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Abstract: There is rising interest globally with respect to the health implications of vegetarian
or plant-based diets. A growing body of evidence has demonstrated that higher consumption of
plant-based foods and the nutrients found in vegetarian and plant-based diets are associated with
numerous health benefits, including improved blood pressure, glycemic control, lipid levels, body
mass index, and acid–base parameters. Furthermore, there has been increasing recognition that
vegetarian and plant-based diets may have potential salutary benefits in preventing the development
and progression of chronic kidney disease (CKD). While increasing evidence shows that vegetarian
and plant-based diets have nephroprotective effects, there remains some degree of uncertainty about
their nutritional adequacy and safety in CKD (with respect to protein-energy wasting, hyperkalemia,
etc.). In this review, we focus on the potential roles of and existing data on the efficacy/effectiveness
and safety of various vegetarian and plant-based diets in CKD, as well as their practical application
in CKD management.

Keywords: nutrition; vegetarian diet; plant-based diet; chronic kidney disease

1. Introduction

There is rising interest worldwide regarding the health implications of vegetarian or
plant-based diets, including reductions in animal-based food intake and/or fully excluding
animal-based products from the diet [1]. A growing body of evidence has demonstrated that
higher consumption of plant-based foods and the nutrients found within plant-based diets
are associated with numerous health benefits, including improved blood pressure, glycemic
control, lipid levels, body mass index (BMI), and acid–base parameters, as well as lower risk
of complications such as diabetes [2], cardiovascular disease [3], and death [4]. Furthermore,
there has been increasing recognition that plant-based diets have a potential salutary role
in the management of chronic kidney disease (CKD). For example, the low-protein vegan
diet (0.7 g/kg of body weight/day of protein), the low-protein supplemented vegan diet
(0.6 g/kg of body weight/day of protein supplemented with essential amino acids (EAAs)
and keto acids (KAs), i.e., one tablet per 10 kg of body weight), and the very-low-protein
diet (0.3 g/kg of body weight/day of protein supplemented with EAAs and KAs, i.e., one
tablet for every 5 kg of body weight) are vegan/vegetarian diets that have been proposed
as possible kidney-conservative treatments [5]. A tablet of Ketosteril®, which is used
globally, contains L-lysine (105 mg), L-threonine (53 mg), L-histidine (38 mg), L-tyrosine
(30 mg), L-tryptophan (23 mg), hydroxy-methionine (59 mg), calcium-keto-valine (86 mg),
calcium-keto-phenylalanine (68 mg), calcium-keto-leucine (101 mg), and calcium-keto-
isoleucine (67 mg) [6]. Moreover the “Plant-Dominant Low-Protein Diet” (PLADO) [7] and
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“Plant-Focused Nutrition in Patients With Diabetes and CKD Diet” (PLAFOND) [8] are two
subtypes of plant-based diets that have been established for people with CKD as a means to
reduce the progression of kidney disease (Table 1). A sizeable body of research has shown
that vegetarian diets have nephroprotective effects, although there remains some degree of
uncertainty about safety with respect to the high contents of minerals such as phosphorus
and potassium, along with the potential risks of hyperphosphatemia and/or hyperkalemia
that may ensue with greater plant-based food consumption. In this review, we focus on the
potential roles of and existing data on vegan, lacto-ovo vegetarian, and PLADO diets in
CKD, as well as the practical application of these diets in CKD management.

Table 1. Different types of plant-based low-protein diets.

Diet CKD Stage Protein Carbohydrates

LPD vegan 3–4 0.7 g/kg/day (100% from grain and
legumes) From cereals

LPDs vegan

3–4
Indicated in pregnant women

with advanced CKD [9], in people
at high risk of malnutrition, or in

people who do not tolerate
legumes [10]

0.6 g/kg/day (100% from cereals and
legumes) + EAAs/KAs (1 tablet every

10 kg of body weight)
From cereals

PLADO diet 3–5 0.6 g/kg/day (with >50% plant-based
sources) From whole cereals

PLAFOND diet 3–5
Diabetic nephropathy

0.6 to <0.8 g/kg/day (with >50%
plant-based sources) From whole cereals

VLPDs 4–5 0.3–0.4 g/kg/day + EAAs/KAs
(1 tablet every 5 kg of body weight)

Especially from low-protein
substitutes

LPD: low-protein diet; LPDs: low-protein diet supplemented; PLADO: Plant-Dominant Low-Protein Diet; PLA-
FOND: patient-centered plant-focused LPD for the nutritional management of CKD/DM; VLPDs: very-low-
protein diet supplemented. EAAs/KAs: essential amino acids/keto acids.

