

Review

Chemical Constituents, Biological Activities, and Proposed Biosynthetic Pathways of Steroidal Saponins from Healthy Nutritious Vegetable—*Allium*

Huaxiang Wang ^{1,2}, Qi Zheng ^{1,2}, Aijun Dong ^{1,2}, Junchi Wang ^{1,2,*} and Jianyong Si ^{1,3,*}

- ¹ Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; wanghuaxiang@implad.ac.cn (H.W.); zhengqi@implad.ac.cn (Q.Z.); dongaijun@implad.ac.cn (A.D.)
- ² Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- ³ Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- * Correspondence: jcwang@implad.ac.cn (J.W.); jysi@implad.ac.cn (J.S.)

Abstract: *Allium* is a common functional vegetable with edible and medicinal value. *Allium* plants have a special spicy taste, so they are often used as food and seasoning in people's diets. As a functional food, *Allium* also has abundant biological activities, some of which are used as drugs to treat diseases. By consuming *Allium* on a daily basis, people can receive active compounds of natural origin, thereby improving their health status and reducing the likelihood of disease. Steroidal saponins are important secondary metabolites of *Allium*, which are formed by the steroidal aglycone group and sugar. Steroidal saponins have various physiological activities, such as hypoglycemic, antiplatelet aggregation, anti-inflammatory, antitumor, antimicrobial, and enzyme activity inhibition, which is one of the key reasons why *Allium* has such significant health benefits. The structural diversity and rich biological activities of steroidal saponins make *Allium* important plants for both food and medicine. In this paper, the chemical structures, biological activities, and structure–activity relationships of steroidal saponins isolated from *Allium* are reviewed, and the biosynthetic pathways of some key compounds are proposed as well, to provide a molecular reference basis based on secondary metabolites for the health value of *Allium*.

Keywords: Allium; nutritious vegetable; health benefits; steroidal saponins; biological activity

1. Introduction

Supplementing nutrition from the diet is a guarantee for human bodies to maintain health. *Allium* plays an indispensable role in people's diets, whether it is directly eaten as a vegetable or pickled condiments. The unique taste of natural *Allium* enhances people's appetite, and its abundant biological activities bring people health and nutrition. *A. sativum* (garlic), for example, is a nutritious vegetable that is widely used as a condiment throughout the world. Fresh garlic bulbs contain about 65% water, 28% carbohydrates, 2.3% organic sulfur compounds, 2% protein, and 1.2% free amino acids (e.g., arginine, glycine, and cystine). Garlic contains 146 kcal/100 g of edible parts. It is also a rich source of vitamin C. There are 10–78.8 mg of this vitamin in 100 g of the edible parts of the product. Garlic also contains minerals—relatively high amounts of potassium, iron, and phosphorus (373–1367 mg, 1.5–13 mg, and 88–522 mg, respectively, in 100 g of the product) [1]. *Allium* plants usually have medicinal value, which can prevent and treat diseases. *A. sativum* is believed to have antibacterial, antioxidant, hypotension, and other effects and is used to treat influenza and hypertension.

Allium is a widespread perennial herbaceous plant and is one of the largest monocotyledonous genera. There are various species of *Allium*. However, the classification

Citation: Wang, H.; Zheng, Q.; Dong, A.; Wang, J.; Si, J. Chemical Constituents, Biological Activities, and Proposed Biosynthetic Pathways of Steroidal Saponins from Healthy Nutritious Vegetable—*Allium*. *Nutrients* 2023, *15*, 2233. https:// doi.org/10.3390/nu15092233

Academic Editors: Joanna Bartkowiak-Wieczorek and Edyta Mądry

Received: 10 April 2023 Revised: 5 May 2023 Accepted: 6 May 2023 Published: 8 May 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). of *Allium* is still uncertain. Scholars generally believe that *Allium* belongs to Liliaceae in the broad sense at present. The classic Chinese works *Flora Reipublicae Popularis Sinicae*, *Flora of China*, and *Higher Plants of China* all follow Engler's view of the plant classification system to deal with the systematic position of *Allium* and have assigned it to the broad family Liliaceae. The Angiosperm Phylogeny Group (APG) system of plant classification is a modern system of plant taxonomy. In APG III, the genus *Allium* belongs to the family Alliaceae under the family Amaryllidaceae, with more than 500 species, which is the largest genus in the family.

Allium plants are mostly distributed in temperate climates of the Northern Hemisphere, except for a few species occurring in Chile (e.g., *A. juncifolium*), Brazil (e.g., *A. sellovianum*), and tropical Africa (e.g., *A. spathaceum* and *A. dregeanum*). Allium plants are perennial bulb plants, with a few species such as *A. fistulosum* and *A. ampeloprasum* developing thickened leaf bases rather than forming bulbs. Allium plants are important cash crops, often with edible or medicinal value. For example, leeks (*A. tuberosum*), garlic (*A. sativum*), scallions (*A. fistulosum*), and onions (*A. cepa*) are common seasoning vegetables, while leek seeds and roots are used for medicinal purposes. Some species are also used as ornamental flowers, such as *A. cristophii* and *A. giganteum*. Allium plants usually have a peculiarly irritating odor due to the organosulfur compounds they produce. The main secondary metabolites of Allium plants are steroidal saponins. In addition, they also produce polysaccharides, proteins, phenolics, and other components. Steroidal saponins have been shown to have a variety of important biological effects and are thought to be one of the key reasons why Allium has such significant health benefits.

Steroidal saponins are a class of oligoglycosides, with spirostanes as the basic skeleton bonded to sugars, converted through the MVA or MEP pathway, and they are widely distributed in monocotyledonous plants, such as Liliaceae, Dioscoreaceae, and Agave, and less in dicotyledonous plants. As steroidal sapogenins are the raw materials for the synthesis of steroidal contraceptives and hormonal drugs, scholars have been studying steroidal saponin components in depth and have gradually found that most of them have good biological activities, such as hypoglycemic, antithrombotic, anti-inflammatory, antitumor, antimicrobial, and immune function-enhancing effects. By incorporating *Allium* into our diet, we can potentially reduce the risk of chronic diseases and improve our overall health.

A large number of steroidal saponins with favorable biological activities were isolated from *Allium*, but systematic and comprehensive comparison and biological activity mechanism studies are still lacking. A summary of the chemical structure of these compounds is necessary because it provides important information about their functional groups, stereochemistry, and sugar-linking sequence, which is essential for understanding their biological activities and potential therapeutic functions. At the same time, understanding their structure helps to identify and isolate these compounds from natural plant sources, as well as synthesize analogs for structure–activity relationship studies, thereby identifying key structural features of their biological activities and designing more effective and selective compounds. In addition, a summary of the biosynthetic pathways of these compounds will provide insight into the key enzymes and intermediates involved in the biosynthesis of these compounds, which will help optimize the production of steroidal saponins for medical and industrial applications. Therefore, this paper reviews the chemical compounds, biological activities, and structure-activity relationships of steroidal saponins from Allium reported in the literature and proposes the biosynthetic pathways of some key compounds to further explore the health value and therapeutic function of *Allium* vegetables from the molecular level of secondary metabolites.

