricate relationships between gut microbiota
and the pathophysiology of T2DM, and it is the key common factor when considering
microbiota altering interventions to improve hyperglycemia and insulin resistance [64].
Nutrition shapes the gut microbiota, and it accounts for over 20% of the inter-individual mi-
crobiome variability in humans and 50% in mouse models [65,66]. Therefore, identification
of different diets, macronutrients, micronutrients, and food groups and their related effects
on gut microbiota and T2DM is an important approach to prevent and control diabetes.
Although not all the effects of the interactions between food components and T2DM are
completely known, it is clear that diets rich in fruits and vegetables have beneficial effects
on glucose metabolism [67]. For example, foods with a low glycemic index have beneficial
effects on blood sugar, HbA1c, total cholesterol, LDL cholesterol, and the inflammatory
response in patients with diabetes and in the prevention of T2DM development across
populations [68–72]. A recent study in obese women who followed a low-glycemic diet
consisting mainly of whole grains, fish, vegetables, algae, and perilla oil or a control diet
consisting mainly of refined rice, bread, noodles, meat, and processed foods showed a
higher level of Gemminger formicilis, Collinsella aerofaciens, Escherichia coli, and Bifidobacterium
longum and a lower serum butyric acid level in those receiving the control diet compared
to the low-glycemic diet [73]. Gut dysbiosis and increases in abundance of pathogenic
bacteria, especially Bacteroides, have been reported in the presence of a carbohydrate-rich
diet [74]. However, not all studies showed significant differences in the glycemic control
of the lipid profile in people who followed a low-glycemic-index diet compared to other
types of diet [71,75,76].

Multiple studies have demonstrated associations between different dietary patterns
and the risk for T2DM; however, these associations are quite complex, because people do
not consume individual foods but mixtures of foods [77], causing corresponding changes
in microbial composition. Further, it has been shown that long-term diets lead to the estab-
lishment of major enterotypes Prevotella, Bacteroides, and Ruminococcus [73,78] because diet
is the main modulator of gut microbiota. Bifidobacterium spp., Lactobacillus spp., Bacteroides
spp., Alistipes spp., Bilophila spp., Clostridium spp., Roseburia spp., Eubacterium spp., Entero-
coccus spp., Faecalibacterium prausnitzii, Akkermansia muciniphila, Escherichia coli, Helicobacter
pylori, and Streptococcus spp. [79] are among the many bacteria influenced by diet. For
example, the Prevotella enterotype was associated with a high intake of carbohydrates,
especially sugar, while the Bacteroides enterotype was associated with a high intake of
meat [73]. In addition, specific diets such as the Western Diet (WD) and the Mediterranean
diet (MD) have been shown to exert differential changes in the gut microbiota composition
and ensuing metabolic functions. As such, a hypercaloric diet high in fats and animal pro-
teins, characteristic of the WD, is associated with microbial dysbiosis [80]. The WD is shown



Nutrients 2024, 16, 269 6 of 40

to increase unfavorable species such as Escherichia coli and Ruminococcus torques [81], which
in turn promote increased gut permeability and metabolic endotoxemia through increased
abundances in these Gram-negative LPS-producing bacterial genera [82], contributing to in-
sulin resistance. At the same time, it has been shown that the WD reduces SCFA-producing
bacterial genera, such as Eubacterium and Roseburia [83]. These pro-inflammatory changes
in gut permeability via the WD can be attributed, to some extent, to mTOR hyperactivation,
which was improved after antibiotic introduction [84]. Further, the effects of similar diets
are not limited to peripheral changes but are also associated with central insulin resistance,
as evidenced through the increased serine phosphorylation of IRS-1 and inflammatory
responses through nuclear factor kappa beta (NFKβ) and JNK activity [85]. In addition to
phosphorylating IRS-1, JNK contributes to insulin resistance through promoting metabolic
inflammation and negatively regulating interactions between PPARα-FGF21 as well as
contributing to adiposity through dysregulation of the thyroid-stimulating hormone (TSH)
axis [86]. Studies also have shown that a WD in patients with T2DM promotes more C-
peptide post-prandially, which is an endogenous marker of insulin secretion [87]. Increased
insulin secretion was also reported after the consumption of a Westernized diet, which
preceded peripheral insulin resistance [88].

On the other hand, the MD, characterized by a high intake of dietary fiber, nuts, whole
grains, and omega-3 polyunsaturated fatty acids, has been associated with favorable effects
on gut microbiota composition and hyperglycemia [89]. Interestingly, the effects on gut
microbiota are largely opposite from those observed after WD adherence, with MD con-
sumption promoting increased relative abundance in the main SCFA-producing genera like
Lactobacillus, Bifidobacterium, Eubacterium, and Faecalibacterium while reducing concentra-
tions of Bacteroides and Prevotella spp. [90,91], which collectively contribute to better glucose
homeostasis. One large-scale observational study of over 22,000 human participants who
adhered to the MD for 6 months showed that these individuals had a lower risk of new
onset T2DM [92]. The mechanisms behind improvements in glucose homeostasis include
a reduction in inflammatory processes [93], the modulation of gut hormones [94,95], and
altered production of microbial metabolites [96]. For example, 12-week adherence to the
MD reduced pro-inflammatory cytokine interleukin-6 (IL-6) by 49% in T2DM patients [93].
Similarly, markers of inflammation such as C-reactive protein (CRP) and intracellular adhe-
sion molecule-1 (ICAM-1) showed significant reduction post-MD [97]. ICAM-1 is heavily
intertwined in T-cell-mediated processes, indicating that the adaptive immune response
is also affected by this dietary intervention [98]. In addition, the MD exerts antioxidant
and anti-hyperglycemic effects by augmenting GLP-1 activity in endothelial cells. These
findings are also supported by two recent human studies showing that MD adherence
over 210 days or 24 weeks was associated with lower serum glucose, elevated fasting
GLP-1 level, and improved insulin resistance and HgbA1c [94,95]. Importantly, some of
the bacterial genera changes associated with the MD, such as decreases in Prevotella and
Bacteroides, may influence markers of insulin resistance [96]. These genera have been shown
to aggravate insulin resistance and cause glucose intolerance by elevating circulating levels
of branched-chain amino acids (BCAAs) [96]. Studies have linked increased concentra-
tions of BCAAs to the activation of mTORC1, a cell growth regulator, which causes the
dysregulation of insulin signaling [99]. In parallel, these BCAAs are shown to be associated
with pancreatic β-cell mitochondrial dysfunction and apoptosis, further contributing to
insulin resistance [100]. Taken together, these findings support the role of dietary patterns
in the remodeling of gut microbiota and resulting alterations in biomarkers associated with
inflammation, hyperglycemia, and insulin signaling dysregulation.

4. Effects of Macronutrients on T2DM and Gut Microbiota

Various macronutrients exert distinct effects on gut microbiota and T2DM. In the
following subsections, we explore the role of carbohydrates, dietary fibers, and starches, as
well as that of proteins and lipids, in mediating these effects.
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4.1. Carbohydrates

Digestible carbohydrates are enzymatically degraded in the small intestine and are
represented by starch and sugars, such as glucose, fructose, sucrose, and lactose [101]. The
breakdown of these compounds stimulates insulin response by releasing glucose into the
bloodstream, thereby influencing insulin signaling [102]. Over the years, the relationship
between carbohydrate intake, diabetes, and gut microbiota has been studied, with differ-
ences shown in the post-prandial glycemic response determined both by the amount as
well as by the type of carbohydrate consumed [103,104]. Low-carbohydrate diets (LCD)
have long been part of the main nutritional therapy regimen in the management of type 2
diabetes [105]. For example, an LCD, characterized by under 40% of the total energy intake
being carbohydrates, had a beneficial effect on HgbA1c as compared to both very low car-
bohydrate content or moderate carbohydrate content (40–64% of total energy intake) [106].
ADA guidelines include the importance of diets with a low carbohydrate content in reduc-
ing HbA1c levels [107]. Numerous studies have supported the hypoglycemic effect of an
LCD through decreased blood sugar and increased insulin sensitivity, leading to lowering
oral antidiabetic medications, while also improving lipid parameters such as increased
HDL cholesterol and decreased triglycerides [108–111]. Adherence to an LCD reduced
the risk for T2DM in children and adolescents [112], while a diet high in carbohydrates
increased the risk of T2DM [113], clearly demonstrating the importance of this macronutri-
ent in glucose homeostasis. Further an LCD is shown to modulate gut hormones such as
GLP-1, while concomitantly promoting beneficial changes in gut microbiota and diabetic
markers [22,114]. For example, LCD consumption for three months was associated with
enhanced GLP-1 secretion in humans, reduced HgbA1c, and an increased abundance of
SCFA-producing species, Roseburia, Ruminococcus, and Eubacterium [22]. These SCFAs result-
ing from colonic carbohydrate fermentation act on free fatty acid receptors, FFAR2 (GPR43)
and FFAR3 (GPR41), to stimulate GLP-1 release through the mitogen-activated protein
kinase (MAPK)/extracellular regulated protein kinase (ERK) pathway [115]. For example,
acetate increased GLP-1 secretion up to three-fold and butyrate by two-fold [115,116] in
response to the administration of Bifidobacterium, Lactobacillus, and Enterococcus spp. There-
fore, these metabolic signaling pathways involving both the host and bacteria pathways
play a significant role in metabolic health in response to carbohydrate intake (Figure 2).

On the other hand, a high carbohydrate intake, including diets rich in glucose and
fructose, promotes both metabolic disorders and intestinal dysbiosis [117] and has been as-
sociated with an increase in the abundance of pathogenic bacteria, especially Bacteroides [74].
Additionally, metagenomic sequencing data of gut microbiota in animal models consuming
carbohydrate-dense diets have shown increases in the Firmicutes-to-Bacteroidetes ratio
as well as in pro-inflammatory Desulfovibrio vulgaris and mucin-degrading Akkermansia
muciniphila [118]. These findings were accompanied by increased glucose intolerance,
elevated serum glucose and a two-and-a-half-fold increase in gut permeability [118,119].
The decrease in gut permeability may be attributed to the role of Akkermansia muciniphila,
Bacteroides, and Desulfovibrio spp. in inflammatory processes. In general, healthy amounts
of Akkermansia have favorable effects on gut barrier integrity and inflammation [120];
however, when they are in excess, an opposite effect is shown, with Akkermansia over-
degrading the mucin layer leading to increased gut permeability and the secretion of
inflammatory cytokines [121]. Desulfovibrio, a Gram-negative bacterium genera, known to
produce hydrogen sulfide gas, increases T cell activity and systemic inflammation, known
to cause important sequelae in both cognition and metabolic syndrome [122]. Desulfovibrio
is also positively correlated with increases in fasting insulin, which can lead to insulin
resistance [123]. Similarly, Bacteroides have been shown to degrade the mucin layer when
abundant and exhibit virulence factors that fuel their growth in conditions that cause low
bacteria diversity [124]. Importantly, Bacteroides spp. increase the biosynthesis of BCAAs,
an important marker for increased insulin resistance [96]. Taken together, these changes
caused by high carbohydrate intake can contribute to metabolic endotoxemia, insulin
resistance, and hyperglycemia (Figure 2).
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Figure 2. Effects of macronutrients, carbohydrates, proteins, and lipids on gut microbiota and type 2
diabetes mellitus. Carbohydrates comprise fibers and starches. Fibers and starches promote beneficial
gut microbial changes, which improve insulin resistance through increased SCFA concentrations,
enhancing GLP-1 secretion, improving low-grade inflammation and metabolic parameters including
HgbA1c, post-prandial glucose secretion, LDL, and triglycerides. Lean meats promote beneficial
gut microbial changes but have neutral effects on HgbA1c, though they do reduce post-prandial
glucose secretion. Red meats generally contribute to harmful changes in microbial composition, which
promote elevations in negative microbiota metabolites including TMAO and BCAAs, while decreasing
SCFAs, which increases the risk of developing T2DM and worsening insulin sensitivity. Trans fats
also promote harmful changes in microbial composition, which negatively affects leptin and insulin
resistance, increases LPS/TLR4 binding, and is associated with up to 40% increased risk of developing
T2DM when compared to polyunsaturated fatty acids. Omega-3 polyunsaturated fatty acids, on
the other hand, confer beneficial effects on gut microbiota, which decreases inflammatory markers,
improves insulin sensitivity, and increases SCFAs, to overall decrease the risk of developing T2DM.
Abbreviations: T2DM, type 2 diabetes mellitus; SCFAs, short-chain fatty acids; HgbA1c, Hemoglobin
A1c; GLP-1, Glucagon like peptide 1; LDL, low density lipoprotein; TMAO, Trimethylamine N-oxide.
BCAAs, branched-chain amino acids; LPS/TLR4, Lipopolysaccharides/Toll-like receptor 4; PUFA,
polyunsaturated fatty acids.