2. Overview of Vegetarian and Plant-Based Diets

Vegetarian or plant-based diets are types of diets composed of a larger proportion
of foods from plant-based sources as opposed to animal-based sources. There are var-
ious forms of vegetarian diets, such that some types fully exclude all animal products
(i.e., vegan diets), whereas other types include dairy products such as milk and cheese,
eggs, and honey (i.e., lacto-ovo vegetarian diets) or may even include small amounts of
fish and seafood (i.e., pescatarian), as well as meat and poultry (i.e., semi-vegetarian or
flexitarian) [11]. The phrases “vegetarian” and “plant-based diet” are often used without
differentiation, but the terminology “vegetarian” is commonly used to refer to lacto-ovo
vegetarians, while the terminology “plant-based diet” is used to refer to dietary patterns
with a greater proportion of foods derived from plant-based sources but may not mean that
they are devoid of animal-based foods. In other words, a plant-based diet is a hybrid form
of a diet rich in plant-based foods. A person who consumes a plant-based diet eats healthy
plant-based foods (i.e., fresh/whole/unprocessed/unrefined foods and beverages) and
avoids unhealthy plant-based foods (i.e., processed/refined/sugar-sweetened foods and
beverages) [12]. Two types of plant-based diets that have specifically been designed for
the non-dialysis-dependent CKD (NDD-CKD) population include the (1) Plant-Dominant
Low-Protein Diet (PLADO), consisting of a dietary protein intake of 0.6–0.8 g/kg/day,
with >50% from plant-based sources [7], and the (2) Plant-Focused Nutrition in CKD and
Diabetes Diet (PLAFOND), consisting of a dietary protein intake of 0.6–0.8 g/kg/day from
>50% plant-based sources [8]. Low-protein diets are supported by clinical practice guide-
lines to ameliorate the progression of CKD, and they are considered to be the centerpiece of
conservative and preservative kidney disease management strategies as a means to delay
or avert the need for dialysis [7,8]. Irrespective of the specific type of plant-based diet,
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such diets typically consist of a greater proportion of healthy plant-based foods (i.e., whole
grains, cereals, nuts, fruits, and vegetables) and favorable nutrient profiles (i.e., dietary
fiber, unsaturated fatty acids, folate, magnesium, vitamin C, vitamin E, carotenoids, phyto-
chemicals, and low bioavailability of phosphorus and potassium) (Figure 1) [11]. Dietary
phosphorus and potassium from unprocessed plant-based foods have lower bioavailability
and, therefore, confer lower loads of phosphorus and potassium, respectively, compared
to animal-based foods and processed foods, which is in part due to concomitantly higher
glucose and dietary fiber contents. Additionally, phosphorus in plant-based foods is present
in the form of phytate, which generally has limited bioavailability in the human digestive
system. There is more discussion on this topic in the latter part of this review.
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Figure 1. Characteristics of nutrients and components in plant-based vs. animal-based diets. Ab-
breviations: ALA, α-linolenic acid; B1, vitamin B1; B6, vitamin B6; B12, vitamin B12, Ca, calcium;
D, vitamin D; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; Fe, iron; K, potassium; Mg,
magnesium; MUFAs, monounsaturated fatty acids; phytochem, phytochemicals; Pi, phosphorus;
PUFAs, total polyunsaturated fatty acids; SFAs, saturated fatty acids; Zn, zinc.

In the general population, the popularity of plant-based diets is in part due to their
perceived health benefits related to the control of diabetes, obesity, hypertension, and
hyperlipidemia. More recently, there has been interest in the role of plant-based diets in
preventing the development of de novo CKD, attenuating CKD progression, and mitigating
CKD-related complications (Figure 2).
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3. Vegetarian Diets and Risk Factors for Incident CKD
3.1. Hypertension in Non-CKD Populations

Hypertension and CKD are closely interrelated, such that sustained hypertension
can lead to incident CKD and CKD progression, which can in turn result in worse blood
pressure (BP) control [13]. Randomized controlled trials have shown the benefits of plant-
based diets for BP control. In a study of 59 normotensive participants without underlying
CKD, consumption of a vegetarian diet for a six-week period lowered their mean systolic
BP by 6.8 mmHg when measured at the laboratory, and by 4.9 mmHg when measured at
home [14]. Another study in 58 participants with mild untreated hypertension, comparing
ovo-lacto-vegetarian vs. omnivorous diets, showed that the ovo-lacto-vegetarian diet
resulted in a reduction in BP by an average of 5.5 mmHg [15]. The Dietary Approach to
Stop Hypertension (DASH) trial, a landmark randomized controlled trial examining the
effects of a largely plant-based diet on BP control, showed that the DASH diet reduced BP
by an average of 5.5 mmHg compared to the control diet [16]. A meta-analysis of seven
clinical trials with an aggregate of 313 participants, which excluded the DASH diet trials,
also confirmed the benefits of plant-based diets for BP, such that consumption of vegetarian
diets reduced systolic BP by a mean of 4.8 mmHg compared to omnivorous diets [17].

3.2. Diabetes Mellitus in Non-CKD Populations

Vegetarian diets have been reported as an effective intervention for the prevention
and treatment of diabetes mellitus, the dominant etiology of CKD globally. It has been
shown that the prevalence of type 2 diabetes in people consuming vegetarian diets is
lower than that among non-vegetarians, even after adjusting for BMI [18]. A meta-analysis
of nine large prospective studies with a total of 307,099 participants reported an inverse
association between higher adherence to a plant-based dietary pattern and the risk of type
2 diabetes [19]. This association was strengthened in healthy plant-based diet patterns,
i.e., consumption of more healthy plant-based foods (e.g., whole grains, fruits, vegetables,
nuts, legumes, vegetable oils, tea, and coffee) vs. unhealthy foods (e.g., fruit juices, refined
grains, fried potatoes or potato chips, desserts, and sweetened beverages).