2. Chemical Structures of Allium Steroidal Saponins

Steroidal saponins of *Allium* can be classified into three major categories according to the existence of E and F rings: furostane (F ring cleavage), spirostane (E/F rings into spiral rings), and cholestane (with C-17 side chains rather than oxygenated spiral rings) saponins, in addition to a few special glycoside types of steroidal saponins. The A/B ring of steroidal

saponins is *cis* or *trans* (5- β and 5- α), the B/C ring is *trans*, the C/D ring is *trans*, and the D/E ring is *cis*. The C-10 and C-13 positions are connected to β -CH₃, the C-20 is connected to α -CH₃, and the C-25 position has two configurations of *R* and *S*. Steroidal saponins are commonly attached to straight chain sugar chains or branched sugar chains at C-3, and the types of saccharides are commonly glucose, galactose, rhamnose, xylose, and arabinose. The number of saccharides attached to steroidal saponins from *Allium* varies from one to five. All steroidal saponins isolated from *Allium* reported in the literature are shown in Table 1.

No.	Common Name	Structure Name	Species	Parts	References
1	proto-eruboside-B	26-O- β -glucopyranosyl 22-hydroxy-25(<i>R</i>)-5 α -furostane-3 β ,6 β -26-triol 3-O- β -glucopyranosyl-(1 \rightarrow 2)-[β -glucopyranosyl- (1 \rightarrow 3)]- β -glucopyranosyl-(1 \rightarrow 4)- β - galactopyranoside	A. sativum L	bulbs	[2]
2	ampeloside Bf1	(25 <i>R</i>)-26-O-β-glucopyranosyl-22-hydroxy-5α- furostane-2α,3β,6β,26-tetraol-3-O-β- glucopyranosyl- $(1\rightarrow 3)$ -β-glucopyranosyl- $(1\rightarrow 4)$ -β- galactopyranoside	A. ampeloprasum L	bulbs	[3]
3	ampeloside Bf2	(25 <i>R</i>)-26-O- β -glucopyranosyl-22-hydroxy-5 α - furostane-2 α ,3 β ,6 β ,26-tetraol-3-O- β - glucopyranosyl-(1 \rightarrow 4)- β -galactopyranoside (25 <i>R</i>)-26-O- β -D-glucopyranosyl-22-hydroxy-5 α -	A. ampeloprasum L	bulbs	[3]
4	sativoside-B1	(25K)-20-C-β-D-glucopyranosyl-22-hydroxy-5d- furostane-3 β ,6 β ,26-triol 3-O- β -D-glucopyranosyl-(1 \rightarrow 3)-O- β -D- glucopyranosyl-(1 \rightarrow 2)-O-[β -D-glucopyranosyl- (1 \rightarrow 3)]-O- β -D-glucopyranosyl-(1 \rightarrow 4)-O- β -D- galactopyranoside	A. sativum L	bulbs	[4]
5	proto-	galactopyratiosice	A. sativum L	bulbs and	[4]
6	sativoside-R1	(25 <i>R</i>)-26-O- β -D-glucopyranosyl-22-hydroxy-5 α - furostane-3 β ,26-diol 3-O- β -D-glucopyranosyl-(1 \rightarrow 3)-O- β -D- glucopyranosyl-(1 \rightarrow 2)-O-[β -D-xylopyranosyl- (1 \rightarrow 3)]-O- β -D-glucopyranosyl-(1 \rightarrow 4)-O- β -D-	A. sativum L	roots	[4]
7		galactopyranosyde 22-O-methyl-26-O- β -D-glucopyranosyl-(25 <i>R</i>)-5 α - furostane-2 α ,3 β ,6 β ,22 ξ ,26-pentol 3-O-{O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[β -D- xylopyranosyl-(1 \rightarrow 3)]-O- β -D-glucopyranosyl-	A. albopilosum A. ostrowskianum A. giganteum	bulbs bulbs bulbs	[5] [5] [6]
8		$(1\rightarrow 4)$ - β -D-galactopyranoside} 26-O- β -D-glucopyranosyl-(25 <i>S</i>)-5 α -furostane- 2 α ,3 β ,6 β ,22 ξ ,26-pentaol 3-O-{O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[β -D- xylopyranosyl-(1 \rightarrow 3)]-O- β -D-glucopyranosyl-	A. albopilosum A. ostrowskianum	bulbs bulbs	[5] [5]
9		$(1\rightarrow 4)$ - β -D-galactopyranoside} 26-O- β -D-glucopyranosyl-(25 <i>R</i>)-5 α -furostan- 2α , 3β , 6β ,22 ξ ,26-pentol 3-O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[β -D- xylopyranosyl-(1 \rightarrow 3)]-O- β -D-glucopyranosyl- $(1\rightarrow 4)$ - β -D-galactopyranoside	A. schubertii	bulbs	[7]
10		26-O-β-D-glucopyranosyl-(25S)-5α-furostan- 2 α ,3 β ,6 β ,22 ξ ,26-pentol 3-O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[β -D- xylopyranosyl-(1 \rightarrow 3)]-O- β -D-glucopyranosyl- (1 \rightarrow 4)- β -D-galactopyranoside	A. schubertii	bulbs	[7]

Table 1. Steroidal saponins/sapogenins isolated from Allium plants reported in the literature.