4.1.1. Dietary Fibers, Gut Microbiota, and T2DM

Dietary fibers are plant components that are characterized by resistance to digestion
and absorption in the small intestine [125]. Unlike digestible carbohydrates, dietary fiber
is not enzymatically degraded in the small intestine but is fermented by microorganisms
resident in the large intestine [126]. Fibers are classified according to their physico-chemical
characteristics, such as fermentability, solubility, and viscosity [127]. The high intake of di-
etary fiber supports gut health [127] and promotes glycemic control, with recommendations
of 25–50 g/day of dietary fibers in diabetic patients [128]. There is compelling evidence
demonstrating the overall health benefits of diets rich in fiber and the daily consumption
of whole grains and bran was associated with decreased mortality due to cardiovascular
causes in patients with diabetes [106,129]. Moreover, patients with metabolic syndrome had
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a lower fiber intake than those without metabolic syndrome [130]. Similarly, high glycemic
index diets and low fiber content are shown to induce metabolic syndrome in individuals
with T2DM [131]. The effects of dietary fibers depend on their origin, noting that cereal
fibers were more strongly associated with a decrease in the risk of diabetes, compared to
fruit fibers, which had a weaker association [132]. However, dietary fibers derived from
cereals and fruits have beneficial effects in controlling T2DM through improvements in
inflammatory processes as measured through CRP and tumor necrosis factor alpha (TNF-α)
levels [133]. Dietary fibers also stimulate increases in circulating adiponectin, which serves
as a marker of insulin sensitivity [134]. Overall, a high fiber intake was associated with a
lower risk of type 2 diabetes [135,136] (Figure 2).

The effects of fiber on glycemic control are also influenced by the fiber viscos-
ity [137,138]. For example, the administration of psyllium, a soluble fiber, improved
the lipid profile and glycemic control [139]. In general, soluble fiber has a stronger
beneficial effect on T2DM compared to insoluble or non-viscous fiber. This may be due
to the action of gut bacteria and its byproducts on the fiber substrate and their metabolic
functions [140]. In addition, compared to insoluble fibers that are poorly fermentable
and have an important role in increasing the rate of intestinal transit, soluble fibers are
highly fermentable and are efficiently used by the gut microbiota [141]. Specifically,
soluble dietary fibers have been shown to promote the diversity of gut microbiota and
serve as one of the most important substrates for gut microbiota [140]. Following fer-
mentation, different metabolites are generated, including short-chain fatty acids [142],
with the highest proportion (60%) being acetate, followed by propionate (25%) and
butyrate (15%). Other generated byproducts also include gases such as methane and
carbon dioxide [5]. As previously mentioned, SCFAs are used as substrates for the
metabolism of lipids, glucose, and cholesterol and have a significant role in maintaining
tissue barrier function and regulating gene expression and immunoregulation. They
also provide energy support for colonocytes and regulate homeostasis of the colon, by
maintaining the integrity of the intestinal mucosa and reducing inflammation but also
by promoting epithelial cell proliferation, differentiation, and water absorption [5]. For
example, when compared to cellulose, an insoluble fiber, inulin, which is a soluble fiber,
provided significant protection against high fat diet-induced metabolic syndrome [143].
These protective mechanisms included enterocyte proliferation, anti-microbial gene
expression, and increased IL-22 expression, which improved low-grade inflammation
and prevented the proliferation of unfavorable microbiota [143]. Therefore, dietary fiber
represents an ideal source of carbohydrates accessible to the gut microbiota, that can
be used to provide the host with energy and carbon sources [79]. Dietary fibers are
also called prebiotics and they selectively stimulate the growth or activity of certain mi-
croorganisms [144]. The best-known sources of prebiotics are unrefined barley and oats,
soy, and inulins, but they also include non-digestible oligosaccharides, such as fructans,
polydextrose, fructooligosaccharides, galactooligosaccharides, xylooligosaccharides, and
arabinooligosaccharides [145]. The high intake of dietary fiber is associated with the
increase in the diversity of the gut microbiota, characterized mainly by the growth of
Bacteroidetes and Prevotella spp. but also with the improvement in insulin resistance and
the decrease in susceptibility to infections and malignant processes [146]. On the other
hand, the lack of dietary fiber has contrasting effects, promoting decreased microbiota
diversity [147] while also decreasing the production of butyrate, worsening insulin
resistance, and increasing susceptibility to infections [148,149]. Importantly, the gut
microbiota whose abundance is increased by dietary fibers ameliorate T2DM [145,150].
For example, Bifidobacterium spp. and other SCFA-related genera were shown to be
increased while also enhancing GLP-1 secretion and improving HgbA1c levels [150],
while harmful bacterial metabolites such as hydrogen sulfide and indole were reduced.
Further, a positive correlation was observed between an increased amount of Roseburia,
Lachnospira, and Prevotella and an increased level of short-chain fatty acids with a high in-
take of dietary fiber, with negative correlations with Ruminococcus and Streptococcus [151].



Nutrients 2024, 16, 269 10 of 40

Similarly, a direct association between dietary fiber intake and gut microbiota diversity
has also been observed in overweight pregnant women in which dietary fiber intake
also decreased the abundance of Bacteroides [152]. These findings are consistent with
other studies showing that date consumption, which contains high amounts of dietary
fibers, increases the abundance of Bifidobacterium, while having the opposite effect on
Bacteroides spp. [153]. At the phylum level, the overall abundance of Bacteroidetes is
increased, thereby improving the Firmicutes-to-Bacteroidetes ratio [146]. Taken together,
there is strong evidence for the role of dietary fibers in promoting the beneficial effects
of gut microbiota and T2DM.

4.1.2. Starch, Gut Microbiota, and T2DM

Starch provides approximately 20 to 40% of the energy requirements for most
people and is classified according to the degree of enzymatic hydrolysis [154]. Some
rapid digestible starches are hydrolyzed in less than 20 min of enzymatic digestion [154],
while slow digestible starches are absorbed in the small intestine after approximately
100 min of enzymatic digestion. The resistant starch is not hydrolyzed even after 120 min
of enzymatic incubation [155]. Resistant starches are considered dietary fiber found
both naturally in cereals, fruits, and vegetables but also may be added into processed
foods [156]. Certain resistant starches are considered prebiotics as well, with positive
effects in the prevention or even improvement of metabolic diseases, including metabolic
syndrome and T2DM [157]. There are currently five types of known resistant starch:
type 1 resistant starch, found in whole grain or coarsely ground bread and durum wheat
pasta; type 2, found in negated potato starch, green banana starch, gingko starch, and
corn starch; type 3, amylose and retrograded starch; type 4, a chemically modified starch;
and type 5, an amylose–lipid complex [157]. Foods such as potatoes, rice, pasta, and
breakfast cereals contain less than 2.5% resistant starch. On the other hand, certain foods
such as boiled legumes and peas, but also other cooked and cooled starchy foods, contain
a higher amount of resistant starch (5–15%) [157]. The Western Diet contains mostly
foods with a low content of resistant starch.

A growing number of studies suggest the importance of resistant starch in reducing
the risk of type 2 diabetes [158–160]. Reductions in post-prandial blood glucose have
been observed when carbohydrates from a meal were replaced with resistant starch [161].
Furthermore, the results of a meta-analysis reported that resistant starch supplementation
is associated with an improvement in blood glucose, insulinemia, insulin sensitivity, and
resistance, especially in patients with diabetes and overweight or obesity [160]. More
specifically, type 1 and type 2 resistant starches have been associated with improved post-
prandial blood glucose, and in addition, type 2 resistant starch has been associated with
improved post-prandial insulin response and fasting blood glucose [162]. The use of
type 3 resistant starch for 3 to 11 weeks resulted in a reduction in fasting blood glucose,
triglycerides, and total cholesterol in a diabetic mice model [163]. Similarly, type 4 resistant
starch introduction significantly reduced post-prandial glucose by 33% [164]. Importantly,
the glycemic response following starch intake varied, with lower glycemic and insulinemia
responses after raw starch intake, compared to cooked starch [165].

Furthermore, it is well documented that resistant starch, similar to dietary fibers, is
also important in supporting the gut microbiota, through fermentation reactions medi-
ated by resident bacteria which may explain its effects on improving insulin resistance,
reduced glucose absorption, and glucose homeostasis [166]. For example, consumption
of resistant starch type 4 led to an increase in the abundance of Actinobacteria and Bac-
teroidetes and a decrease in the abundance of Firmicutes [167]. Further, the consumption
of type 4 resistant starch increased Bifidobacterium adolescentis and Parabacteroides dista-
sonis, while type 2 resistant starch led to an increase in the abundance of Ruminococcus
bromii and Eubacterium rectale [167]. Similarly, a study carried out in overweight men
showed an increase in the abundance of the same species, Ruminococcus bromii and Eu-
bacterium rectale, in men who consumed diets high in resistant starch [168]. Overall, the
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data support the exceptional ability of Ruminococcus bromii to degrade resistant starch,
due to its carbohydrate active enzyme activity, and in turn, starch serves as a nutrient to
increase its abundance [169,170]. These gut microbial changes caused by the resistant
starch along with increases in Akkermansia were associated with concomitant benefits in
metabolic parameters, including decreased LDL, increased GLP-1 secretion, acetate, and
early phase insulin secretion [171].

4.2. Proteins, Gut Microbiota, and T2DM

The major functional and structural component of body cells is protein [172]. The cur-
rent recommendation for protein intake for healthy individuals is 0.8 g/kg body weight per
day or 10–35% of the total energy intake [173] with no difference for patients with diabetes.
However, in diabetes complications such as diabetic nephropathy, the recommendation is
to reduce protein intake [172,174]. Dietary proteins have received considerable attention
for their role in the control of body weight given their demonstrated effects on enhanced
satiety and maintenance of lean body mass during weight loss. However, the exact role
of proteins in the control of diabetes is not as well defined as it is for other macronutri-
ents [104]. Notwithstanding, an increase in protein intake has been shown to improve
insulin sensitivity by maintaining muscle mass during weight loss in elderly patients with
prediabetes or type 2 diabetes [173]. Likewise, a 30% calorie protein diet was associated
with an improvement in some cardiovascular risk factors, though HgbA1c levels were not
affected [106]. However, an improvement in insulin sensitivity was observed in a group of
obese women who followed a hypocaloric and high protein diet compared to those who
followed a hypocaloric and hyperglycemic diet [175], although no changes in blood glucose
were observed. Further, an association has been observed between an improvement in
insulin release and the maintenance of low blood sugar and milk proteins, casein, and
whey [173]. Moreover, whey proteins are potent stimuli of insulin and incretin secretion
such as GLP-1 and GIP that are known to lower blood sugar through the stimulation of
insulin and inhibition of glucagon secretion, resulting in the inhibition of hepatic glucose
production, as well as the inhibition of gastric emptying [176,177]. However, other studies
did not find a positive association between increased protein intake and a lower risk of
type 2 diabetes, compared to a low protein intake [113]; therefore, there is a need for more
studies to examine the influence of protein on T2DM.