Several potential mechanisms explain the relationship between plant-based diets
and lower risk of diabetes mellitus. For example, the foods in healthy plant-based diets
individually and jointly reduce the risk of diabetes by improving insulin sensitivity and
BP [17,20], mitigating long-term weight gain, and ameliorating systemic inflammation [21].
Moreover, plant-based diets may reduce the risk of type 2 diabetes by ameliorating excessive
weight gain. Multiple interventional and observational studies have shown that plant-based
diets provide favorable weight control and/or weight loss in the short term and weight
loss and/or prevention of weight gain in the long term [22–24]. Plant-based diets may also
improve circulating levels of adiposity-related biomarkers, including leptin, adiponectin,
high-sensitivity C-reactive protein, and interleukin-6 [25,26].

4. Vegetarian Diets and CKD Complications
4.1. Hypertension in CKD Populations

Different components of vegetarian diets contribute to directly or indirectly lowering
BP levels in people with CKD, through various pathways. First, lower consumption
of sodium in plant-based vs. animal-based diets can prevent and control hypertension.
Unprocessed plant-based foods generally have less sodium than animal-based foods and
processed foods. Indeed, data from the National Health and Nutrition Examination Survey
(NHANES) showed that vegetarians ate less sodium, as ascertained using 24 h dietary
recall, compared to non-vegetarians (2347 ± 80 mg vs. 3621 ± 27 mg) [27]. A meta-analysis
that included 21 studies among people with earlier stages of CKD, dialysis patients, and
kidney transplant recipients reported that salt reduction reduced systolic and diastolic BP in
the short term (i.e., 1 to 36 weeks) [28]. This study also reported that salt reduction resulted
in lower albuminuria levels. Another meta-analysis also showed that salt restriction was
associated with lower systolic BP, diastolic BP, and proteinuria levels among 738 people
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with stages 1–4 CKD [29], and another pooled analysis showed that reduction of salt intake
resulted in lower systolic and diastolic BP among 101,077 people with CKD [30].

Second, higher potassium intake from plant-based diets may help reduce BP. It is
well established that higher dietary potassium intake lowers BP in the general population.
While studies examining the effects of dietary potassium on BP in people with CKD are
sparse, limited data suggest potential benefits. In an animal study of rats with CKD, it was
demonstrated that potassium supplementation lowered BP among rats with slightly higher
serum potassium levels compared to rats on a low-potassium diet [31]. In a non-randomized
study of 11 people with stage 3 CKD, receipt of the DASH diet (dietary potassium intake of
4.7 g/day) over two weeks resulted in no differences in clinical and mean 24 h ambulatory
BP, whereas it resulted in lower nighttime systolic BP levels compared to BP levels during
the baseline period while on a control diet (dietary potassium intake of 2.4 g/day) in the
absence of hyperkalemia [32]. Randomized trials in people with stages 3–4 CKD have also
shown that receipt of diets that are higher in fruits and vegetables resulted in lower systolic
BP after one year [33] or three years [34], although narrowly missing statistical significance
after a shorter follow-up period of four weeks [35].

Third, all plant-based foods contain dietary fiber, a carbohydrate that is indigestible
by digestive tract enzymes (Table 2) [35]. Dietary fiber intake improves BP by modifying
arterial contraction due to its effect on arterial smooth muscle, influencing the activity
of the angiotensin-converting enzyme (ACE) or retaining minerals such as potassium
and magnesium in its matrix [36,37]. In addition to BP control, there are a variety of
health benefits of dietary fiber that affect CKD outcomes. For example, dietary fiber
intake can improve glycemic control by delaying gastric emptying, reducing postprandial
glucose absorption, providing a lower glycemic response, producing greater satiety, and
improving insulin sensitivity [8,38]. Moreover, dietary fiber intake also contributes to
improving dyslipidemia. Dietary soluble fiber with high viscosity decreases cholesterol
absorption, binds to bile acids, and increases their fecal excretion. Bacterial fermentation in
the colon can inhibit cholesterol production in the liver by producing short-chain fatty acids
(SCFAs) [39]. SCFAs also exert trophic action on the mucosa and strengthen the defense
function of the intestinal barrier by counteracting bacterial translocation and low-grade
chronic inflammation [40]. Moreover, fiber intake reduces serum urea levels by promoting
a fecal route of excretion for nitrogenous waste, and it can reduce serum levels of AGEs
(advanced glycation end products) [35]. Lastly, greater dietary fiber intake may lead to
improvements in constipation, increased satiety, reduced energy intake, weight control, and
slower absorption of some nutrients in the intestine, leading to reduced inflammation [36].

Fourth, more balanced intake of macronutrients (including dietary protein, fat, and
carbohydrates) conferred by a plant-based diet can contribute to better BP control. Results
from observational studies indicate an inverse association between dietary plant protein
intake and BP [41], and both prospective studies and randomized controlled trials have
shown similar relationships between plant and animal protein intake with respect to
BP [42]. The effects of plant vs. animal protein on BP control remain to be established.
Additionally, vegetarian diets usually provide low intake of saturated fatty acids and
omega-3 polyunsaturated fatty acids (PUFAs). In a cross-sectional study of 26 vegetarians
vs. 26 non-vegetarians, matched according to age, sex, and BMI, the vegetarians had higher
plant-based fat consumption than the non-vegetarians, which may lead to higher resting
energy expenditure (REE) in vegetarians and potentially contribute to better body weight
and BP control [43].
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Table 2. Importance of dietary fiber in human health.