No.	Common Name	Structure Name	Species	Parts	References
		26-O- β -D-glucopyranosyl			
	macrostemonoside	2β , 3β , 22 , 26 -tetrahydroxy- $25(R)$ - 5β -furostan	A. macrostemon		F (2)
11	I	$3-O-\beta-D-glucopyranosyl$	Bunge	bulbs	[8]
	<i>y</i>	$(1 \rightarrow 2)$ - β -D-galactopyranoside	0		
		3-O-benzoyl-22-O-methyl-26-O-β-D-			
10		glucopyranosyl-(25R)-5 α -furostane-	A : /		[2]
12		$2\alpha, 3\beta, 5\alpha, 6\beta, 22\xi, 26$ -hexol	A. giganteum	bulbs	[6]
		2-O- β -D-glucopyranoside			
		3-O-acetyl-22-O-methyl-26-O-β-D-glucopyranosyl-			
13		$(25R)$ -5 α -furostane-2 α ,3 β ,5 α ,6 β ,22 ξ ,26-hexol	A. giganteum	bulbs	[6]
		2-O-β-D-glucopyranoside	00		
		$(25R)$ -26-O- β -D-glucopyranosyl-22-O-methyl-5 α -			
14		furostane- 2α , 3β , 5 , 6β , 22ξ -pentol	A. karataviense	bulbs	[9]
		$2-O-\beta-D-glucopyranoside$			
		furost- 2α , 3β , 5α , 6β , 22α -pentol			
15	elburzensosides A1	$3-O-\beta-D-glucopyranosyl$	A. elburzense	bulbs	[10]
		26-O- β -D-glucopyranoside			
		furost- 2α , 3β , 5α , 6β , 22β -pentol			
16	elburzensosides A2	$3-O-\beta-D-glucopyranosyl$	A. elburzense	bulbs	[10]
		26-O-B-D-glucopyranoside			[]
		furost- 2α , 3β , 5α , 6β , 22α -pentol 3-O-[β -D-			
17	elburzensosides B1	glucopyranosyl- $(1 \rightarrow 4)$ -O- β -D-glucopyranosyl	A. elburzense	bulbs	[10]
		26-O-β-D-glucopyranoside			[]
		furost- 2α , 3β , 5α , 6β , 22β -pentol 3-O-[β -D-			
18	elburzensosides B2	glucopyranosyl- $(1 \rightarrow 4)$ -O- β -D-glucopyranosyl	A. elburzense	bulbs	[10]
		$26-O-\beta-D-glucopyranoside$			
10	11 11 01	furost- 2α , 3β , 5α , 22α -tetrol 3-O- β -D-glucopyranosyl	4 11		[10]
19	elburzensosides C1	26-O-β-D-glucopyranoside	A. elburzense	bulbs	[10]
• •		furost- 2α , 3β , 5α , 22β -tetrol 3-O- β -D-glucopyranosyl			5103
20	elburzensosides C2	26-O-β-D-glucopyranoside	A. elburzense	bulbs	[10]
		furost- 2α , 3β , 5α , 22α -tetrol			
		3-O-[β -D-xylopyranosyl-(1 \rightarrow 3)-O- β -D-			5103
21	elburzensosides D1	glucopyranosyl- $(1 \rightarrow 4)$ -O- β -D-galactopyranosyl]	A. elburzense	bulbs	[10]
		$26-O-\beta$ -D-glucopyranoside			
		furost- 2α , 3β , 5α , 22β -tetrol			
		3-O-[β -D-xvlopvranosvl-(1 \rightarrow 3)-O- β -D-			54.03
22	elburzensosides D2	glucopyranosyl- $(1 \rightarrow 4)$ -O- β -D-galactopyranosyl	A. elburzense	bulbs	[10]
		$26-O-\beta$ -D-glucopyranoside			
		$26-O-B-D-glucopyranosyl-(25R)-3B.22\tilde{c}.26-$			
23		trihvdroxyl-5α-furostane	A. tuberosum Rottler	seeds	[11]
		$3-O-\beta$ -chacotrioside			
		26-O- β -D-glucopyranosyl-(25S)-3 β ,5 β ,6 α ,22 ξ ,26-			
~ (pentahydroxyl-5 β -furostane			[1]
24		3-O- α -L-rhamnopyranosyl-(1 \rightarrow 4)- β -D-	A. tuberosum Rottler	seeds	[11]
		glucopyranoside			
		furost- 2α , 3β , 22α -triol 3-O-[β -D-xylopyranosyl-			
25	hirtifolioside A1	$(1\rightarrow 3)$ -O- β -D-glucopyranosyl- $(1\rightarrow 4)$ -O- β -D-	A. hirtifolium Boiss	flowers	[12]
		galactopyranosyl]-26-O- β -D-glucopyranoside	, ,		
		furost- 2α , 3β , 22β -triol 3-O-[β -D-xylopyranosyl-			
26	hirtifolioside A2	$(1\rightarrow 3)$ -O- β -D-glucopyranosyl- $(1\rightarrow 4)$ -O- β -D-	A. hirtifolium Boiss	flowers	[12]
		galactopyranosyl]-26-O-β-D-glucopyranoside	-		
07		$(25R)$ -5 α -furostane-2 α ,3 β ,22 α ,26-tetraol-26-O- β -D-	A. hirtifolium Boiss	flowers	[12]
27	hirtifolioside Cl	glucopyranoside	A. chinense G. Don	bulbs	[13]