It is important to note that different types of proteins have differing effects on insulin
signaling. For example, animal proteins promote insulin resistance and are associated with
increased risk for diabetes [178–181]. On the other hand, plant proteins promote insulin
sensitivity [182] and improved glycemic control in patients with type 2 diabetes [183].
Also, increasing the intake of vegetable proteins was associated with a lower probability
of relapse of type 2 diabetes [184], and a lower probability of developing type 2 diabetes
and its comorbidities [185]. Further, vegetable proteins are the main components of the
beneficial Mediterranean diet, while animal proteins, such as red and processed meats,
are characteristic of the Western Diet, which have opposite effects on both gut microbiota
and T2DM as described in earlier sections. Therefore, there is strong evidence showing the
importance of the type of proteins as it relates to the derangement of metabolic parameters.

Similar to other macronutrients, proteins are metabolized by gut microbes into metabo-
lites such as short-chain fatty acids but also neurotransmitters, amino acid substrates, and
organic acids that have physiological effects both locally and systemically [186]. Amino
acids are fermented by gut bacteria in the distal colon, and protein fermentation leads to the
lower production of short-chain fatty acids (SCFAs) and greater production of branched-
chain amino acids (BCAAs) and potentially toxic substrates, such as ammonia, when
compared to carbohydrate fermentation [5]. BCAAs include leucine, isoleucine, and valine,
and they are not naturally synthesized in humans, making them nutritionally essential,
with their most common food source being proteins. Their role in insulin resistance is
thought to be threefold via the activation of mTORc1 uncoupling of IRS-1, mitochondrial
dysfunction through toxic accumulation of BCAAs, and altered expression of genes in
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humans (BCKDHA, PPM1K, IVD, and KLF15) contributing to altered insulin signaling and
therefore resistance [100]. Importantly, it has been well documented that animal proteins
are metabolized into a higher content of BCAAs than plant proteins, which can explain
the differences in insulin resistance between the two protein types [187]. In turn, dietary
proteins contribute to changes in microbial composition. For example, a high protein diet
was associated with a reduction in the abundance of propionate- and butyrate-producing
bacteria such as Akkermansia, Faecalibacterium, Roseburia, and Eubacterium while increasing
the abundance of Escherichia, Shigella, Enterococcus, and Streptococcus [188,189] in a rodent
model. These findings are consistent with data showing a decrease in fecal butyrate but not
propionate or acetate in response to high protein intake in humans [190]; but, see also [191],
where no significant results were seen, although the study populations differed between
the studies (overweight vs. endurance athletes).

Additionally, an increased abundance of Clostridium, unnamed Clostridiales, and Al-
lobaculum and decreased relative concentrations of Eubacterium, Akkermansia, Mucispirillum,
Ruminococcus, Johnsonella, Alistipes, Butyrivibrio, and Blautia were also observed after high
protein intake [192]. A similar increase in the abundance of Bacteroidaceae was observed
with a high protein intake, given that nitrogen from dietary proteins promotes an increase
in Bacteroidaceae [193]. Increased nitrogen production from gut microbiota and resulting
reactive nitrogen species generally relates to the growth of unfavorable microbial genera, as
SCFAs, particularly butyrate, have been shown to limit its production [194]. Further, a high-
protein hypoglycemic diet decreased amounts of Roseburia and Eubacterium rectale, which
correlated with a decrease in fecal butyrate [195]. In addition to decreased SCFAs, there
was an increase in trimethylamine N-oxide (TMAO), a bacterial byproduct with proathero-
genic and pro-diabetic effects, that is positively correlated with increased concentrations of
anaerobic bacteria such as Bacteroides, Alistipes, and Bilophila as well as animal products,
including red meat sources of protein [79,196]. An increase in the abundance of Bacteroides
and Clostridia and a decrease in the abundance of Bifidobacterium adolescentis have also been
seen in individuals consuming a diet rich in beef compared to those who did not consume
meat [197]. Similar changes in the microbiota composition following protein consumption
have been reported at the phylum and class levels. For example, a high abundance of
Firmicutes, especially Clostridia and Bacilli, was observed in rats fed beef, pork, or fish
protein. An increase in the abundance of Bacteroidetes was seen in rats fed soy protein,
while a decrease in Bacteroidetes’ abundance was noticed in rats fed fish protein [198].
Compared to animal proteins, plant proteins increase Bifidobacterium and Lactobacillus but
also decrease the amount of Bacteroides fragilis and Clostridium perfringens [5]. For example,
soy proteins have been associated with promoting Bifidobacterium, Lactobacillus, Butyricicoc-
cus, Parabacteroides, Lachnospiraceae, and Akkermansia muciniphila [199]. Collectively, these
studies demonstrate the intricate relationship between protein intake, changes in the gut
microbiota composition, and how these taxonomical shifts may influence hyperglycemia-
and T2DM-related parameters.

4.3. Lipids, Gut Microbiota, and T2DM

Lipids are considered naturally occurring compounds composed of fatty acids or
related derivates that are soluble in organic solvents but insoluble in water [200]. Lipid
intake has somewhat controversial direct effects on blood glucose [104], though it may
influence insulin sensitivity [201]. The current nutritional recommendations are to decrease
the consumption of saturated lipids and trans fatty acids and increase monounsaturated
and polyunsaturated fatty acids [202]. It has been consistently shown that diets high in fats
increase the risk of type 2 diabetes through impaired glucose tolerance and the binding
of insulin to its receptors, resulting in altered glucose transport and the accumulation of
triglycerides in skeletal muscles [203]. In contrast, a hypolipidemic diet had no effect on the
incidence of diabetes after 8 years, compared to a control diet [204], even when compared
to low-carbohydrate diets [205]. Therefore, the type and quality of lipids consumed are
more important in the risk of developing T2DM [203].
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Similar to proteins, lipids from plant sources provide better health benefits than lipids
from animal sources [206], and a high intake of plant-based lipids has been associated
with a significantly lower risk of the occurrence of T2DM [113]. Results from a meta-
analysis report an inverse correlation between the incidence of T2DM and the high intake
of vegetable-based lipids, especially plant-derived α-linolenic acid and polyunsaturated
fatty acids [202]. Conversely, the intake of trans fatty acids has been associated with all-
cause mortality, T2DM, and ischemic heart disease [207]. Similarly, saturated fats cause
unfavorable changes in energy balance, insulin resistance, and fat-cell differentiation [208],
though all-cause mortality was not shown to be increased the same way it was after trans
fat consumption [207]. Interestingly, replacing dietary saturated fat with omega-6 polyun-
saturated fatty acids resulted in a lower risk of diabetes and related sequelae [209]. A
higher intake of omega-6 polyunsaturated fatty acids was associated with a lower risk
of diabetes [210]. More specifically, replacing saturated fatty acids with polyunsaturated
fatty acids (PUFAs) was associated with a 35% decrease in the risk of developing T2DM,
and replacing trans fatty acids with PUFAs correlated with a 40% reduction in the same
parameter [211]. Therefore, the most beneficial lipids in promoting better insulin sensi-
tivity are PUFAs, with omega-6 and omega-3 PUFAs being extensively studied [212]. A
recent meta-analysis of 67 studies showed that increased supplementation of omega-3
PUFA decreased the risk of developing T2DM [212]. Importantly, the mechanisms of the
beneficial effects of PUFAs involves gut microbiota and related decreases in production
of inflammatory mediators [213]. Specifically, studies have demonstrated increased Bifi-
dobacterium, Bacteroidetes-to-Firmicutes ratio, and fecal SCFAs, concomitantly with the
attenuation of high fat diet-induced insulin resistance and liver inflammation, following
omega-3 PUFA introduction [214]. Inflammatory markers such as IL-1β, TNF-α, IL-8, IL-6,
and interferon-γ were significantly reduced following omega-3 supplementation, which
also improved fat accumulation and metabolic parameters [215].

Conversely, the increased consumption of dietary lipids, particularly saturated fatty
acids and trans fats, influences the composition of the gut microbiota negatively, decreas-
ing bacterial diversity [216] and increasing the Firmicutes-to-Bacteroidetes ratio [216,217].
These effects also contribute to the development of obesity through leptin resistance and
the promotion of low-grade systemic inflammation through the LPS/TLR4 pathway, that
are characteristics of dysbiosis [218,219]. A decrease in bacterial diversity and an increase
in the abundance of Faecalibacterium prausnitzii was also observed following the increased
consumption of saturated fats [152,220,221]. Also, an increased intake of fats is also associ-
ated with an increase in the abundance of Rikenellaceae and Bacteroides and other anaerobic
genera [79,222]. Similarly, a high intake of trans fatty acids was associated with a decrease
in the abundance of Bacteroidetes and an increase in the abundance of Proteobacteria and
Desulfovibrionaceae [223]. The opposite is also true, with the low intake of these unfavorable
lipids resulting in relatively increased abundance of beneficial bacteria such as Bifidobac-
terium but also with improvements in glycemia and total cholesterol [220]. For example, an
increase in the abundance of Bifidobacterium, Adlercreutzia, Lactobacillus, Streptococcus, and
Akkermansia muciniphila was shown in mice given fish oil and an increase in the abundance
of Bacteroides and Bilophila was shown in mice given lard, which aggravates white adipose
tissue inflammation [224]. Overall, dietary lipids serve as an important macronutrient in
modulating gut microbiota composition and metabolic parameters underlying T2DM.

5. Effects of Micronutrients on T2DM and Gut Microbiota

Micronutrients, including vitamins and minerals, have also been heavily implicated
in gut microbial remodeling and glucose homeostasis. In the following subsections, we
describe the role of various vitamins and minerals in modulating these processes.

5.1. Vitamins, Gut Microbiota, and T2DM

Vitamins are organic substances classified as either fat-soluble (vitamin A, D, E, and
K) or water-soluble (vitamin B complex and C) with antioxidant vitamins such as A, C,
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D, and E shown to be decreased in individuals with diabetes, while vitamin D deficiency
is associated with the development of diabetes and its sequelae [225,226]. For example,
6-month vitamin D supplementation improved HgbA1c, with a decreased production of
oxidation products and oxygen free radicals [227]. Similarly, high-dose cholecalciferol, the
active form of vitamin D, improved clinical manifestations of cutaneous microcirculation,
inflammatory markers, and peripheral neuropathy [228]. Supplementation also decreases
inflammatory gene expression, particularly of IL-6, IL-10, and IFN-γ, which serves as a
potential benefit in protecting against T2DM development and disease progression through
their roles in influencing platelet-mediated inflammation [229,230]. Further, cholecalciferol
decreases insulin resistance through the increased activity of insulin receptors and enhanced
expression of PPAR-γ [231]. This is also demonstrated in individuals with obesity or
overweight where supplementation reduced fasting blood glucose, decreased truncal
subcutaneous fat, and reversed to normoglycemia [232]. Gut microbiota, vitamin D, and
the development of metabolic diseases, including T2DM [233], has been described as a
three-way axis with vitamin D anti-inflammatory actions playing a central role. Particularly,
vitamin D binding to the vitamin D receptor (VDR) influences gut microbial composition,
with findings showing increased Bifidobacterium and Akkermansia species, which exert
anti-inflammatory effects and improve insulin resistance [234]. The VDR can degrade
lithocholic acid, a secondary bile acid, as well as regulate enzymes that mediate cholesterol’s
conversion into bile acids [235]. Interestingly, animal studies have shown that vitamin
D upregulates tight junction proteins to improve intestinal barrier integrity, reduce LPS
production, and suppress hyperinsulinemia, hyperglycemia, and neuroinflammation [236].
Vitamin A supplementation has also been shown to exert beneficial effects in modulating
microbiota, enhancing pancreatic β-cell activity and reducing inflammatory responses [237],
though the literature is not as robust as compared to that on vitamin D.

Vitamin K is another fat-soluble vitamin whose metabolism has been intricately re-
lated with gut microbiota, with recent meta-analyses demonstrating its benefits in T2DM
risk [238], specifically through the improvement in fasting blood glucose and insulin resis-
tance scores. Recent studies have shown the importance of vitamin K2 supplementation in
improving glycemic homeostasis and insulin sensitivity in T2DM via gut microbiota [239].
Specifically, after 6 months of vitamin K2 supplementation, there were significant reduc-
tions in fasting serum glucose, insulin, and HbA1c levels in patients with T2DM and
significant glucose tolerance improvement in diet-induced obesity mice. In addition, in-
creased concentrations of secondary bile acids (lithocholic and taurodeoxycholic acid) and
short-chain fatty acids (acetic acid, butyric acid, and valeric acid) were found in human and
mouse feces that were accompanied by an increased abundance of the genera responsible
for the biosynthesis of these metabolites. The further fecal microbiota transplant of these
microbiota into a high fat diet-induced obesity rat model showed significant improvements
in glucose tolerance through the activation of colonic bile acid receptors, increased GLP-1,
and anti-inflammatory effects [239] (Figure 3).