Property Function Health Benefits

Bulk

• Adds bulk to diet

# Satiety effect

• Adds bulk to stool

# Improves GI motility

■ Increases bowel movement
■ Reduces intestinal transit time

# Increases fecal bulk
# Increases stool frequency

• Regulates energy intake
• Lowers blood pressure
• Promotes weight loss
• Alleviates constipation

Viscosity

• Inhibits intestinal digestion and absorption

# Inhibits glucose absorption

■ Traps carbohydrates
■ Slows glucose absorption

# Inhibits cholesterol absorption

■ Traps bile acids and extracts to
feces

■ Increases the synthesis of bile
acids from cholesterol

# Traps carcinogenic substances

• Improves glycemic control

# Lowers postprandial serum glucose levels

• Improves cholesterol control

# Lowers serum total and LDL cholesterol

• Contributes to cancer prevention

Fermentability

• Alters intestinal microbiota composition and
function

# Increases gut-microbiome-induced
production of SCFAs

• Anti-inflammation
• Anti-obesity
• Anti-diabetes
• Anticancer
• Hepatoprotection
• Cardiovascular protection
• Neuroprotection
• Constipation treatment
• Inflammatory bowel disease treatment
• Immunoregulation

Abbreviations: GI, gastrointestinal; LDL, low-density lipoprotein; SCFAs, short-chain fatty acids.

4.2. Hyperphosphatemia in CKD Populations

In people with advanced CKD, decreased phosphorus excretion by the kidneys, cou-
pled with disordered mineral metabolism, engenders hyperphosphatemia, leading to
vascular calcification and stiffness, altered cardiac structure and function, kidney osteodys-
trophy, and increased mortality [44]. Therefore, in the traditional dietary management of
advanced CKD patients, dietary phosphorous has been restricted and plant-based foods
have been avoided due to concerns regarding high contents of minerals such as phosphorus.
However, increasing evidence suggests that greater intake of plant-based foods may lead
to better phosphorus control. The amount of phosphorus contained in food vs. phosphorus
absorbed by the body is not always consistent. Given that phosphorus in plant-based foods
is often in the form of phytate (which humans have limited ability to digest, given the
absence of the phytase enzyme), phosphorus found in plant-based foods usually has lower
absorbability and/or bioavailability (20 to 40% bioavailability) compared with animal
foods, which often have phosphorus in the form of caseins (40 to 60% bioavailability),
and processed foods, in which phosphorus is usually present as food additives (~100%
bioavailability) [45,46]. Indeed, both animal and human studies show reduced phosphorus
loads when consuming plant-based vs. animal-based diets, despite both diets having the
same amounts of phosphorus. In a rat model of CKD–mineral bone disease (CKD–MBD),
administration of a plant-based diet led to a reduced phosphorus load, such that rats fed
grain-based diets showed similar serum phosphorus levels, calcium levels, and intact
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parathyroid hormone (PTH) levels, yet lower urinary phosphorus excretion and serum
fibroblast growth factor 23 (FGF-23) levels vs. rats fed the same amount of phosphorous
from casein-based diets [47]. In a crossover trial of people with stage 3–4 CKD, receipt of a
vegetarian diet for one week led to lower serum phosphorus, phosphaturia, and FGF-23
levels compared to a meat-based diet with the same phosphorus content [48]. A random-
ized controlled trial in which participants underwent partial replacement of animal protein
with plant protein also led to reduced serum phosphorus levels [49].

4.3. Uremic Toxins, Inflammation, and Oxidative Stress in CKD

Given the concomitant rich consumption of dietary fiber, along with their lower
contents of carnitine, choline, phosphatidylcholine, tyrosine, and tryptophan, plant-based
diets lead to less generation of uremic toxins (i.e., trimethylamine n-oxide (TMAO), indoxyl
sulfate, and p-cresyl sulfate), as well as reducing inflammation and oxidative stress [50,51].
In a randomized controlled study of 32 non-dialysis-dependent CKD patients, one week of a
supplemented very-low-protein diet of plant-based origin (0.3 g/kg body weight/day) led
to reduced indoxyl sulfate levels [52]. In a randomized controlled study of 40 hemodialysis
patients who received higher vs. lower dietary fiber intake for six weeks, those who
received higher dietary fiber intake had reduced free plasma levels of indoxyl sulfate and
p-cresyl sulfate [53]. Data from the NHANES III cohort included 14,543 participants, in
whom it was observed that dietary fiber intake was negatively associated with serum
C-reactive protein (CRP) levels, such that each 10 g/day increase in total fiber intake was
associated with an 11% and 38% decline in the odds of elevated serum CRP levels in the
CKD and non-CKD groups, respectively [54]. In a rat model of CKD, consumption of
high-amylose maize resistant starch for three weeks also ameliorated inflammation and
oxidative stress [55].