No.	Common Name	Structure Name	Species	Parts	References
28	hirtifolioside C2	furost- 2α , 3β , 22β -triol 26-O- β -D-glucopyranoside (25R)-furost- 2α , 3β , 6β , 22α , 26 -pentaol	A. hirtifolium Boiss	flowers	[12]
29	minutoside A	3-O-[β -D-xylopyranosyl-(1 \rightarrow 3)-O- β -D-glucopyranosyl-(1 \rightarrow 4)-O- β -D-galactopyranosyl]	A. minutiflorum Regel	bulbs	[14]
30	minutoside C	26-O-β-D-glucopyranoside (25 <i>R</i>)-furost-2 α ,3 β ,5 α ,6 β ,22 α ,26-esaol 3-O-[β -D-xylopyranosyl-(1 \rightarrow 3)-O- β -D- glucopyranosyl-(1 \rightarrow 4)-O- β -D-galactopyranosyl] 26-O- β -D-glucopyranoside	A. minutiflorum Regel	bulbs	[14]
31	macrostemonoside P	(25 <i>R</i>)-26-O- β -D-glucopyranosyl-22-hydroxy-5 β - furostane-1 β ,3 β , 26-triol-3-O- β -D-glucopyranosyl (1 \rightarrow 2)- β -D-galactopyranoside	A. macrostemon Bunge	bulbs	[15]
32	macrostemonoside Q	(25 <i>R</i>)-26-O- β -D-glucopyranosyl-22-hydroxy-5 β - furost-1 α ,2 β ,3 β , 26-tetraol-3-O- β -D-glucopyranosyl (1 \rightarrow 2)- β -D-galactopyranoside	A. macrostemon Bunge	bulbs	[15]
33		(25 <i>R</i>)-26-O- β -D-glucopyranosyl-22-hydroxy-5 β - furostane-3 β , 26-diol-3-O- β -D-glucopyranosyl (1 \rightarrow 2)- β -D-galactopyranoside	A. macrostemon Bunge	bulbs	[15]
34	macrostemonoside	(25 <i>R</i>)-26-O- β -D-glucopyranosyl-22-hydroxy- furostane-2 α ,3 β ,26-triol-3-O- β -D-glucopyranosyl	A. macrostemon Bunge	bulbs	[15]
	R	(1 \rightarrow 2)-[β -D-glucopyranosyl (1 \rightarrow 3)]- β -D-glucopyranosyl (1 \rightarrow 4)- β -D-galactopyranoside	A. chinense G. Don	bulbs	[16]
35	macrostemonoside B		A. macrostemon Bunge	bulbs	[15]
36	macrostemonoside M	(25R)-22-hydroxy-5β-furostane-1β,2β,3β,6α-tetraol- 26-O-β-D-glucopyranoside (25R)-26-Q-β-D-glucopyranosyl-5α-furostano-	A. macrostemon Bunge	bulbs	[17]
37		(264) 20 C β D glacopylatiosyl ou futostatic $3\beta,12\beta,22,26$ -tetraol-3-O- β -D-glucopyranosyl $(1\rightarrow 2)$ [β -D-glucopyranosyl (1 $\rightarrow 3$)]- β -D-glucopyranosyl (1 $\rightarrow 4$)- β -D-galactopyranoside	A. macrostemon Bunge	bulbs	[18]
38		(25 <i>R</i>)-26-O- β -D-glucopyranosyl-5 α -furostane- 3 β ,12 α ,22,26-tetraol-3-O- β -D-glucopyranosyl (1 \rightarrow 2) [β -D-glucopyranosyl (1 \rightarrow 3)]- β -D-glucopyranosyl (1 \rightarrow 4) - β -D-galactopyranoside	A. macrostemon Bunge	bulbs	[18]
39		(25 <i>R</i>)-26-O-β-D-glucopyranosyl-5β-furostane- 3β,12α,22,26-tetraol-3-O-β-D-glucopyranosyl (1 \rightarrow 2)-β-D-galactopyranoside	A. macrostemon Bunge	bulbs	[18]
40		26-O-β-D-glucopyranosyl-(25K)-5α-turostan- 2α ,3β,22α,26-tetraol 3-O-β-D-glucopyranosyl-(1→2)[β-D- xylopyranosyl-(1→3)]-β-D-glucopyranosyl-(1→4)- β-D-galactopyranoside	A. rotundum	inflorescences and flower stalks	[19]
41	voghieroside A1	furosta- 2α , 3β , 5α , 22α , 26 -pentol 3-O- β -D-glucopyranosyl-(1 \rightarrow 3)- β -D- glucopyranosyl-(1 \rightarrow 2)-[β -D-glucopyranosyl- (1 \rightarrow 3)]- β -D-glucopyranosyl-(1 \rightarrow 4)- β -D- galactopyranosyl-26-O- β -D-glucopyranoside	A. sativum L. var. Voghiera	bulbs	[20]

No.	Common Name	Structure Name	Species	Parts	References
		furosta- 2α , 3β , 5α , 22β , 26 -pentol			
		3-O- β -D-glucopyranosyl-(1 \rightarrow 3)- β -D-	A actionum I wan		
42	voghieroside A2	glucopyranosyl-(1 \rightarrow 2)-[β -D-glucopyranosyl-	A. suttoum L. Var. Voghjera	bulbs	[20]
		$(1\rightarrow 3)$]- β -D-glucopyranosyl- $(1\rightarrow 4)$ - β -D-	vogiliera		
		galactopyranosyl-26-O- β -D-glucopyranoside			
		furosta- 2α , 3β , 5α , 22α , 26 -pentol 3-O- β -D-			
43	voghieroside B1	glucopyranosyl- $(1 \rightarrow 2)$ -[β -D-glucopyranosyl-	A. sativum L. var.	bulbs	[20]
	0	$(1\rightarrow 3)$]- β -D-glucopyranosyl- $(1\rightarrow 4)$ - β -D-	Voghiera		
		galactopyranosyl-26-O- β -D-glucopyranoside			
		α β	A actionum I wan		
44	voghieroside B2	$(1 \rightarrow 3)$]-B-D-glucopyranosyl- $(1 \rightarrow 4)$ -B-D-	A. Sulloum L. Var.	bulbs	[20]
		(1-3)-p-D-glucopyrallosy-(1-34)-p-D- galactopyranosyl-26-Q-B-D-glucopyranoside	vogiliera		
		furosta-2% 38 68 22% 26-pentol			
		$3-O-\beta-D-glucopyranosyl-(1 \rightarrow 2)-[\beta-D-$			
45	voghieroside C1	glucopyranosyl- $(1 \rightarrow 3)$]- β -D-glucopyranosyl-	A. sativum L. var.	bulbs	[20]
	0	$(1 \rightarrow 4)$ - β -D-galactopyranosyl	Voghiera		
		-26-O-β-D-glucopyranoside			
		furosta- 2α , 3β , 6β , 22β , 26 -pentol			
		3-O- β -D-glucopyranosyl-(1 \rightarrow 2)-[β -D-	A actionum I wan		
46	voghieroside C2	glucopyranosyl- $(1\rightarrow 3)$]- β -D-glucopyranosyl-	A. Sulloum L. Var.	bulbs	[20]
		$(1\rightarrow 4)$ - β -D-galactopyranosyl	voginera		
		-26-O-β-D-glucopyranoside			
		furosta- 2α , 3β , 22α , 26 -tetrol			
		3-O- β -D-glucopyranosyl-(1 \rightarrow 3)- β -D-	A. sativum L. var.		F = 01
47	voghieroside D1	glucopyranosyl- $(1 \rightarrow 2)$ -[β -D-glucopyranosyl-	Voghiera	bulbs	[20]
		$(1\rightarrow 3)$]- β -D-glucopyranosyl- $(1\rightarrow 4)$ - β -D-	0		
		galactopyranosyl-26-O- α -L-mamnopyranoside			
		$3 - \Omega_{B} - $			
48	voghieroside D2	$5-0-p-D$ -glucopyranosyl- $(1\rightarrow 2)$ -[β -D-glucopyranosyl-	A. sativum L. var.	bulbs	[20]
40	vogineroside D2	$(1 \rightarrow 3)$]-B-D-glucopyranosyl- $(1 \rightarrow 4)$ -B-D-	Voghiera	buibs	[20]
		galactopyranosyl-26-O- α -L-rhamnopyranoside			
		furosta- 2α , 3β , 22α , 26 -tetrol 3 - O - β - D -			
10	1 1 171	glucopyranosyl- $(1 \rightarrow 2)$ - $[\beta$ -D-glucopyranosyl-	A. sativum L. var.	1 11	[00]
49	voghieroside El	$(1\rightarrow 3)$]- β -D-glucopyranosyl- $(1\rightarrow 4)$ - β -D-	Voghiera	bulbs	[20]
		galactopyranosyl-26-O-α-L-rhamnopyranoside	0		
		furosta- 2α , 3β , 22β , 26 -tetrol 3 - O - β - D -			
50	voghieroside F2	glucopyranosyl-(1 \rightarrow 2)-[β -D-glucopyranosyl-	A. sativum L. var.	bulbs	[20]
50	vogineroside 12	$(1\rightarrow 3)$]- β -D-glucopyranosyl- $(1\rightarrow 4)$ - β -D-	Voghiera	buibs	[20]
		galactopyranosyl-26-O-α-L-rhamnopyranoside			
		furosta- 2α , 3β , 22ξ , 26 -tetraol			
-1		3-O-β-D-glucopyranosyl	A. ampeloprasum		[01]
51	persicoside DI	$(1 \rightarrow 3)$ - β -D-glucopyranosyl	subsp. persicum	seeds	[21]
		$(1 \rightarrow 2)$ - β -D-galactopyranosyl			
		furesta 24 26 22 ² 26 tetraol			
		$3 - \Omega_{-}\beta_{-}D_{-}\alpha_{1}\mu_{c}copyraposyl$			
52	persicoside D2	$(1 \rightarrow 3)$ - β -D-glucopyranosyl	A. ampeloprasum	seeds	[21]
52	persicoside D2	$(1 \rightarrow 2)$ - β -D-galactopyranosyl	subsp. <i>persicum</i>	seeds	[21]
		26-O-B-D-glucopyranoside			
		$26-O-\beta-D-glucopyranosyl-(25R)-5\alpha-furostane-$			
50	1 ($3\beta, 6\beta$ -diol-3-O- β -D-glucopyranosyl-(1 \rightarrow 2)-O- β -D-	A 1 - 7	a	[00]
53	leucofuranoside A	xylopyranosyl- $(1\rightarrow 3)$ - O - β -D-glucopyranosyl-	A. leucanthum	flowers	[22]
		$(1\rightarrow 4)$ - β -D-galactopyranoside			
		(25 <i>R</i>)-26-O- β -D-glucopyranosyl-5 α -furost-3- β ,26-			
54		didyroxy-3-O-{O- β -D-glucopyranosyl-(1 \rightarrow 4)- β -D-	A. chinense G. Don	bulbs	[16]
		galactopyranoside}			