Water-soluble vitamins have also been implicated in various facets related to T2DM [240].
For example, patients with prediabetes and T2DM have a higher vitamin C [240] requirement
than those without; thus, dietary approaches may help with the treatment of the condition.
Further, treatment with metformin, currently the first-line treatment of T2DM, has been shown
to cause vitamin B12 deficiency [241]. A recent study showed that metformin can assist gut
microbiota in contributing to this deficiency [242]. Using functional and genomic analyses
via high-throughput screens for E. coli and C. elegans, it was shown that metformin helps
bacteria gather B12 from the environment by increasing the expressions of B12 transporter
genes, thus reducing the B12 supply to T2D patients taking the drug over time [242]. It is
important to note that vitamin B12 deficiency can further exacerbate the sequelae of T2DM
such as peripheral neuropathy and even macrovascular complications in patients with the
condition [243]. Therefore, B12 supplementation is important in patients on metformin
treatment. Collectively, there is strong evidence showing the impact of vitamins on gut
microbiota and associated T2DM metabolic abnormalities (Figure 3).
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on HgbA1c and insulin resistance through decreasing reactive oxygen species, pro-inflammatory
markers, and the degradation of excess secondary bile acids. Water-soluble vitamins including B12 are
affected by metformin, the first-line treatment for T2DM, while vitamin C and B12 requirements are
increased; therefore, supplementation is important in patients with the condition. Vitamin K improves
the bile acid profile, increases GLP-1, and increases SCFAs to improve metabolic parameters. Minerals
including calcium and zinc have beneficial effects on microbiota, while iron excess is associated with
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promote insulin resistance, radical oxygen and nitrogen species, and β-cell apoptosis. Abbreviations:
T2DM, type 2 diabetes mellitus; SCFAs, short-chain fatty acids; HgbA1c, Hemoglobin A1c; GLP-1,
Glucagon like peptide 1; LPS, lipopolysaccharides; ROS, reactive oxygen species.

5.2. Minerals, Gut Microbiota, and T2DM

Minerals, including zinc, calcium, selenium, potassium, magnesium, copper, and
iron, are found in various food groups that serve an essential role in health, as well as
glucose metabolism [244]. For example, zinc has been shown to have important effects in
activating the cell signaling pathway that can prolong the action of insulin and modulate
insulin receptors [245]. Specifically, zinc is highly involved in insulin processing, storage,
and secretion in pancreatic β cells, with two zinc molecules required to coordinate these
processes [246]. Further, zinc serves as an important antioxidant that improves markers of
diabetes mellitus through the reduction in reactive oxygen species (ROS) [247]. Some of
these processes may also be mediated by gut microbiota, as zinc deficiency has been shown
to promote unfavorable effects on microbial composition and inflammatory markers [248].
Commensal bacterial species work to increase the bioavailability of zinc and iron, while
pathogenic species promote the opposite [249]; therefore, dysbiosis in T2DM that increases



Nutrients 2024, 16, 269 16 of 40

unfavorable gut microbial composition may, to a certain extent, be attributed to zinc and
iron deficiency [250].

Iron is the most abundant trace metal in the human body and has also been intricately
related to glucose metabolism [251]. Pancreatic β cells are heavily involved in controlling
iron homeostasis through the release of hepcidin, which binds transferrin, the molecule
that transports iron in the blood [252]. Further, iron deficiency is correlated with impaired
insulin release [253]. The Fenton reaction, which generates radical species from iron, can
amplify glucose-induced insulin secretion [254]; however, when ROS accumulate in states
of iron overload, these redox reactions can lead to insulin resistance and pancreatic β cells’
apoptosis [255]. As such, iron supplementation has been shown to have negative effects
on gut microbial composition, with observed decreases in Lactobacillus and Bifidobacterium,
and with relative increases in pro-inflammatory Escherichia coli [256]. Therefore, low-iron
diets can protect against the development of metabolic disease through improved TGF-β
signaling [257]. Similarly, trace elements such as copper, when in excess, have similar
negative effects through the production of reactive oxygen species, promoting insulin
resistance [245], though the effects of copper on gut microbiota are not well understood.

Calcium is the most abundant mineral in humans with calcium signaling influencing
insulin secretion and resistance through its systemic importance and associations with
other vitamin and mineral deficiencies such as hypomagnesia and hypovitaminosis D [258].
Study findings have shown that hypocalcemia and hypomagnesia are correlated with
increased plasma blood glucose and HgbA1c in humans [259]. A favorable gut microbiome
is essential for optimal calcium absorption, with SCFA production found to lower the pH in
the colon, making calcium more soluble and therefore absorbable [244]. The interrelation-
ship between gut microbiota and magnesium is similar, with magnesium supplementation
promoting Lactobacillus spp. Production, and reciprocally, the resulting SCFA production
can improve mineral absorption (Figure 3). Therefore, states of dysbiosis, such as T2DM,
contribute to mineral deficiencies by impairing mineral metabolism, absorption, and other
important processes [260].

6. Food Groups and Related Effects on Gut Microbiota and T2DM

Considering the effects of macro- and micronutrients on gut microbiota and T2DM
discussed above, food groups and dietary patterns are major determinants of the gut
microbiota–metabolic disorder axis. Therefore, in the following sections, we present the
interrelations between food groups (cereals, whole grains, fruits, vegetables, dairy products,
meat products, and oilseeds), gut microbiota, and T2DM and how food patterns and
adherence to certain diets modulate the relative abundance of several gut microbiota taxa
and their impact on physiologic, metabolic, and hormonal functions that impinge on the
prevention, development, and management of T2DM.

6.1. Cereals and Cereal Products

Cereals are composed of whole grains, wheat, oats, rye, and barley, which have
been shown to have beneficial effects on metabolic health and gut microbiota [261,262].
Over the years, an increasing number of studies have elucidated the effects of cereal
products on T2DM, largely showing that the components within cereals decrease the risk of
developing the disease and related sequelae [263–266]. Dietary recommendations for cereals
in metabolic disease include increasing the intake of cereals with whole grains and limiting
the intake of refined grains or cereals with processed sugars and artificial sweeteners [267].
Both whole wheat intake and the intake of barley, oat, and rye have been associated with
improved blood glucose levels [268,269] and increased insulin sensitivity [270]. It should
be noted that the beneficial effects of cereals appear when the intake is high, at least 4 g
of β-glucans daily [269,271]. For example, a supplement of up to 50 g of whole grains
per day was associated with a 25% decrease in the risk of T2DM [272]. Similarly, the
consumption of two servings of whole grains per day was associated with a 21% decrease
in the risk of T2DM [273], while a refined grain intake of 200–400 g per day was associated
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with a 6–14% increase in the risk of T2DM [272]. The composition of the whole grains
such as magnesium, phytochemicals, isoflavins, and lignins was also associated with
beneficial effects in T2DM [274]. Adding cereal fiber to meals reduced post-prandial insulin
release, indicating the important roles of fiber in improving insulin sensitivity [266]. Taken
together, these data provide strong evidence for cereal products in reducing the risk of
T2DM development.

Further, cereal-based dietary approaches are shown to affect multiple metabolic param-
eters in individuals already diagnosed with T2DM, some of which may be related to changes
in gut microbiota. For example, after a 3-month adherence to high dietary fiber-based
cereals, there were favorable trends in lipids, HgbA1, body mass index (BMI), adipose distri-
bution, and fasting C-peptide levels [263]. Similarly, high fiber rye, a component of healthy
cereal, is shown to improve similar parameters when compared to refined wheats [264]. In
addition to improving metabolic parameters, the high fiber rye diet produced important
changes in gut microbiota, including elevated SCFA-producing Agathobacter and decreased
Ruminococcus torques, with associated increases in plasma butyrate concentrations [264].
When compared to refined grains, the whole grain has immunomodulatory effects that were
associated with microbial composition alterations [275]. For example, the introduction of
wheat grains after a 2-week Western-style diet improved SCFAs, increased SCFA-producing
Lachnospira, and reduced the pro-inflammatory Enterobacteriaceae family which correlated
with positive changes in effector memory T-cell activity and acute innate immune re-
sponse [275]. Other immunomodulatory effects of cereals have also been described in the
literature, with the reduced activity of pro-inflammatory cytokines, TNF-α and IL-6, being
observed after consumption [276,277]. In rodent studies, the effects of wheat also improved
GPR41/43 receptor expression and enhanced GLP-1 secretion with concomitant increases
in SCFA-producing bacteria, providing further insights into the multitude of effects that
cereals have on metabolic disease [278].

In addition to the changes described above, it seems that a general increase in Bifi-
dobacterium and Lactobacillus spp. is common after cereal consumption, an effect consistent
with other recent studies [265]. Previous studies have also shown that diets rich in whole
wheat compared to refined wheats exhibit an abundance of Bifidobacterium and relative
decreases in Bacteroides after a 12-week intervention [279]. The type of cereal consumed is
also important in determining microbiota shifts. For example, an increase in the abundance
of Bifidobacterium and Lactobacillus was seen in the gut microbiota of people who consumed
whole grain cereals for breakfast, compared to the microbiota of people who consumed
cereals based on wheat bran [280]. A corn-based cereal diet increased the abundance of fecal
Bifidobacteirum after a 3-week intervention, as compared to a refined-corn-based cereal [281].
These changes in the composition of the gut microbiota could be observed even at a low
intake of whole corn (29.6% of the recommended total of 48 g [281]). However, the opposite
is also true, with the sugar additives and processing seen in refined cereals having been
shown to have negative effects on both gut microbial composition and related metabo-
lites [282]. Therefore, it is evident that eating cereals with naturally occurring fibers can
be beneficial in preventing or treating metabolic derangements in T2DM, while avoiding
refined cereals and cereals with additives is also important.

6.2. Fruits and Vegetables

In general, some of the healthiest foods are considered vegetables and fruits, due
to their content of dietary fiber, vitamins, minerals, and flavonoids [283]. Multiple stud-
ies have demonstrated the inverse associations between the consumption of green leafy
vegetables and the risk of developing T2DM [67,284,285], the consumption of fruits and
T2DM [286], as well as the intake of mixed fruits and vegetables and T2DM [287]. Specifi-
cally, an intake of 0.2 servings per day of green leafy vegetables reduced the risk for type
2 diabetes by 13% [284], with similar findings in another meta-analysis showing a risk
reduction of 14% [285]. Changes in microbial shifts after the consumption of fruits and
vegetables have also been described with study findings showing a decreased abundance
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of the Lachnospiraceae family, including Ruminococcus, and increased concentrations of
Faecalibacterium and Lactobacillus [288]. Further metagenomic sequencing studies combin-
ing two large human cohorts have shown changes that include an increased abundance
of Faecalibacterium prausnitzii, Akkermansia muciniphila, Ruminococcaceae, Clostridiales, and
Acidaminococcus and a decrease in the abundance of Fusobacterium [289].

Vegetables and fruits are sources of antioxidants that have been associated with aug-
menting glucose metabolism, by improving oxidative stress [290], particularly given their
high content of flavonoids and polyphenols [291]. Interestingly, flavonoids are shown to
modulate gut microbiota-related metabolic processes, particularly through the suppres-
sion of lipogenesis and the upregulation of lipolysis, via the FXR pathway in bile acid
metabolism [292]. These effects of flavonoids were corelated with increased Akkermansia
and reductions in Lachnoclostridium, Desulfovibrio, Colidextribacter, and Blautia, all of which
are strongly associated with metabolic parameters [292]. Further, flavonoid-based dietary
interventions alleviated inflammation as measured through LPS/TLR-4, TNF-α, IL-6, and
IL-10, while also improving insulin resistance, HgbA1c, and oral glucose tolerance [293].
Interestingly, GLP-1 release was also enhanced following flavonoid introduction. The
beneficial effects of fruit and vegetable flavonoids also are shown by the improvement of
intestinal barrier integrity, as well as promoting islet cell proliferation and the suppression
of islet cell apoptosis [294]. Flavonoids also modulate glucose metabolism by the upregula-
tion of the IRS/AKT signaling pathway to increase GLUT4 translocation and the synthesis
of glycogen, while concomitantly improving the Firmicutes-to-Bacteroidetes ratio [295].
As such, flavonoids, a major component of fruits and vegetables, exert a multitude of
metabolic benefits at the intersection between gut microbiota and glucose homeostasis.