Dietary fiber confers a number of advantages for sustainable human health [56].
The bulking effect from the food is important to control the events in the digestive tract,
including improved gastrointestinal motility (i.e., increased bowel movements and reduced
intestinal transit time), increased fecal bulk, and greater stool frequency. Dietary fiber
adds bulk not only to stool, but also to the overall diet, which provides a satiety effect and
regulates energy intake. This bulking property of dietary fiber can also reduce BP, promote
weight loss, and alleviate constipation [57]. The viscosity effect of dietary fiber can also
improve glycemic and cholesterol control, and it may additionally contribute to cancer
prevention. Increasing viscosity during digestion due to soluble dietary fiber results in the
trapping of carbohydrates, slowing of glucose absorption, and lowering of postprandial
blood glucose levels. Soluble fiber also helps to reduce total and LDL cholesterol levels by
binding bile acids in the small intestine following extraction from the body through feces,
as well as increasing the synthesis of bile acids from cholesterol. Dietary fiber also traps
carcinogenic substances and may prevent the development of cancer [57]. Fermentable
dietary fiber is the substrate for bacterial metabolism and stimulates the production of short-
chain fatty acids (SCFAs) through intestinal fermentation, primarily acetate, propionate,
and butyrate, leading to its protective effects against inflammation, obesity, diabetes, cancer,
and cardiovascular disease, along with immune regulation and a number of other health
benefits [58,59]. The mechanisms underlying the association between dietary fiber intake
and lower uremic toxin levels, as well as urea and creatinine concentrations, are interrelated,
such that greater dietary fiber intake (1) decreases toxin absorption and increases their
fecal excretion by improving intestinal motility, (2) reduces the permeability of toxins by
improving the integrity of tight junctions in the colonic epithelium by producing SCFAs,
and (3) facilitates the growth of a more favorable microbiome.

4.4. Metabolic Acidosis

A large proportion of people with CKD suffer from metabolic acidosis and its adverse
consequences, including muscle wasting, bone loss, impaired insulin sensitivity, chronic
inflammation, and progression of kidney disease [60]. While alkali therapy is typically con-



Nutrients 2024, 16, 66 8 of 18

ducted to correct metabolic acidosis in CKD patients by administering sodium bicarbonate,
a series of trials have shown that plant-based diets could also be used to treat metabolic
acidosis. In a randomized controlled trial of 71 people with stage 4 CKD, people assigned
to greater fruit and vegetable intake over the course of one year had higher plasma CO2
levels and lower urinary indices of kidney injury [33]. Another randomized controlled trial
of 108 people with stage 3 CKD also confirmed similar effects of fruit and vegetable intake
on metabolic acidosis parameters, such that daily administration of two to four cups of
fruits and vegetables over a period of three years resulted in higher CO2 levels, lower net
acid excretion, lower urinary albumin–creatinine ratios, and preserved kidney function [34].
According to this evidence, the KDOQI guidelines also support prescribing more fruits
and vegetables for stage 1–4 CKD patients in order to decrease their body weight, blood
pressure, and net acid production [36].

5. Vegetarian Diets, Incident CKD, and CKD Progression
5.1. Incident CKD and CKD Progression

Several studies have shown favorable associations of plant-based diets with CKD
outcomes, including incident CKD (i.e., development of albuminuria and/or eGFR decline)
and CKD progression. With respect to the outcome of incident CKD, among participants in
the Tehran Lipid and Glucose Study (TLGS), those in the highest quartile of plant protein
intake exhibited a 30% lower risk of developing CKD than those in the lowest group of
plant protein intake, while those in the highest quartile of animal protein intake had a 37%
higher risk of de novo CKD than those in the lowest group of animal protein intake [61]. In
the Multi-Ethnic Study of Atherosclerosis (MESA), a dietary pattern with higher intake of
whole grains, fruits, vegetables, and low-fat dairy foods was associated with a 20% lower
risk of CKD, whereas nondairy animal food intake was associated with an 11% higher
urinary albumin-to-creatinine ratio [62]. In a large longitudinal observational study of
the Atherosclerosis Risk in Communities (ARIC) cohort, which included 11,952 adults
with normal kidney function at baseline, various sources of dietary protein intake had
differential associations with the risk of CKD [63]. During a median follow-up of 23 years,
there was a higher risk of incident CKD in those consuming greater amounts of protein
from red and processed meat sources. Compared to those in the lowest quintiles of red
and processed meat consumption, those in the highest quintile of intake had a 23% higher
risk of incident CKD. Moreover, this study showed favorable associations of vegetable
sources of proteins, such that those in the highest quintile of vegetable protein intake had
a 24% reduced risk of incident CKD compared to those in the lowest quintile of intake.
Furthermore, when one serving per day of nuts or legumes was used to substitute one
serving per day of red and processed meat, a reduced risk of incident CKD was observed.

With respect to the outcome of CKD progression, in a prospective cohort study of
approximately 1600 women from the Nurses’ Health Study (NHS), among those with mild
CKD, greater intake of both total protein and nondairy animal protein was associated with
a decline in eGFR over a follow-up period of 11 years (i.e., each increment of +10 g/day
of total protein intake and nondairy animal protein intake was associated with an eGFR
decline of −7.72 and −1.21 mL/min per 1.73 m2, respectively) [64]. Existing clinical trial
data have also shown that partial replacement of animal protein with plant protein leads to
reductions in albuminuria [49,65,66]. Finally, a recent systematic review suggested that a
vegetarian diet improves renal filtration function in CKD patients [67].