No.	Common Name	Structure Name	Species	Parts	References
55	tomatoside A		A. chinense G. Don	bulbs	[16]
56	macorstemonoside		A. chinense G. Don	bulbs	[16]
	C	$(25R)$ -26-O- β -D-glucopyranosyl-5 α			
57		-furostane- 3β ,26-diol- 3 -O- β -D-glucopyranosyl- (1 \rightarrow 2)-[β -D-glucopyranosyl-($1\rightarrow$ 3)]- β -D- glucopyranosyl-($1\rightarrow$ 4)- β -D-galacopyranoside (25R)-26-Q- β -D-glucopyranosyl-22-bydroxy-5-epe-	A. chinense G. Don	bulbs	[13]
58	dichotomin	(264) 26 G β D glacopylatosyl 22 hydroxy 6 che furostan-3β, 26-diol-3-O-α-L-rhamnopyranosyl- $(1\rightarrow 4)$ -[α-L-rhamnopyranosyl- $(1\rightarrow 2)$]-β-D-glucopyranoside	A. ascalonicum L		[23]
59	parisaponin	 (25<i>R</i>)-26-O-β-D-glucopyranosyl-22-hydroxy-5-ene- furostan-3β, 26-diol-3-O-α-L-rhamnopyranosyl-(1→2)-[α-L- arabinofuranosyl-(1→4)]-β-D-glucopyranoside furosta-1β,3β,22ζ,26-tetraol 5-en 	A. ascalonicum L		[23]
60	persicoside C1	1-O-β-D-glucopyranosyl $(1\rightarrow 3)$ -β-D-glucopyranosyl $(1\rightarrow 2)$ -β-D-galactopyranosyl 26-O-α-L-rhamnopyranosyl $(1\rightarrow 2)$ -β-D-galactopyranoside	A. ampeloprasum subsp. persicum	seeds	[21]
61	persicoside C2	furosta-1 β ,3 β ,22 ξ ,26-tetraol 5-en 1-O- β -D-glucopyranosyl (1 \rightarrow 3)- β -D-glucopyranosyl (1 \rightarrow 2)- β -D-galactopyranosyl 26-O- α -L-rhamnopyranosyl (1 \rightarrow 2)- β -D-galactopyranoside	A. ampeloprasum subsp. persicum	seeds	[21]
62	ceposide A1		A. ampeloprasum subsp. persicum	seeds	[21]
63	ceposide A2		A. ampeloprasum subsp. persicum	seeds	[21]
64	ceposide C1		A. ampeloprasum subsp. persicum	seeds	[21]
65	ceposide C2		A. ampeloprasum subsp. persicum	seeds	[21]
66	tropeoside A1		A. ampeloprasum subsp. persicum	seeds	[21]
67	tropeoside A2		A. ampeloprasum subsp. persicum	seeds	[21]
68	tropeoside B1		A. ampeloprasum subsp. persicum	seeds	[21]
69	tropeoside B2		A. ampeloprasum subsp. persicum	seeds	[21]
70	ascalonicoside A1		A. ampeloprasum subsp. persicum	seeds	[21]
71	ascalonicoside A2		A. ampeloprasum subsp. persicum	seeds	[21]
72	deltoside	(25 <i>R</i>)-furost-5-en-3 β ,22 α ,26-triol 26-O- β -D-glucopyranosyl-3-O- α -L-rhamnopyranosyl-(1 \rightarrow 2)- [β -D-glucopyranosyl-(1 \rightarrow 4)]- β -D-glucopyranoside	A. schoenoprasum	whole plants	[24]
73	karatavioside G	$(25N)$ -20- $[(0-\beta-D)$ -glucopyranosyl- $(1\rightarrow 6)$ - β -D-glucopyranosyl)oxy]- 2 α -hydroxy-22 α -methoxyfurost-5-en-3 β -yl O- β -D-glucopyranosyl- $(1\rightarrow 2)$ - $[\beta$ -D-xylopyranosyl- $(1\rightarrow 3)]\beta$ -D-glucopyranosyl- $(1\rightarrow 4)$ - β	A. karataviense	bulbs	[25]