In addition to flavonoids, fruits and vegetables are comprised of other beneficial bioac-
tive phytochemical-based nutrients, including vitamin C and carotenoids, which contribute
to insulin sensitivity [296,297]. Also, green leafy vegetables contain magnesium which is in-
versely associated with an increased risk for type 2 diabetes [298]. The association between
fruit and vegetable intake and a reduced risk of type 2 diabetes may be due to their dietary
fiber content [299] and the subsequent effects of weight loss in overweight individuals [300].
Fruit and vegetable juices, depending on their content, may have differing outcomes on
both gut microbiota and T2DM [301–304]. Fruit juices that are altered by added sugar or
artificial sweeteners pose harmful risks to the gut metabolic profile [301]. For example,
the artificial sweetening of fruit beverages results in modest changes in gut microbiota,
particularly in the ratio of Firmicutes to Bacteroidetes [301]. However, the introduction of
natural fruit or vegetable extracts or juice generally has favorable effects [302–304]. In a
prediabetic rodent model, blueberry juice improved the microbiota composition as well
as metabolic parameters including insulin signaling, inflammation, ketogenesis, and fatty
acid oxidation [303]. Similarly, pomegranate juice can reduce the post-prandial glycemic
response after eating a high-carbohydrate meal, primarily breads [305]. Overall, fruits and
vegetables are an important food group in maintaining a healthy microbiota profile because
diets high in fruits, vegetables, legumes, and whole grains are accompanied by optimal
body weight, reduced inflammation, and lower insulin resistance.

6.3. Milk and Dairy Products

Dairy products are rich in protein, B vitamins, and minerals, such as calcium, mag-
nesium, potassium, phosphorus, and zinc, all of which have important effects on gut
microbiota composition [306]. Dairy proteins, especially whey proteins, are associated with
improved insulin sensitivity and a reduced risk of type 2 diabetes [307]. Interestingly, high
quantities of dairy consumption (two servings per day) in adolescence were associated
with a 38% decreased risk of developing T2DM in middle-aged women [308]. Further,
an inverse correlation was observed between the intake of skimmed or semi-skimmed
dairy products and the risk of type 2 diabetes [309]. This decreased risk was seen with
200 g of skimmed dairy product intake, with an improvement in risk up to 6% with every
additional 200 g, up to a daily total of 600 g [272]. Another study has shown that one
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serving of dairy per day has beneficial effects on T2DM risk reduction of 9% in men and 4%
in women [310,311]. Dairy consumption produces specific compositional changes in gut
microbiota. For example, the introduction of dairy products or intake of yogurt for three
weeks led to decreased Bacteroides fragilis [306] and an abundant growth of Lactobacillus and
Bifidobacterium [312]. Similarly, the consumption of kefir, a yogurt-based drink, over the
next 4 weeks increased the abundance of Lactobacillus [313,314], with associated elevated
levels in fecal SCFAs [314]. Interestingly, in studies on murine models, yogurt-derived
Lactobacillus plantarum has been shown to ameliorate the reduction in pancreatic β-cell mass
with notable improvements in insulin resistance [315]. Taken together, these studies show
that dairy consumption prompts significant changes in the composition of gut microbiota
that are beneficial to the host in mitigating the deleterious effects of T2DM.

6.4. Meat and Meat Products

The recommendations for patients with type 2 diabetes regarding the intake of meat
and meat products are similar to the recommendations for healthy individuals, i.e., one
portion/day or the equivalent of 100–150 g of lean meat per day [316]. Lean meat and meat
products are sources of protein with high biological value, but they are also important
sources of iron and vitamin B12 [317]. However, red meats are shown to exert negative
effects in both contributing to T2DM development and worsening the condition [316].
Several positive associations have been reported between the intake of processed red meats
and increased blood glucose concentrations, insulin levels, and risk for obesity [318,319].
Moreover, the risk for type 2 diabetes was associated with the intake of red meat up to
100 g per day [272] but also with the intake of up to 50 g per day of processed meat
products [272,320]. These effects have been attributed to the content of heterocyclic amines
and nitrates affecting glucose metabolism [321,322]. These metabolites contribute to insulin
resistance through adverse effects on pancreatic β-cell function and insulin-like growth
factor (IGF-1) [323]. Further, these inorganic nitrates, present in processed meats, promote
DNA damage through conversion to cytotoxic agents such as peroxy-nitrite as well as
reactive oxygen species, which increase pro-inflammatory cytokine production and hamper
glucose homeostasis [324]. Red meats also enhance the presence of dietary advanced
glycosylated end products (dAGEs), the result of the Maillard reaction that occurs between
amino acids and reducing sugars [325]. These dAGE products are shown to increase insulin
resistance, while a restricted intake of dietary glycoxidation products improved insulin
sensitivity in diabetic mice [326]. Additionally, it has been shown that hyperglycemia
further enhances the glycation process, thus worsening the complications of uncontrolled
diabetes. Therefore, red meats are a source of inorganic nitrates and substrates for the
generation of dAGEs, which may contribute to the development of insulin resistance and
complicate pre-existing diabetes.

Red meat may also be detrimental to gut microbial composition. It has been shown
that red meat decreases Lactobacillus, Paralactobacillus, and Prevotella, while also decreasing
SCFAs in animal models [327]. Further, the administration of beef, a red meat derivate, in
mouse and rat study models led to an increase in the amount of Clostridium and Blautia and
a decrease in the amount of Bifidobacterium and Akkermansia [328]. The addition of butyrate
containing starch was shown to reverse the negative effects of red meat diet adherence
through increased abundances of Clostridium coccoides, Clostridium leptum, Lactobacillus
spp., Parabacteroides distasonis, and Ruminococcus bromii, but it also showed a decrease
in the amount of Ruminococcus torques, Ruminococcus gnavus, and Escherichia coli [329].
However, the effects on gut microbial composition are dependent on the type of meat
and proteins they contain [330]. For example, a study evaluating the gut microbiota of
individuals consuming chicken meat is characterized by the highest proportion of Pre-
votella 9 (22.45%), followed by Dialister, Faecalibacterium, Megamonas, Prevotella, Roseburia,
Alloprevotella, Ruminococcaceae, Eubacterium, and Succinivibrio, while the gut microbiota
of individuals consuming pork is characterized by the highest proportion of Bacteroides
(17.3%), followed by Faecalibacterium, Roseburia, Dialister, Ruminococcus, Blautia, Megamonas,
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Agathobacter, Subdoligranulum, and Eubacterium [331]. On the other hand, pork intake de-
creased the amount of Blautia, Bifidobacterium, and Alistipes and increased the amount of
Akkermansia muciniphila and Ruminococcaceae [332]. Collectively, the intake of pork meat
induced low-grade inflammation and induced oxidative stress and the upregulation of
lipid metabolism genes such as PPAR-α and PPAR-γ [332]. Further, an increase in the
abundance of Lactobacillus and a decrease in SCFA levels and SCFA-producing bacterial
species such as Fusobacterium, Bacteroides, and Prevotella have been reported in laboratory
mice fed beef, pork, or fish proteins, compared to mice that were given protein from sources
other than meat, such as soy or casein [333]. Similarly, laboratory rats fed chicken meat had
the highest abundance of Lactobacillus, compared to laboratory rats fed soy, which had the
highest abundance of Ruminococcus and the lowest abundance of Lactobacillus [334]. The
results of a systematic review showed that the administration of beef in mouse and rat
study models led to an increase in the amount of Clostridium and Blautia and a decrease in
the amount of Bifidobacterium and Akkermansia [328]. Collectively, these changes indicate
that meats derived from chicken have more favorable effects on gut microbiota and insulin
resistance as compared to pork and red meats.

6.5. Nuts, Oils, and Oilseeds

Tree nuts have been shown to exert favorable effects on gut microbiota and metabolic
parameters [335,336]. For example, replacing starchy foods with peanuts or almonds in pa-
tients with type 2 diabetes led to improvements in blood glucose, HgbA1c, and inflammatory
markers [335]. In addition, the daily intake of raw or roasted almonds for 4 weeks promoted
Bifidobacterium spp. and Lactobacillus spp. and inhibited the growth of Enterococcus spp. Inter-
estingly, the administration of raw almonds had a greater Bifidobacteria-promoting effect than
roasted almonds, with both roasted and raw almonds having a potential prebiotic effect, in-
cluding regulating gut bacteria and improving metabolic activities [336]. Similarly, nut intake
promotes an increase in the abundance of Faecalibacterium, Clostridium, Dialister, and Roseburia
and a decrease in the abundance of Ruminococcus, Dorea, Oscillopira, and Bifidobacterium [337].
Pistachio consumption led to an increase in the abundance of potentially beneficial, butyrate-
producing bacteria [338], while eating whole, roasted, or chopped almonds is associated
with an increase in the abundance of Lachnospira and Roseburia [339]. These alterations in
gut microbiota were associated with a concomitant decrease in pro-inflammatory secondary
bile acid production and LDL cholesterol, two interrelated parameters in the development of
hyperglycemia and insulin resistance [337]. Also, a diet enriched with 20% peanut protein was
effective in increasing the amount of Bifidobacterium and reducing the amount of Enterobacteria
and Clostridium perfringens in rats [340].

Oilseeds are important sources of polyunsaturated and monounsaturated fatty
acids [341,342] and their consumption has been associated with a decreased risk for type
2 diabetes [343]. For example, dietary flaxseed oil, given its rich composition of omega-3,
was associated with decreased Firmicutes and pro-inflammatory markers such as IL-1β,
TNF-α, and IL-6 and increased Bacteroidetes and Alistipes that negatively correlate with
LPS production [344]. Further, the direct markers of hyperglycemia showed significant
improvement, particularly in fasting blood glucose and glycated hemoglobin. Interest-
ingly, superoxide dismutase (SOD) activity was increased as well, with previous studies
showing that SOD activity can improve diabetes-induced mitochondrial electron trans-
port dysfunction and diabetes complications such as retinopathy [345]. Meta-analyses
of human studies confirm these beneficial anti-inflammatory effects of oilseeds, with
decreased CRP and IL-6 activity leading to improved endothelial function and metabolic
activity [346]. Oilseeds cause significant changes in the gut composition profile, such as
increased Lactobacillus spp. and SCFAs, with reduced production of harmful metabolites
such as TMAO [347]. As such, oilseeds and nuts serve as healthy food sources that
are intricate components of the Mediterranean diet and modulate important metabolic
processes associated with T2DM. A summary of food groups and the mechanisms by
which they impact T2DM is presented in Table 1.
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Table 1. Food groups and resulting effects on T2DM.