5.2. Progression of ESKD

End-stage kidney disease (ESKD) necessitating long-term dialysis or kidney transplan-
tation is another highly relevant outcome with respect to studying the impact of vegetarian
diets on kidney health. There are mixed data, such that some studies have provided
evidence that vegetarian diets are associated with a lower risk of incident ESKD [68,69],
whereas others have not observed a nephroprotective relationship [70,71]. A report from
the Singapore Chinese Health Study showed the deleterious impact of high red meat intake
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on progression to ESKD, and it also showed that substituting one serving of red meat with
one serving of soy/legumes was associated with a lower risk of incident ESKD [69]. In
contrast, a meta-analysis showed no statistically significant association between healthy
dietary patterns (i.e., those higher in fruits and vegetables, fish, legumes, cereals, whole
grains, and fiber; and lower in red meat, salt, and refined sugars) and risk of ESKD, due to
the competing risk of death and the relatively small number of events [70]. Similarly, among
3972 people with CKD from the Reasons of Geographic and Racial Differences in Stroke
(REGARDS) study, there were no significant associations between dietary patterns and
the risk of incident ESKD in multivariable models adjusted for age, race, sex, geographic
region of residence, and caloric intake, nor in models further adjusted for socioeconomic
and lifestyle factors, comorbidities, and baseline kidney function [71]. One possible expla-
nation for the lack of a nephroprotective association between plant-based diets and ESKD
in these studies may relate to inadequate power due to the relatively modest number of
ESKD events.

6. Practical Application of Vegetarian Diets in CKD
6.1. Protein-Energy Wasting

People with CKD are more predisposed to malnutrition–wasting conditions, including
protein-energy wasting (PEW), which adversely impacts their health and survival [72]. The
prevalence of PEW is increasingly higher with incrementally lower levels of kidney func-
tion, and more than half of people treated with maintenance dialysis therapy may suffer
from this complication [73]. Thus, there has been concern about the potential nutritional
adequacy of vegetarian diets in people with CKD, particularly with respect to energy and
protein contents. However, a number of studies in experimental animal models [47,74,75]
and human studies [76] have shown that vegetarian diets are indeed nutritionally adequate
in CKD. For example, in a study of 239 people with advanced CKD, it was shown that
vegetarian diets with very low protein contents (dietary protein intake of 0.3 g/kg/day)
supplemented with keto analogues provided satisfactory nutritional status (i.e., BMI and
serum albumin levels remained stable over a mean duration of 29.6 months) [70]. Another
study of people with diabetes with elevated proteinuria levels demonstrated that consump-
tion of a predominantly vegetable-protein diet (dietary protein intake of 0.7 g/kg/day)
over eight weeks resulted in no considerable differences in body weight or triceps skinfold
thickness [77]. Moreover, among people with diabetes, transitioning from a diet with a
dietary protein intake of 1.0 to 1.3 g/kg/day to a vegan diet with a dietary protein intake of
0.7 g/kg/day was not associated with substantial changes in serum total protein or serum
albumin levels [78]. Moreover a randomized controlled trial recently compared 43 people
receiving a low-protein diet with soy protein (60% soy protein and 40% other vegetable
proteins) plus KAs vs. 42 people who received a conventional low-protein diet and found
that receipt of a low-protein diet with vegetable proteins and KAs was associated with a
slower loss of lean mass [79]. Hence, growing research shows that people with CKD who
consume vegetarian diets, including those on maintenance dialysis, are not at higher risk
of PEW, although further investigation in this area is needed [80].

6.2. Overall Nutritional Adequacy

While plant-based diets are generally considered to be healthier, there are concerns
as to whether these diets have adequate contents of nutrients that are typically found in
animal-based foods (Table 3). However, ensuring nutritional adequacy is an issue not only
in CKD populations consuming plant-based diets, but also in those consuming animal-
based diets; hence, it is important to provide optimal education, food fortification, and
adequate supplementation to achieve optimal nutritional/nutrient status among people
with CKD.
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Table 3. Common concerns/myths and existing evidence with respect to plant-based diets.

Topic Concern/Myth Evidence

Nutritional adequacy

Plant-based diets lack
adequate contents of
nutrients largely found in
animal-based foods

• Dietary energy intake is similar across dietary patterns, and
protein intake seems to be lower in people following
plant-based diets compared to those following animal-based
diets, but still well within the recommended intake levels [81]

• There are nutrient inadequacies across all dietary patterns,
including plant-based diets and animal-based diets

Protein adequacy

Plant-based diets provide
inferior protein quantity
compared to
animal-based diets

• Plant-based diets are not low-protein diets per se
• Large-population-based data have not shown differences in

dietary protein intake across plant-based vs. animal-based
diets [82]

Plant-based diets provide
inferior protein quality
compared to
animal-based diets

• Although individual plant proteins (except for soy protein) have
insufficient levels of one or more indispensable amino acids,
consumption of different sources of plant proteins over the
course of the day can help to meet the requirements for
indispensable amino acids and allow them to be complete
proteins and provide health benefits [83]