No.	Common Name	Structure Name	Species	Parts	References
74		(25 <i>R</i>)-26-O- β -D-glucopyranosyl-5-enefurostan- 2 α ,3 β ,22 α ,26-tetraol-3-O- β -D-	A. macrostemon	whole	[2/]
74	allimacroside D	glucopyranosyl(1 \rightarrow 2)-[β -D-glucopyranosyl(1 \rightarrow 3)]- β -D-glucopyranosyl(1 \rightarrow 4)- β -D-galactopyranoside 26-O- β -D-glucopyranosyl-(25 <i>S</i> ,20 <i>R</i>)-20-O-methyl-	Bunge	plants	[26]
75	tuberoside F	5α -furost-22(23)-en- 2α , 3β ,20,26-tetraol 3-O- α -L-rhamnopyranosyl- $(1\rightarrow 2)$ - $[\alpha$ -L- rhamnopyranosyl- $(1\rightarrow 4)$]- β -D-glucopyranoside	A. tuberosum	seeds	[27]
76	tuberoside G	26-O- β -D-glucopyranosyl-(255,20R)-5 α -furost- 22(23)-en-2 α ,3 β ,20,26-tetraol	A. tuberosum	seeds	[27]
		rhamnopyranosyl- $(1 \rightarrow 2)$ -[α-L- rhamnopyranosyl- $(1 \rightarrow 4)$]-β-D-glucopyranoside 26-O-β-D-glucopyranosyl- $(25S,20S)$ -5α-furost-			
77	tuberoside H	22(23)-en-2 α ,3 β ,20,26-tetraol 3-O- α -L-rhamnopyranosyl-(1 \rightarrow 2)-[α -L- rhamnopyranosyl-(1 \rightarrow 4)]- β -D-glucopyranoside	A. tuberosum	seeds	[27]
78	tuberoside I	26-O- β -D-glucopyranosyl-(25 <i>S</i> ,20 <i>S</i>)-5 α -furost- 22(23)-en-3 β ,20,26-triol 3-O- α -L-rhamnopyranosyl-(1 \rightarrow 2)-[α -L- rhamnopyranosyl-(1 \rightarrow 4)]- β -D-glucopyranoside	A. tuberosum	seeds	[27]
79	macrostemonoside L	26-O-β-D-glucopyranosyl 2 β ,3 β ,26-trihydroxy-25(R)-5 β -furostan-20(22)-ene 3-O- β -D-glucopyranosyl (1 \rightarrow 2)- β -D-galactopyranoside	A. macrostemon Bunge	bulbs	[8]
80	tuberoside A	26-O-β-D-glucopyranosyl-(25S)-5α-furost-20(22)- ene-2 α ,3 β ,26-triol 3-O- α -L-rhamnopyranosyl-(1 \rightarrow 2)-O- β -D- glucopyranoside	A. tuberosum	seeds	[28]
81	tuberoside B	26-O-β-D-glucopyranosyl-(25S)-5 α -furost-20(22)- ene-2 α ,3 β ,26-triol 3-O- α -L-rhamnopyranosyl-(1 \rightarrow 2)-[α -L- rhamnopyranosyl-(1 \rightarrow 4)]- β -D-glucopyranoside	A. tuberosum	seeds	[28]
82	tuberoside C	26-O-β-D-glucopyranosyl-(25 <i>S</i>)-5α-furost-20(22)- ene-2α,3β,26-triol 3-O-α-L-rhamnopyranosyl- $(1\rightarrow 2)$ -[β-D- glucopyranosyl- $(1\rightarrow 3)$]-β-D-glucopyranoside	A. tuberosum	seeds	[28]
83	tuberoside R	26-O-β-D-glucopyranosyl-(25S)-5β-furost-20(22)- ene-2 β ,3 β , 5, 26-tetraol 3-O- β -D-glucopyranoside 26-O- β -D-glucopyranosyl-(25S)-5 β -furost-20(22)-	A. tuberosum L	seeds	[29]
84	tuberoside S	ene-3β,26-diol 3-O-β-D-glucopyranosyl- $(1\rightarrow 2)$ -[α-L- rhamnopyranosyl	A. tuberosum L	seeds	[29]
85	tuberoside T	$(1\rightarrow 4)$]- β -D-glucopyranoside 26-O- β -D-glucopyranosyl-(25 <i>S</i>)-5 α -furost-20(22)- ene-3 β , 26-diol 3-O- α -L-rhamnopyranosyl $(1\rightarrow 2)$ -[α -L-rhamnopyranosyl $(1\rightarrow 4)$]- β -D-glucopyranoside furost-20(22)-ene-2 α .3 β -diol	A. tuberosum L	seeds	[29]
86	hirtifolioside B	3-O-[β -D-xylopyranosyl-(1 \rightarrow 3)-O- β -D- glucopyranosyl-(1 \rightarrow 4)-O- β -D-galactopyranosyl]-	A. hirtifolium Boiss	flowers	[12]
87	macrostemonoside E		A. macrostemon Bunge	bulbs	[17]
88	macrostemonoside G	20- <i>O</i> - <i>β</i> - <i>D</i> -glucopyranosyl-22-hydroxy-5β-turost- 25(27)-ene-3 β ,12 β ,26-triol 3-O- β -D-glucopyranosyl(1 \rightarrow 2)- β -D- galactopyranoside	A. macrostemon Bunge	bulbs	[30]