Food Group Study Period Outcome Measured Results/Implications Subject Type Reference

Cereals and Cereal Products

Meta-Analysis Diabetes risk

Two servings of whole grains decreased the risk of
developing T2DM by 21%

Refined grain intake increased the risk of developing
T2DM by 6–14%

Humans [272]

3 months Metabolic Parameters Improvements in lipid quality, HgbA1c, BMI, adipose
distribution, and fasting C-peptide levels Humans [263]

6 weeks Gut Microbiota and
Inflammatory Markers

Whole grains improved effector memory T-cell activity
and acute innate immune response

Increased quantity of SCFAs and SCFA-producing
genera including Lachnospira

Decreased relative abundances of pro-inflammatory
bacterial family Enterobacteriaceae

Humans [275]

9 weeks Gut Microbiota and
Gut Hormones

Increased SCFA-producing species
Increased GLP-1 secretion Mice [278]

12 weeks Gut Microbiota Increased Bifidobacterium and decreased Bacteroides Humans [279]

Fruits and Vegetables

Meta-Analysis Diabetes risk Intake of 0.2 servings per day of green leafy vegetables
reduced the risk for type 2 diabetes by 13% Humans [284]

Gut Microbiota and
Metabolic Parameters

Increased Akkermansia
Reduced Lachnoclostridium, Desulfovibrio, Colidextribacter,

and Blautia
Upregulation of lipolysis through the FXR, bile acid

metabolism pathway

Mice [292]

Inflammatory Markers and
Metabolic Parameters

Reduced LPS/TLR-4 activity, TNF-α, and IL-6
Improved IL-10

Improved insulin resistance and HgbA1c
Increased GLP-1 secretion

Mice [293]

Glucose Metabolism and
Gut Microbiota

Upregulation of the IRS/AKT signaling pathway to
increase GLUT4 translocation and synthesis of glycogen

Improved Firmicutes-to-Bacteroidetes ratio
Mice [295]
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Table 1. Cont.

Food Group Study Period Outcome Measured Results/Implications Subject Type Reference

Milk and Dairy Products

Diabetes risk One serving of dairy per day has beneficial effects on
T2DM risk reduction of 9% in men and 4% in women Humans [310,311]

3 weeks Gut Microbiota
Increased Bifidobacterium and Lactobacillus spp.

Increased serum IgA
Decreased Bacteroides fragilis

Humans [306,312]

Gut Microbiota and
Pancreatic Function

Lactobacillus isolated from yogurt increased SCFA levels
and SCFA receptors, GPR41/43

Increased SCFA-producing genera
Inhibited reduction of β-cell mass

Mice [315]

Meat and Meat Products

Meta-Analysis Diabetes Risk

Risk for T2DM is increased with intake of 100 g
of red meat per day

Risk for T2DM is increased with intake of 50 g of
processed meat per day

Humans [272,320]

Gut Microbiota Red meat decreases Lactobacillus, Paralactobacillus, and
Prevotella, while also decreasing SCFAs Dogs [327]

1–4 weeks Gut Microbiota Increased Clostridium and Blautia
Decreased Bifidobacterium and Akkermansia Mice [328]

3 months Gut Microbiota, Inflammatory
and Metabolic parameters

Pork meat decreased Blautia, Bifidobacterium,
and Alistipes

Induced low-grade inflammation
Induced oxidative stress

Upregulated lipid metabolism genes including
PPAR-α and PPAR-γ

Mice [332]
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Table 1. Cont.

Food Group Study Period Outcome Measured Results/Implications Subject Type Reference

Nuts, Oils and Oilseeds

3 months Parameters of T2DM
Peanuts or almonds in patients with T2DM improved

blood glucose, HgbA1c, and inflammatory markers like
IL-6 expression

Humans [335]

6 weeks Gut Microbiota and
Metabolic Parameters

Nut intake increased the abundance of Faecalibacterium,
Clostridium, Dialister, and Roseburia and decreased the

abundance of Ruminococcus, Dorea, Oscillopira,
and Bifidobacterium

Decreased pro-inflammatory bile acid production and
LDL cholesterol

Humans [337]

5 weeks Gut Microbiota and
Inflammatory Parameters

Dietary flaxseed oil decreased severity of T2DM,
improved the Firmicutes-to-Bacteroidetes ratio, while

increasing Alistipes
Reduction in IL-1β, TNF-α, IL-6, and LPS production

Rats [344]

Abbreviations: T2DM, type 2 diabetes mellitus, HgbA1c, Hemoglobin A1c; BMI, body mass index; SCFA, short-chain fatty acid; GLP-1, glucagon-like peptide 1; FXR, Farsenoid X
Receptor; LPS, lipopolysaccharides; TLR-4, Toll-like receptor 4; TNF-α, Tumor Necrosis Factor alpha; IL, interleukin; GLUT4, Glucose Transporter 4; IRS, insulin receptor substrate; IgA,
Immunoglobulin A; PPAR, peroxisome proliferator-activated receptor; LDL, low density lipoprotein.
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7. Effects of Nutrition on Gut Microbiota in Individuals with Comorbid T2DM
and COVID-19

Given the intricate and dynamic relationship between gut microbiota and the host,
gut microbiota play a critical role in individuals with comorbid COVID-19 and T2DM. For
example, COVID-19 infection is shown to exacerbate microbiota-related alterations in gut
microbes, including relative increases in Enterobacteriaceae and fungal species belonging to
genera Candida and Aspergillus in patients with T2DM [348]. At the same time, butyrate
production was diminished, and associated genera were reduced, with the overall alter-
ations being associated with worsening inflammatory markers [348]. Furthermore, the
microbiome analysis of patients with comorbid COVID-19 and T2DM showed significant
correlations between the overgrowth of pathogenic species, with a concurrent decrease
in normal gut flora, when compared to those with COVID-19 without T2DM [349]. The
introduction of probiotics through dietary supplementation prevented the pathogenic
bacterial overgrowth described in patients with comorbid COVID-19 and T2DM [349].

Importantly, microbiota might influence the disease severity of COVID-19 in the
setting of T2DM through the production of important metabolites, such as SCFAs and
TMAO [350]. As mentioned above, butyrate and other SCFA-producing bacterial spp.
including Lactobacillus and Bifidobacterium are decreased in individuals with comorbid
COVID-19 and T2DM, with concurrent elevations in pathogenic Clostridium spp. [348,351].
As such, the significant decline in SCFA production diminishes the overall immunomodula-
tory benefits, thereby exaggerating the immune response to COVID-19 [352], an effect that
is worsened in populations with underlying T2DM and related dysbiosis [353]. In addition
to immunomodulatory effects, ACE2 receptors play an essential role in the pathophysiology
of COVID-19, as viral entry into host cells is dependent on its presence [354]. Importantly,
ACE2 receptors are present throughout the ileum and colon, in addition to other organs
such as the lung, kidneys, and heart [355], and receptor regulation is interrelated with
SCFA production [356]. Study findings have shown that SCFA-treated mice had decreased
viral activity both in the airways and intestines through the downregulation of ACE2
receptor expression [356]. Further, the luminal activation of the ACE2 receptor by the
COVID-19 virus upregulates its expression, leading to reduced gut barrier integrity and
leaky gut syndrome. In turn, this can promote metabolic endotoxemia [357] through LPS
production, particularly worsened in a pre-existing inflammatory state such as those seen
in T2DM patients [358]. It has been demonstrated that healthy plant-based foods such
as fruits or vegetables, rich in SCFA-producing and antioxidant capacity, are associated
with a lower severity of COVID-19 infection [359], potentially in part through the inverse
correlation of inflammatory microbial species including Escherichia [360] in combination
with the microbiota-dependent mechanisms described above.

On the other hand, TMAO, found primarily in red meats, is shown to promote the
overproduction of IL-6, thereby infecting human endothelial progenitor cells and wors-
ening disease severity [361]. In individuals with diabetes, elevated IL-6 levels at the time
of hospitalization were significantly related to early mortality risk [362]. Interestingly,
omega-3 PUFA supplementation, an essential component of the Mediterranean diet, was
shown to directly inhibit these negative pro-inflammatory effects of TMAO [362]. These
beneficial changes occurred through the inactivation of the NF-Kβ signaling pathway as
well as a decreasing expression of ACE2, an important regulator in COVID-19 disease sever-
ity [361]. Taken together, these findings suggest that nutrition may serve an important role
in regulating pathophysiologic changes in COVID-19 outcome through the optimization of
microbiota-related metabolites [350]. Therefore, improving dietary intake in individuals
with chronic inflammatory diseases such as those with T2DM may improve outcomes when
affected by COVID-19.

8. Conclusions and Perspective

Over the years, substantial evidence has accumulated supporting the influence of
dietary changes in modulating gut microbiota in ways that safeguard against or contribute
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to the development of T2DM. In this review, we identified the roles of key macronutrients,
micronutrients, and various food groups in these processes. Particularly, we showed the
effects of important microbiota metabolites including SCFAs, BCAAs, TMAO, secondary
bile acids, gut hormones, and inflammatory signaling and how nutrients that are associated
with the development of T2DM have distinct metabolite profiles that mechanistically
lead to or protect against insulin resistance. In general, SCFA-producing species such
as Lactobacillus, Faecalibacterium, Akkermansia, and Eubacterium, are induced by favorable
nutrients such as cereals, nuts, oilseeds, fruits, and vegetables, while inflammatory species
such as Escherichia coli, Ruminococcus torques, and Bacteroides spp. are associated with
red meats, fats, and sugary foods. The various food groups discussed are components
of common diets such as the MD and WD, which are also shown to have contrasting
effects on gut microbiota and the development of T2DM. Through important trends, the
mechanisms and associations have been described regarding this topic; the relationship
between nutrients, gut microbiota, hyperglycemia, insulin resistance, and the host is
complex and new insights are constantly changing our understanding of these processes.
Limitations within the studies presented also exist. An increasing number of human
studies have elucidated the mechanisms described within this review, though animal
studies serve as important models in demonstrating the associations with gut microbiota,
their metabolites, and insulin resistance given that 90% of the gut microbiota between
mice and humans are deemed to be similar [363]. Still, these murine studies may not
translate fully in humans; therefore, the interpretation should be taken with caution when
attempting to generalize these findings. Nevertheless, there is significant data showing
that gut microbiota is heavily involved at the intersection of nutrition and T2DM.
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245. Bjørklund, G.; Dadar, M.; Pivina, L.; Doşa, M.D.; Semenova, Y.; Aaseth, J. The Role of Zinc and Copper in Insulin Resistance and
Diabetes Mellitus. Curr. Med. Chem. 2020, 27, 6643–6657. [CrossRef]

246. Li, Y.V. Zinc and insulin in pancreatic beta-cells. Endocrine 2014, 45, 178–189. [CrossRef] [PubMed]
247. Kloubert, V.; Rink, L. Zinc as a micronutrient and its preventive role of oxidative damage in cells. Food Funct. 2015, 6, 3195–3204.

[CrossRef] [PubMed]
248. Sauer, A.K.; Grabrucker, A.M. Zinc Deficiency During Pregnancy Leads to Altered Microbiome and Elevated Inflammatory

Markers in Mice. Front. Neurosci. 2019, 13, 1295. [CrossRef]
249. Celis, A.I.; Relman, D.A. Competitors versus Collaborators: Micronutrient Processing by Pathogenic and Commensal Human-

Associated Gut Bacteria. Mol. Cell 2020, 78, 570–576. [CrossRef]
250. Fukunaka, A.; Fujitani, Y. Role of Zinc Homeostasis in the Pathogenesis of Diabetes and Obesity. Int. J. Mol. Sci. 2018, 19, 476.