Plant proteins are inferior
to animal proteins in terms
of lean body mass and
strength

• There is a lower percentage of leucine in plant proteins (e.g., soy
protein: ~8%) than in animal proteins (e.g., whey protein: ~12%)

• Muscle protein synthesis (MPS) [84]

# Soy protein promotes greater MPS at rest and
post-exercise (vs. casein protein)

# Soy protein promotes comparable MPS at rest and 20%
lower MPS post-exercise (vs. whey protein)

• No differences between soy protein and animal proteins for
improvements in bench press strength, squat/leg press strength,
or lean body mass [85]

Hormonal abnormalities

Isoflavones from soy have
potential adverse effects
(e.g., thyroid dysfunction,
breast cancer)

• Concerns have been raised largely based on in vitro cell cultures
or rodent studies involving large doses of isoflavones

• Studies have not observed adverse hormonal effects from
physiological amounts of soy foods in the diet [86]

Hyperkalemia Plant-based diets cause
hyperkalemia

• The occurrence of hyperkalemia is quite rare [87]
• The majority of hyperkalemic episodes seem to be related to the

consumption of plant-based foods containing higher
bioavailable potassium contents (e.g., juices, sauces, or dried
fruits) compared with whole foods or unprocessed plant-based
foods [88]

Abbreviations: MPS, muscle protein synthesis.

In one systematic review [81], while dietary protein intake was lower in people
consuming plant-based diets compared to those consuming animal-based diets, the overall
dietary protein intake was well within the recommended intake levels for both groups, and
dietary energy intake was comparable among those receiving plant-based vs. animal-based
diets. Given that some nutrients are mainly present in and/or have greater bioavailability
in plant-based or animal-based foods, some dietary patterns may lead to favorable intake
of some nutrients yet inadequate intake of other nutrients. Plant-based diets typically have
higher fiber, total PUFA, α-linolenic acid (ALA), vitamin B1, vitamin B6, vitamin C, vitamin
E, folate, and magnesium contents, lower protein contents (albeit within recommended
levels), and potentially lower eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA),
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vitamin B12, vitamin D, calcium, iodine, iron (in women), and zinc contents. Taking
vitamin B12 supplements or foods fortified with vitamin B12 is essential for people at risk
of vitamin B12 deficiency, including those following vegan diets (owing to the absence
of this vitamin in plant-based sources [89]) and people with CKD, who have reduced
absorption of nutrients (age reduces absorption capacity), low intake of animal-based foods
in a low-protein diet, and prescribed medications that can compromise the assimilation of
vitamin B12 (e.g., proton-pump inhibitors and metformin) [90]. On the other hand, typical
animal-based diets have higher protein, niacin, vitamin B12, and zinc contents, yet they
may be inadequate with respect to fiber, total PUFA, ALA (in men), vitamin D, vitamin E,
folate, calcium, and magnesium contents. Dietary monounsaturated fatty acids (MUFAs)
can come from both plant-based and animal-based sources, but recent data have shown
that MUFAs from plant-based foods have favorable associations with respect to lower risk
of coronary heart disease [91] and mortality [92].

6.3. Protein Adequacy Overall and with Physical Activity

There has been a misconception that the nutritional quantity and quality of protein
from plant-based diets are inferior to those of protein from animal-based foods. However,
data from the general population do not support this impression. For example, landmark
data from a cross-sectional analysis of 71,751 participants from the Adventist-Health-
Study-2 showed that the median total protein intake did not differ among non-vegetarians
(~75 g/day) vs. vegetarians (i.e., lacto-ovo vegetarians and vegans) (~71 g/day) [82]. A
systematic review that included 141 observational and interventional studies, largely from
Europe, South/East Asia, and North America, reported that the average dietary protein
intake was lower in vegetarians and vegans compared to meat-eaters, but still within the
recommended levels across these groups [81].

High-quality or complete protein sources for humans are dependent on whether the
food contains adequate levels of indispensable amino acids to support human growth
and/or is readily digested and absorbed [93]. According to the amino acid scoring system,
which is currently the recommended method for evaluating dietary protein quality by the
Food and Agricultural Organization of the United Nations (FAO) and the U.S. National
Academy of Sciences, most animal proteins and soy proteins are generally considered to be
complete protein sources [93]. Although individual plant proteins (except for soy protein)
have insufficient levels of one or more indispensable amino acids, consumption of different
sources of plant proteins over the course of the day can help to meet the requirements for
indispensable amino acids, allowing them to be complete proteins and, hence, provide
health benefits [83].