No.	Common Name	Structure Name	Species	Parts	References
89	macrostemonoside O	26-O-β-D-glucopyranosyl-22-hydroxy-5-β-furost- 25 (27)-ene-3β, 26-diol-3-O-β-D-glucopyranosyl $(1\rightarrow 2)$ -β-D-galactopyranoside	A. macrostemon Bunge	bulbs	[15]
90	macrostemonoside N	22-hydroxy-5 β -furost-25-(27)-ene-1 β ,2 β ,3 β ,6 α - tetraol-26-O- β -D-glucopyranoside	A. macrostemon Bunge	bulbs	[17]
91		26-O-β-D-glucopyranosyl-5 <i>α</i> -furost-25 (27)-ene- 3 β ,12 β ,22,26-tetraol-3-O- β -D-glucopyranosyl- (1 \rightarrow 2)-[β -D-glucopyranosyl-(1 \rightarrow 3)]- β -D- glucopyranosyl-(1 \rightarrow 4)- β -D-galactopyranoside	A. macrostemon Bunge	bulbs	[31]
92	allimacroside E	26-O-β-D-glucopyranosyl-20β-methoxyl-25(R)- furostan-5,22(23)-dien-3β,26-diol-3-O-β-D- glucopyranosyl(1 \rightarrow 2)-[β-D-glucopyranosyl(1 \rightarrow 3)]- β-D-glucopyranosyl(1 \rightarrow 4)-β-D-galactopyranoside	A. macrostemon Bunge	whole plants	[26]
93		26-O- β -D-glucopyranosyl-5 β -furost-20 (22)-25 (27)-dien-3 β ,12 β ,26-triol-3-O- β -D-glucopyranosyl- (1 \rightarrow 2)- β -D-galactopyranoside	A. macrostemon Bunge	bulbs	[31]
94	ascalonicoside C	(25 <i>R</i>)-26-O- β -D-glucopyranosyl-22-hydroxy-5 α - furost-2-one-3 β ,5,6 β , 26-tetraol-3-O- α -L-rhamnopyranosyl-(1 \rightarrow 2)- β -D-	A. ascalonicum L		[23]
95	ascalonicoside D	(25 <i>R</i>)-26-O- β -D-glucopyranosyl-22-methoxy-5 α - furost-2-one-3 β ,5,6 β , 26-tetraol- 3-O- α -L-rhamnopyranosyl-(1 \rightarrow 2)- β -D- glucopyranoside	A. ascalonicum L		[23]
96	chinenoside I	26-O-β-D-glucopyranosyl 3β ,22,26-tridyroxy-25(<i>R</i>)-5 <i>α</i> -furostan-6-one 3-O-β- D-xylopyranosyl(1→4)-[<i>α</i> -L-arabinopyranosyl (1→6)]-β-D-glucopyranoside	A. chinense G. Don	bulbs	[32]
97		26-O-β-D-glucopyranosyl 3β,22 α ,26-trihydroxy-25(<i>R</i>)-5 α -furostan-6-one	A. chinense G. Don	bulbs	[16]
98		$3\beta,22\alpha,26$ -trihydroxy- $25(R)$ - 5α -furostan-6-one 3-O- β -D-glucopyranoside	A. chinense G. Don	bulbs	[16]
99		26-O-β-D-glucopyranosyl 3β,22,26-tridyroxy 25(R)-5α-furostan-6-one 3-O-α-L- arabinopyranosyl(1 \rightarrow 6)-β-D-glucopyranoside	A. chinense G. Don	bulbs	[16]
100		(25R)-6-ketone-26-O- β -D-glucopyranosyl-5 α - furostane-3 β ,22 α ,26-triol-3-O- α -L-xylopyranosyl- (1 \rightarrow 4)- β -D-glucopyranoside	A. chinense G. Don	bulbs	[13]
101		(25 <i>R</i>)-6-ketone-5 α -furostane-3 β ,22 α ,24 β ,26-tetraol- 3-O- β -D-xylopyranosy-(1 \rightarrow 4)-[α -L- arabinopyranosyl-(1 \rightarrow 6)]- β -D-glucopyranoside	A. chinense G. Don	bulbs	[13]
102	chinenoside II	26-O-β-glucopyranosyl 3 β ,26-dihydroxy-(25 R)-5 α -furost-20(22)-en-6-one 3-O- β -xylopyranosyl-(1 \rightarrow 4)-[α - arbinopyranosyl(1 \rightarrow 6)]- β -glucopyranoside	A. chinense G. Don	bulbs	[33]
103	chinenoside III	26-O- β -glucopyranosyl 3 β ,26-dihydroxy-(25 R)-5 α -furost-20(22)-en-6-one 3-O- α -arabinopyranosyl(1 \rightarrow 6)- β -glucopyranoside	A. chinense G. Don	bulbs	[33]
104	chinenoside IV	26-O-β-glucopyranosyl-3 β ,26-dihydroxy-23- hydroxymethyl-25(<i>R</i>)-5 α -furost-20(22)-en-6-one 3-O- β -xylopyranosyl(1 \rightarrow 4)-[α - arabinopyranosyl(1 \rightarrow 6)]- β -glucopyranoside	A. chinense G. Don	bulbs	[34]

No.	Common Name	Structure Name	Species	Parts	References
105	chinenoside V	26-O- β -glucopyranosyl-3 β ,26-dihydroxy-23- hydroxymethyl-25(<i>R</i>)-5 α -furost-20(22)-en-6-one 3-O- α -arabinopyranosyl(1 \rightarrow 6)- β -glucopyranoside	A. chinense G. Don	bulbs	[34]
106		26-O- β -D-glucopyranosyl 3 β ,26-dihydroxy-25(<i>R</i>)- 5 α -furostan-20(22)-en-6-one	A. chinense G. Don	bulbs	[16]
107	macrostemonoside I	26-O-β-D-glucopyranosyl-22-hydroxy-5β-furost- 25(27)-ene12-one-3β,26-diol 3-O-β-D-glucopyranosyl(1→2)-β-D- galactopyranoside	A. macrostemon Bunge	bulbs	[30]
108		agigenin 3-O-β-glucopyranosyl-(1→4)-β-galactopyranoside	A. ampeloprasum L	bulbs	[3]
100	ampeloside Bel	agigenin 3-O- β -glucopyranosyl-(1 \rightarrow 3)- β -	A. ampeloprasum L	bulbs	[3]
109		glucopyranosyl-(1 \rightarrow 4)- β -galactopyranoside	<i>A. sativum</i> L. var. Voghiera	bulbs	[20]
110	desgalactotigonin		A. sativum L	roots	[4]
			A. sativum L	roots	[4]
		$(25R)$ -5 α -spirostane-2 α ,3 β -diol	A. ostrowskianum	bulbs	[5]
111	E gitopin	3-O-{O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[β -D-	A. jesdianum	bulbs	[35]
111	r-gitonini	xylopyranosyl- $(1\rightarrow 3)$]-O- β -D-glucopyranosyl- $(1\rightarrow 4)$ - β -D-galactopyranoside}	A. porrum L	bulbs flowers	[36] [37]
			A. cyrillii	bulbs	[38]
112	sativoside-R2	tigogenin 3-O- β -D-glucopyranosyl-(1 \rightarrow 3)-O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[β -D-xylopyranosyl-(1 \rightarrow 3)]-O- β -D-glucopyranosyl-(1 \rightarrow 4)-O- β -D-	A. sativum L	roots	[4]
113		galactopyranosyde (24 <i>S</i> ,25 <i>R</i>)-5 α -spirostan-2 α ,3 β ,5 α ,6 β ,24-pentaol 24-O- β -D-glucopyranoside	A. giganteum	bulbs	[39]
			A. giganteum	bulbs	[39]
			A. albopilosum	bulbs	[5]
			A. ostrowskianum	bulbs	[5]
			A. schubertii	bulbs	[7]
		$(25R)$ -5 α -spirostan-2 α ,3 β ,6 β -triol	A. macleanii	bulbs	[40]
114	aginoside	3-O-β-D-glucopyranosyl-(1 \rightarrow 2)-O-[β-D-	A. ampeloprasum L	bulbs	[41]
	0	xylopyranosyl- $(1\rightarrow 3)$]-O- β -D-glucopyranosyl-	A. jesdianum	bulbs	[35]
		$(1\rightarrow 4)$ - β -D-galactopyranoside	A. leucanthum	flowers	[42]
				bulbs	[43]
			A. nigrum L	root-bulb basal stem	[44]
			A. porrum L	flowers	[37]
115		(25R)-5α-spirostan-2α,3β,5α,6α-tetraol 2-O-β-D-glucopyranoside	A. aflatunense	bulbs	[39]
			A. giganteum	bulbs	[45]
116	alliagonin	(25P) Equation $2a 2b Equal barrent$	A. albopilosum	bulbs	[5]
116	amogenin	(25K)-5a-spirostan-2a,5p,5a,6p-tetraor	A. karataviense	bulbs	[9]
			A. minutiflorum Regel	bulbs	[14]
		(2EP) 2 O acatel Experimentar 2x 28 Ex (8 total	A. giganteum	bulbs	[45]
117		(25K)-5-O-acetyI-5 <i>u</i> -spirostan-2 <i>u</i> ,5 <i>p</i> ,5 <i>u</i> ,6 <i>p</i> -tetraoi	A. albopilosum	bulbs	[5]
		2-O-p-D-grucopyranoside	A. karataviense	bulbs	[9]
			A. giganteum	bulbs	[45]
110		(25 <i>R</i>)-5 α -spirostan-2 α ,3 β ,5 α ,6 β -tetraol	A. albopilosum	bulbs	[5]
118		2-O-β-D-glucopyranoside	A. macleanii	bulbs	[40]
		· · · · · ·	A. karataviense	bulbs	[9]
			A. giganteum	bulbs	[45]
119		$(25K)$ -5-U-denzoyi-5 α -spirostan-2 α ,3 β ,5 α ,6 β -tetraol	A. macleanii	bulbs	[40]
		2-0-p-D-glucopyranoside	A. karataviense	bulbs	[9]