[CrossRef]
251. Sha, W.; Hu, F.; Xi, Y.; Chu, Y.; Bu, S. Mechanism of Ferroptosis and Its Role in Type 2 Diabetes Mellitus. J. Diabetes Res. 2021, 2021,

9999612. [CrossRef]
252. Kulaksiz, H.; Fein, E.; Redecker, P.; Stremmel, W.; Adler, G.; Cetin, Y. Pancreatic beta-cells express hepcidin, an iron-uptake

regulatory peptide. J. Endocrinol. 2008, 197, 241–249. [CrossRef] [PubMed]
253. Berthault, C.; Staels, W.; Scharfmann, R. Purification of pancreatic endocrine subsets reveals increased iron metabolism in beta

cells. Mol. Metab. 2020, 42, 101060. [CrossRef] [PubMed]

https://doi.org/10.3390/nu12092518
https://doi.org/10.1186/s12902-022-01152-x
https://doi.org/10.3389/fimmu.2022.869591
https://doi.org/10.1016/j.jmb.2005.03.060
https://doi.org/10.1038/s41598-019-56904-y
https://doi.org/10.3390/ijms24020940
https://doi.org/10.1038/s41598-020-77806-4
https://www.ncbi.nlm.nih.gov/pubmed/33303854
https://doi.org/10.11131/2018/101377
https://doi.org/10.1016/j.ejps.2021.106105
https://www.ncbi.nlm.nih.gov/pubmed/34942358
https://doi.org/10.1155/2020/2354108
https://www.ncbi.nlm.nih.gov/pubmed/32064275
https://doi.org/10.1039/D3FO02943C
https://doi.org/10.1186/s12916-023-02880-0
https://doi.org/10.3390/nu9090997
https://doi.org/10.4239/wjd.v12.i7.916
https://www.ncbi.nlm.nih.gov/pubmed/34326945
https://doi.org/10.1038/s42003-023-04475-0
https://www.ncbi.nlm.nih.gov/pubmed/36693976
https://doi.org/10.7759/cureus.32277
https://doi.org/10.3390/ijms22136803
https://www.ncbi.nlm.nih.gov/pubmed/34202712
https://doi.org/10.2174/0929867326666190902122155
https://doi.org/10.1007/s12020-013-0032-x
https://www.ncbi.nlm.nih.gov/pubmed/23979673
https://doi.org/10.1039/C5FO00630A
https://www.ncbi.nlm.nih.gov/pubmed/26286461
https://doi.org/10.3389/fnins.2019.01295
https://doi.org/10.1016/j.molcel.2020.03.032
https://doi.org/10.3390/ijms19020476
https://doi.org/10.1155/2021/9999612
https://doi.org/10.1677/JOE-07-0528
https://www.ncbi.nlm.nih.gov/pubmed/18434354
https://doi.org/10.1016/j.molmet.2020.101060
https://www.ncbi.nlm.nih.gov/pubmed/32763423


Nutrients 2024, 16, 269 36 of 40

254. Leloup, C.; Tourrel-Cuzin, C.; Magnan, C.; Karaca, M.; Castel, J.; Carneiro, L.; Colombani, A.L.; Ktorza, A.; Casteilla, L.; Pénicaud,
L. Mitochondrial reactive oxygen species are obligatory signals for glucose-induced insulin secretion. Diabetes 2009, 58, 673–681.
[CrossRef] [PubMed]

255. Cooksey, R.C.; Jouihan, H.A.; Ajioka, R.S.; Hazel, M.W.; Jones, D.L.; Kushner, J.P.; McClain, D.A. Oxidative stress, beta-cell
apoptosis, and decreased insulin secretory capacity in mouse models of hemochromatosis. Endocrinology 2004, 145, 5305–5312.
[CrossRef] [PubMed]

256. Paganini, D.; Zimmermann, M.B. The effects of iron fortification and supplementation on the gut microbiome and diarrhea in
infants and children: A review. Am. J. Clin. Nutr. 2017, 106 (Suppl. S6), 1688s–1693s. [CrossRef]

257. Salaye, L.; Bychkova, I.; Sink, S.; Kovalic, A.J.; Bharadwaj, M.S.; Lorenzo, F.; Jain, S.; Harrison, A.V.; Davis, A.T.; Turnbull, K.; et al.
A Low Iron Diet Protects from Steatohepatitis in a Mouse Model. Nutrients 2019, 11, 2172. [CrossRef]

258. Ozcan, L.; Tabas, I. Calcium signalling and ER stress in insulin resistance and atherosclerosis. J. Intern. Med. 2016, 280, 457–464.
[CrossRef]

259. Faysal, M.R.; Akter, T.; Hossain, M.S.; Begum, S.; Banu, M.; Tasnim, J.; Sultana, I.; Krishna, S.P.; Alam, S.; Akter, T.; et al. Study of
Serum Calcium and Magnesium Levels in Type 2 Diabetes Mellitus Patients. Mymensingh Med. J. 2023, 32, 54–60.

260. Bergillos-Meca, T.; Cabrera-Vique, C.; Artacho, R.; Moreno-Montoro, M.; Navarro-Alarcón, M.; Olalla, M.; Giménez, R.; Seiquer, I.;
Ruiz-López, M.D. Does Lactobacillus plantarum or ultrafiltration process improve Ca, Mg, Zn and P bioavailability from fermented
goats’ milk? Food Chem. 2015, 187, 314–321. [CrossRef]

261. Kulathunga, J.; Simsek, S. A Review: Cereals on Modulating the Microbiota/Metabolome for Metabolic Health. Curr. Nutr. Rep.
2022, 11, 371–385. [CrossRef] [PubMed]

262. van Trijp, M.P.H.; Schutte, S.; Esser, D.; Wopereis, S.; Hoevenaars, F.P.M.; Hooiveld, G.; Afman, L.A. Minor Changes in the
Composition and Function of the Gut Microbiota During a 12-Week Whole Grain Wheat or Refined Wheat Intervention Correlate
with Liver Fat in Overweight and Obese Adults. J. Nutr. 2021, 151, 491–502. [CrossRef]

263. Li, X.; Shi, Y.; Wei, D.; Ni, W.; Zhu, N.; Yan, X. Impact of a high dietary fiber cereal meal intervention on body weight, adipose
distribution, and cardiovascular risk among individuals with type 2 diabetes. Front. Endocrinol. 2023, 14, 1283626. [CrossRef]
[PubMed]

264. Iversen, K.N.; Dicksved, J.; Zoki, C.; Fristedt, R.; Pelve, E.A.; Langton, M.; Landberg, R. The Effects of High Fiber Rye, Compared
to Refined Wheat, on Gut Microbiota Composition, Plasma Short Chain Fatty Acids, and Implications for Weight Loss and
Metabolic Risk Factors (the RyeWeight Study). Nutrients 2022, 14, 1669. [CrossRef]

265. Fava, F.; Ulaszewska, M.M.; Scholz, M.; Stanstrup, J.; Nissen, L.; Mattivi, F.; Vermeiren, J.; Bosscher, D.; Pedrolli, C.; Tuohy, K.M.
Impact of wheat aleurone on biomarkers of cardiovascular disease, gut microbiota and metabolites in adults with high body mass
index: A double-blind, placebo-controlled, randomized clinical trial. Eur. J. Nutr. 2022, 61, 2651–2671. [CrossRef]

266. Gaesser, G.A.; Rodriguez, J.; Patrie, J.T.; Whisner, C.M.; Angadi, S.S. Effects of Glycemic Index and Cereal Fiber on Postprandial
Endothelial Function, Glycemia, and Insulinemia in Healthy Adults. Nutrients 2019, 11, 2387. [CrossRef] [PubMed]

267. Williams, P.G. The benefits of breakfast cereal consumption: A systematic review of the evidence base. Adv. Nutr. 2014, 5,
636s–673s. [CrossRef]

268. Harris Jackson, K.; West, S.G.; Vanden Heuvel, J.P.; Jonnalagadda, S.S.; Ross, A.B.; Hill, A.M.; Grieger, J.A.; Lemieux, S.K.;
Kris-Etherton, P.M. Effects of whole and refined grains in a weight-loss diet on markers of metabolic syndrome in individuals
with increased waist circumference: A randomized controlled-feeding trial. Am. J. Clin. Nutr. 2014, 100, 577–586. [CrossRef]

269. Tosh, S.M. Review of human studies investigating the post-prandial blood-glucose lowering ability of oat and barley food
products. Eur. J. Clin. Nutr. 2013, 67, 310–317. [CrossRef]

270. Pereira, M.A.; Jacobs, D.R., Jr.; Pins, J.J.; Raatz, S.K.; Gross, M.D.; Slavin, J.L.; Seaquist, E.R. Effect of whole grains on insulin
sensitivity in overweight hyperinsulinemic adults. Am. J. Clin. Nutr. 2002, 75, 848–855. [CrossRef]

271. Nilsson, A.C.; Ostman, E.M.; Granfeldt, Y.; Björck, I.M. Effect of cereal test breakfasts differing in glycemic index and content of
indigestible carbohydrates on daylong glucose tolerance in healthy subjects. Am. J. Clin. Nutr. 2008, 87, 645–654. [CrossRef]
[PubMed]

272. Schwingshackl, L.; Hoffmann, G.; Lampousi, A.M.; Knüppel, S.; Iqbal, K.; Schwedhelm, C.; Bechthold, A.; Schlesinger, S.; Boeing,
H. Food groups and risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective studies. Eur. J.
Epidemiol. 2017, 32, 363–375. [CrossRef]

273. Seo, Y.S.; Lee, H.B.; Kim, Y.; Park, H.Y. Dietary Carbohydrate Constituents Related to Gut Dysbiosis and Health. Microorganisms
2020, 8, 427. [CrossRef] [PubMed]

274. Davison, K.M.; Temple, N.J. Cereal fiber, fruit fiber, and type 2 diabetes: Explaining the paradox. J. Diabetes Complicat. 2018, 32,
240–245. [CrossRef] [PubMed]

275. Vanegas, S.M.; Meydani, M.; Barnett, J.B.; Goldin, L.; Kane, A.; Rasmussen, H.; Brown, C.; Vangay, P.; Knights, D.; Jonnalagadda,
S.; et al. Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and
immune and inflammatory markers of healthy adults. Am. J. Clin. Nutr. 2017, 105, 635–650. [CrossRef]

276. Li, C.; Wang, X.; Sun, S.; Liu, S.; Huan, Y.; Li, R.; Liu, Q.; Cao, H.; Zhou, T.; Lei, L.; et al. Effects of a ready-to-eat cereal formula
powder on glucose metabolism, inflammation, and gut microbiota in diabetic db/db mice. Food Sci. Nutr. 2020, 8, 4523–4533.
[CrossRef]

https://doi.org/10.2337/db07-1056
https://www.ncbi.nlm.nih.gov/pubmed/19073765
https://doi.org/10.1210/en.2004-0392
https://www.ncbi.nlm.nih.gov/pubmed/15308612
https://doi.org/10.3945/ajcn.117.156067
https://doi.org/10.3390/nu11092172
https://doi.org/10.1111/joim.12562
https://doi.org/10.1016/j.foodchem.2015.04.051
https://doi.org/10.1007/s13668-022-00424-1
https://www.ncbi.nlm.nih.gov/pubmed/35657489
https://doi.org/10.1093/jn/nxaa312
https://doi.org/10.3389/fendo.2023.1283626
https://www.ncbi.nlm.nih.gov/pubmed/37964962
https://doi.org/10.3390/nu14081669
https://doi.org/10.1007/s00394-022-02836-9
https://doi.org/10.3390/nu11102387
https://www.ncbi.nlm.nih.gov/pubmed/31590437
https://doi.org/10.3945/an.114.006247
https://doi.org/10.3945/ajcn.113.078048
https://doi.org/10.1038/ejcn.2013.25
https://doi.org/10.1093/ajcn/75.5.848
https://doi.org/10.1093/ajcn/87.3.645
https://www.ncbi.nlm.nih.gov/pubmed/18326603
https://doi.org/10.1007/s10654-017-0246-y
https://doi.org/10.3390/microorganisms8030427
https://www.ncbi.nlm.nih.gov/pubmed/32197401
https://doi.org/10.1016/j.jdiacomp.2017.11.002
https://www.ncbi.nlm.nih.gov/pubmed/29191432
https://doi.org/10.3945/ajcn.116.146928
https://doi.org/10.1002/fsn3.1761


Nutrients 2024, 16, 269 37 of 40

277. Roager, H.M.; Vogt, J.K.; Kristensen, M.; Hansen, L.B.S.; Ibrügger, S.; Mærkedahl, R.B.; Bahl, M.I.; Lind, M.V.; Nielsen, R.L.;
Frøkiær, H.; et al. Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major
changes of the gut microbiome: A randomised cross-over trial. Gut 2019, 68, 83–93. [CrossRef]

278. Liu, J.; Zhang, D.; Yang, Z.; Hao, Y.; Wang, Z.; Wang, J.; Wang, Z. Wheat Alkylresorcinols Modulate Glucose Homeostasis through
Improving GLP-1 Secretion in High-Fat-Diet-Induced Obese Mice. J. Agric. Food Chem. 2023, 71, 16125–16136. [CrossRef]

279. Christensen, E.G.; Licht, T.R.; Kristensen, M.; Bahl, M.I. Bifidogenic effect of whole-grain wheat during a 12-week energy-restricted
dietary intervention in postmenopausal women. Eur. J. Clin. Nutr. 2013, 67, 1316–1321. [CrossRef]

280. Costabile, A.; Klinder, A.; Fava, F.; Napolitano, A.; Fogliano, V.; Leonard, C.; Gibson, G.R.; Tuohy, K.M. Whole-grain wheat
breakfast cereal has a prebiotic effect on the human gut microbiota: A double-blind, placebo-controlled, crossover study. Br. J.
Nutr. 2008, 99, 110–120. [CrossRef]

281. Carvalho-Wells, A.L.; Helmolz, K.; Nodet, C.; Molzer, C.; Leonard, C.; McKevith, L.; Thielecke, F.; Jackson, K.G.; Tuohy, K.M.
Determination of the in vivo prebiotic potential of a maize-based whole grain breakfast cereal: A human feeding study. Br. J.
Nutr. 2010, 104, 1353–1356. [CrossRef]

282. Yu, D.; Zhu, L.; Gao, M.; Yin, Z.; Zhang, Z.; Zhu, L.; Zhan, X. A Comparative Study of the Effects of Whole Cereals and Refined
Cereals on Intestinal Microbiota. Foods 2023, 12, 2847. [CrossRef]
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70, 347–357.