The topics of leucine content and muscle protein synthesis (MPS) have become popular
in secular culture and among active individuals. Given the lower percentage of leucine in
plant-based proteins (e.g., soy protein: ~8%) vs. animal proteins (e.g., whey protein: ~12%),
there is a misconception that plant proteins are inferior to animal proteins with respect to
attaining optimal lean body mass and muscle strength. Contrary to this hypothesis, a study
examining differences in MPS at rest and following exercise followed by high-leucine/fast-
digesting (hydrolyzed whey isolate), lower-leucine/intermediate-digesting (soy isolate),
and high-leucine/slow-digesting (micellar casein) protein sources demonstrated that soy
protein outperformed casein both at rest and post-exercise [84]. Neither soy nor caseins pro-
moted greater post-exercise MPS than whey protein, and the post-exercise MPS fractional
synthetic rate (%/h) for soy was still about 80% of that of whey. Moreover, MPS at rest
after soy protein ingestion was similar to that after whey protein and higher than that after
casein protein. Although some resistance training studies (duration 12–36 weeks) among
young adults have reported better muscle mass and strength with fluid milk or whey
protein [94,95], a meta-analysis of nine resistance training studies (duration 6 to 36 weeks)
pooling together 266 participants, including both younger (18 to 38 years) and older (61
to 67 years) adults, showed no differences between soy protein and animal proteins with
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regards to improvements in bench press strength, squat/leg press strength, or lean body
mass outcomes [85].

In terms of the effect of plant-based protein intake on risk of sarcopenia—the loss of
skeletal muscle mass and physical function that occurs with advanced age—limited studies
among non-CKD [96] and CKD populations [97] have reported that higher consumption of
fruit and/or vegetables was correlated with a reduced risk of sarcopenia. Although these
data and the comparable muscle-related benefits of plant-based protein compared to animal-
based protein, as mentioned above, could mitigate concerns about developing sarcopenia
following plant-based diets in people with advanced CKD, future studies evaluating the
impact of plant-based diets vs. animal based-diets on muscle heath and sarcopenia, with
consideration of overall diet quality and sufficient energy intake, are needed.

6.4. Soy Protein and Isoflavones

Given that soy protein contains isoflavones, which are compounds with a similar
chemical structure to that of estrogen, it has been debated as to whether they provide health
benefits or potential adverse effects (e.g., thyroid dysfunction, breast cancer). However,
these concerns have largely stemmed from in vitro cell cultures or rodent studies involving
large doses of isoflavones, and multiple lines of research over the past decade have not
observed adverse hormonal effects from physiological amounts of soy foods in the diet [86].

6.5. Hyperkalemia

There has been a longstanding paradigm in the clinical management of CKD/ESKD
patients to avoid plant-based diets and/or fruits due to concerns regarding the risk of
hyperkalemia. In a case review of 27 people with underlying CKD, acute kidney injury,
or unspecified kidney disease, the majority of hyperkalemic episodes were related to the
consumption of plant-based foods with higher bioavailability of potassium (e.g., juices,
sauces, or dried fruits) vs. whole foods or unprocessed plant-based foods [88]. Similar
to the bioavailability of dietary phosphorus, potassium from unprocessed plant-based
foods has lower bioavailability than that of animal-based foods and processed foods. In a
crossover feeding trial of 11 healthy men and women, the bioavailability of potassium from
unprocessed fruits and vegetables was no more than 60% and lower than that of animal-
based foods and fruit juices [98]. Another crossover feeding trial including six volunteers
found that processed foods with potassium-containing additives resulted in 90 to 100%
potassium bioavailability [99]. A similarly high bioavailability of 50–60% was found in
a study of the DASH diet among 11 men and women with CKD over two weeks [32]. A
differential association of dietary potassium intake from plant-based and animal-based
diets with mortality risk was also found in the NHANES cohort. This study reported that,
compared with high dietary potassium intake from plant-based foods, participants with
low potassium intake from animal-based foods and pairings of low potassium intake with
high protein, low fiber, or high phosphorus consumption were each associated with a higher
mortality risk among 3172 participants with impaired kidney function [100]. One possible
reason for the lower bioavailability of potassium in plant-based foods may be the increased
intercellular potassium uptake induced by the insulin response to concomitant glucose,
as well as slower and attenuated rises in serum potassium levels due to high dietary fiber
content (Figure 3). Indeed, data from prospective observational and experimental studies,
along with cross-sectional analyses examining varying proportions of plant contents, show
that the occurrence of hyperkalemia is quite rare with plant-based diets (Figure 4) [87].
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6.6. All-Cause Mortality

Growing data show that plant-based diets are associated with greater survival in
the general population, as well as in CKD patients. In an analysis of 1065 people with
eGFR < 60 mL/min/1.73 m2 from the NHANES study, each 33% increase in the proportion
of plant protein to total protein intake was associated with a 23% lower mortality risk
after a mean follow-up of 8.4 years [101]. Another analysis of the NHANES cohort also
reported that higher total dietary protein intake of ≥1.4 g/kg actual body weight/day and
the highest two tertiles of protein intake from animal-based foods were associated with a
higher mortality risk among 1994 participants with impaired kidney function [102]. A study
of 3972 people with CKD from the REGARDS study observed independent associations
of southern and plant-based pattern scores with mortality risk after a mean 6.4 years of
follow-up [71]. These results are in agreement with a meta-analysis of studies including
15,285 adults with CKD from seven cohorts, which showed that healthy dietary patterns
(i.e., higher intake of fruit and vegetables, legumes, cereals, whole grains, and fiber) were
associated with a lower risk of death [70].

7. Conclusions

In summary, incorporating vegetarian and plant-based diets using a personalized
approach in the clinical management of CKD/ESKD not only provides health benefits to
people with kidney disease, but also has the potential to maintain their nutritional status at
optimal levels while avoiding the risk of PEW.
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