284. Li, M.; Fan, Y.; Zhang, X.; Hou, W.; Tang, Z. Fruit and vegetable intake and risk of type 2 diabetes mellitus: Meta-analysis of
prospective cohort studies. BMJ Open 2014, 4, e005497. [CrossRef]

285. Carter, P.; Gray, L.J.; Troughton, J.; Khunti, K.; Davies, M.J. Fruit and vegetable intake and incidence of type 2 diabetes mellitus:
Systematic review and meta-analysis. BMJ 2010, 341, c4229. [CrossRef]

286. Mursu, J.; Virtanen, J.K.; Tuomainen, T.P.; Nurmi, T.; Voutilainen, S. Intake of fruit, berries, and vegetables and risk of type 2
diabetes in Finnish men: The Kuopio Ischaemic Heart Disease Risk Factor Study. Am. J. Clin. Nutr. 2014, 99, 328–333. [CrossRef]

287. Wang, P.Y.; Fang, J.C.; Gao, Z.H.; Zhang, C.; Xie, S.Y. Higher intake of fruits, vegetables or their fiber reduces the risk of type 2
diabetes: A meta-analysis. J. Diabetes Investig. 2016, 7, 56–69. [CrossRef]

288. Lakshmanan, A.P.; Mingione, A.; Pivari, F.; Dogliotti, E.; Brasacchio, C.; Murugesan, S.; Cusi, D.; Lazzaroni, M.; Soldati, L.;
Terranegra, A. Modulation of gut microbiota: The effects of a fruits and vegetables supplement. Front. Nutr. 2022, 9, 930883.
[CrossRef]

289. Jiang, Z.; Sun, T.Y.; He, Y.; Gou, W.; Zuo, L.S.; Fu, Y.; Miao, Z.; Shuai, M.; Xu, F.; Xiao, C.; et al. Dietary fruit and vegetable intake,
gut microbiota, and type 2 diabetes: Results from two large human cohort studies. BMC Med. 2020, 18, 371. [CrossRef]

290. Sotoudeh, G.; Abshirini, M.; Bagheri, F.; Siassi, F.; Koohdani, F.; Aslany, Z. Higher dietary total antioxidant capacity is inversely
related to prediabetes: A case-control study. Nutrition 2018, 46, 20–25. [CrossRef]

291. Rienks, J.; Barbaresko, J.; Oluwagbemigun, K.; Schmid, M.; Nöthlings, U. Polyphenol exposure and risk of type 2 diabetes:
Dose-response meta-analyses and systematic review of prospective cohort studies. Am. J. Clin. Nutr. 2018, 108, 49–61. [CrossRef]

292. Duan, R.; Guan, X.; Huang, K.; Zhang, Y.; Li, S.; Xia, J.; Shen, M. Flavonoids from Whole-Grain Oat Alleviated High-Fat
Diet-Induced Hyperlipidemia via Regulating Bile Acid Metabolism and Gut Microbiota in Mice. J. Agric. Food Chem. 2021, 69,
7629–7640. [CrossRef]

293. Yang, T.; Zhou, W.; Xu, W.; Ran, L.; Yan, Y.; Lu, L.; Mi, J.; Zeng, X.; Cao, Y. Modulation of gut microbiota and hypo-
glycemic/hypolipidemic activity of flavonoids from the fruits of Lycium barbarum on high-fat diet/streptozotocin-induced type
2 diabetic mice. Food Funct. 2022, 13, 11169–11184. [CrossRef]

294. Su, M.; Tang, T.; Tang, W.; Long, Y.; Wang, L.; Liu, M. Astragalus improves intestinal barrier function and immunity by acting on
intestinal microbiota to treat T2DM: A research review. Front. Immunol. 2023, 14, 1243834. [CrossRef]

295. Gong, X.; Xiong, L.; Bi, C.; Zhang, B. Diosmetin ameliorate type 2 diabetic mellitus by up-regulating Corynebacterium glutamicum
to regulate IRS/PI3K/AKT-mediated glucose metabolism disorder in KK-Ay mice. Phytomedicine 2021, 87, 153582. [CrossRef]

296. Tarwadi, K.; Agte, V. Potential of commonly consumed green leafy vegetables for their antioxidant capacity and its linkage with
the micronutrient profile. Int. J. Food Sci. Nutr. 2003, 54, 417–425. [CrossRef]

297. Harding, A.H.; Wareham, N.J.; Bingham, S.A.; Khaw, K.; Luben, R.; Welch, A.; Forouhi, N.G. Plasma vitamin C level, fruit
and vegetable consumption, and the risk of new-onset type 2 diabetes mellitus: The European prospective investigation of
cancer--Norfolk prospective study. Arch. Intern. Med. 2008, 168, 1493–1499. [CrossRef]

298. Larsson, S.C.; Wolk, A. Magnesium intake and risk of type 2 diabetes: A meta-analysis. J. Intern. Med. 2007, 262, 208–214.
[CrossRef]

299. Liese, A.D.; Roach, A.K.; Sparks, K.C.; Marquart, L.; D’Agostino, R.B., Jr.; Mayer-Davis, E.J. Whole-grain intake and insulin
sensitivity: The Insulin Resistance Atherosclerosis Study. Am. J. Clin. Nutr. 2003, 78, 965–971. [CrossRef]

300. Schwingshackl, L.; Hoffmann, G.; Kalle-Uhlmann, T.; Arregui, M.; Buijsse, L.; Boeing, H. Fruit and Vegetable Consumption and
Changes in Anthropometric Variables in Adult Populations: A Systematic Review and Meta-Analysis of Prospective Cohort
Studies. PLoS ONE 2015, 10, e0140846. [CrossRef]

301. Ramne, S.; Brunkwall, L.; Ericson, U.; Gray, N.; Kuhnle, G.G.C.; Nilsson, P.M.; Orho-Melander, M.; Sonestedt, E. Gut microbiota
composition in relation to intake of added sugar, sugar-sweetened beverages and artificially sweetened beverages in the Malmö
Offspring Study. Eur. J. Nutr. 2021, 60, 2087–2097. [CrossRef]

https://doi.org/10.1136/gutjnl-2017-314786
https://doi.org/10.1021/acs.jafc.3c04664
https://doi.org/10.1038/ejcn.2013.207
https://doi.org/10.1017/S0007114507793923
https://doi.org/10.1017/S0007114510002084
https://doi.org/10.3390/foods12152847
https://doi.org/10.1136/bmjopen-2014-005497
https://doi.org/10.1136/bmj.c4229
https://doi.org/10.3945/ajcn.113.069641
https://doi.org/10.1111/jdi.12376
https://doi.org/10.3389/fnut.2022.930883
https://doi.org/10.1186/s12916-020-01842-0
https://doi.org/10.1016/j.nut.2017.08.005
https://doi.org/10.1093/ajcn/nqy083
https://doi.org/10.1021/acs.jafc.1c01813
https://doi.org/10.1039/D2FO01268E
https://doi.org/10.3389/fimmu.2023.1243834
https://doi.org/10.1016/j.phymed.2021.153582
https://doi.org/10.1080/09637480310001622297
https://doi.org/10.1001/archinte.168.14.1493
https://doi.org/10.1111/j.1365-2796.2007.01840.x
https://doi.org/10.1093/ajcn/78.5.965
https://doi.org/10.1371/journal.pone.0140846
https://doi.org/10.1007/s00394-020-02392-0


Nutrients 2024, 16, 269 38 of 40

302. Hu, R.; Zeng, F.; Wu, L.; Wan, X.; Chen, Y.; Zhang, J.; Liu, B. Fermented carrot juice attenuates type 2 diabetes by mediating gut
microbiota in rats. Food Funct. 2019, 10, 2935–2946. [CrossRef]

303. Nunes, S.; Viana, S.D.; Preguiça, I.; Alves, A.; Fernandes, R.; Teodoro, J.S.; Matos, P.; Figueirinha, A.; Salgueiro, L.; André, A.; et al.
Blueberry Counteracts Prediabetes in a Hypercaloric Diet-Induced Rat Model and Rescues Hepatic Mitochondrial Bioenergetics.
Nutrients 2021, 13, 4192. [CrossRef]

304. Fidélix, M.; Milenkovic, D.; Sivieri, K.; Cesar, T. Microbiota modulation and effects on metabolic biomarkers by orange juice: A
controlled clinical trial. Food Funct. 2020, 11, 1599–1610. [CrossRef]

305. Kerimi, A.; Nyambe-Silavwe, H.; Gauer, J.S.; Tomás-Barberán, F.A.; Williamson, G. Pomegranate juice, but not an extract, confers
a lower glycemic response on a high-glycemic index food: Randomized, crossover, controlled trials in healthy subjects. Am. J.
Clin. Nutr. 2017, 106, 1384–1393. [CrossRef]

306. Aslam, H.; Marx, W.; Rocks, T.; Loughman, A.; Chandrasekaran, V.; Ruusunen, A.; Dawson, S.L.; West, M.; Mullarkey, E.; Pasco,
J.A.; et al. The effects of dairy and dairy derivatives on the gut microbiota: A systematic literature review. Gut Microbes 2020, 12,
1799533. [CrossRef]

307. Pal, S.; Ellis, V.; Dhaliwal, S. Effects of whey protein isolate on body composition, lipids, insulin and glucose in overweight and
obese individuals. Br. J. Nutr. 2010, 104, 716–723. [CrossRef]

308. Malik, V.S.; Sun, Q.; van Dam, R.M.; Rimm, E.B.; Willett, W.C.; Rosner, L.; Hu, F.B. Adolescent dairy product consumption and
risk of type 2 diabetes in middle-aged women. Am. J. Clin. Nutr. 2011, 94, 854–861. [CrossRef]

309. Tong, X.; Dong, J.Y.; Wu, Z.W.; Li, W.; Qin, L.Q. Dairy consumption and risk of type 2 diabetes mellitus: A meta-analysis of cohort
studies. Eur. J. Clin. Nutr. 2011, 65, 1027–1031. [CrossRef]

310. Choi, H.K.; Willett, W.C.; Stampfer, M.J.; Rimm, E.; Hu, F.B. Dairy consumption and risk of type 2 diabetes mellitus in men: A
prospective study. Arch. Intern. Med. 2005, 165, 997–1003. [CrossRef]

311. Liu, S.; Choi, H.K.; Ford, E.; Song, Y.; Klevak, A.; Buring, J.E.; Manson, J.E. A prospective study of dairy intake and the risk of
type 2 diabetes in women. Diabetes Care 2006, 29, 1579–1584. [CrossRef]

312. Link-Amster, H.; Rochat, F.; Saudan, K.Y.; Mignot, O.; Aeschlimann, J.M. Modulation of a specific humoral immune response and
changes in intestinal flora mediated through fermented milk intake. FEMS Immunol. Med. Microbiol. 1994, 10, 55–63. [CrossRef]
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