No.	Common Name	Structure Name	Species	Parts	References
120		(25R)-5 α -spirostane-2 α ,3 β ,6 β -triol 3-O-(O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[3-O-acetyl- β -D-xylopyranosyl-(1 \rightarrow 3)]-O- β -D-glucopyranosyl- (1 \rightarrow 4)- β -D-galactopyranoside}	A. albopilosum	bulbs	[5]
121		(255)-5 α -spirostane-2 α ,3 β ,6 β -triol 3-O-(O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[3-O-acetyl- β -D-xylopyranosyl-(1 \rightarrow 3)]-O- β -D-glucopyranosyl- (1 \rightarrow 4)- β -D-galactopyranoside}	A. albopilosum	bulbs	[5]
122		(25 <i>R</i>)-2-O-[(<i>S</i>)-3-hydroxy-3-methylglutaroyl]-5 α - spirostane-2 α ,3 β ,6 β -triol 3-O-{O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[β -D- xylopyranosyl-(1 \rightarrow 3)-O- β -D-glucopyranosyl- (1 \rightarrow 4)- β -D-galactopyranoside)	A. albopilosum	bulbs	[5]
123	turoside A	$(25S)$ -5 α -spirostan-2 α ,3 β ,6 β -triol 3-O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[β -D-	A. schubertii	bulbs bulbs	[7] [43]
		xylopyranosyl- $(1\rightarrow 3)$]-O- β -D-glucopyranosyl- $(1\rightarrow 4)$ - β -D-galactopyranoside	A. nıgrum L	root-bulb basal stem	[44]
124		(25 <i>R</i>)-5 α -spirostan-2 α ,3 β ,6 β -triol 3-O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[4-O-benzoyl- β - D-xylopyranosyl-(1 \rightarrow 3)]-O- β -D-glucopyranosyl- (1 \rightarrow 4)- β -D-galactopyranoside	A. schubertii A. macleanii	bulbs bulbs	[7] [40]
125		(25S)-5 α -spirostan-2 α ,3 β ,6 β -triol 3-O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[4-O-benzoyl- β - D-xylopyranosyl-(1 \rightarrow 3)]-O- β -D-glucopyranosyl- (1 \rightarrow 4)- β -D-galactopyranoside (25R)-5 α -spirostan-2 α , 3 β , 6 β -triol	A. schubertii	bulbs	[7]
126		3-O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[3-O-benzoyl- β - D-xylopyranosyl-(1 \rightarrow 3)]-O- β -D-glucopyranosyl- (1 \rightarrow 4)- β -D-galactopyranoside	A. schubertii	bulbs	[7]
127		(25 <i>S</i>)-5 α -spirostan-2 α ,3 β ,6 β -triol 3-O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[3-O-benzoyl- β - D-xylopyranosyl-(1 \rightarrow 3)]-O- β -D-glucopyranosyl- (1 \rightarrow 4)- β -D-galactopyranosida	A. schubertii	bulbs	[7]
		$(25R)$ -5 α -spirostan-2 α ,3 β ,6 β -triol 3-O- β -D-	A. schubertii	bulbs	[7]
128		methylglutaroyl- β -D-xylopyranosyl- $(1\rightarrow 3)$]-O- β - D-glucopyranosyl- $(1\rightarrow 4)$ - β -D-galactopyranoside	A. giganteum A. nigrum L	bulbs	[6] [43]
129		(25 <i>S</i>)-5 <i>a</i> -spirostan-2 <i>a</i> ,3 <i>β</i> ,6 <i>β</i> -triol 3-O- <i>β</i> -D- glucopyranosyl-(1 \rightarrow 2)-O-[4-O-(3 <i>S</i>)-3-hydroxy-3- methylglutaroyl- <i>β</i> -D-xylopyranosyl-(1 \rightarrow 3)]-O- <i>β</i> - D-glucopyranosyl-(1 \rightarrow 4)- <i>β</i> -D-galactopyranoside	A. schubertii A. nigrum L	bulbs bulbs	[7] [43]
130		3-O-acetyl-(24 <i>S</i> ,25 <i>S</i>)-5α-spirostane-2α,3β,5α,6β,24- pentol 2-O-β-D-glucopyranoside	A. giganteum	bulbs	[6]
131		methyl ester of (25 <i>K</i>)-5 <i>a</i> -spirostane-2 <i>a</i> ,3 <i>β</i> ,6 <i>β</i> -triol 3-O-{O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[4-O-(5)-3- hydroxy-3-methylglutaryl- β -D-xylopyranosyl- (1 \rightarrow 3)]-O- β -D-glucopyranosyl-(1 \rightarrow 4)- β -D- galactopyranoside}	A. macleanii	bulbs	[40]
132		tigogenin 3-O-{O- α -L-rhamnopyranosyl-(1 \rightarrow 2)-O- β -D-xylopyranosyl-(1 \rightarrow 2)-O-[β -D-xylopyranosyl-(1 \rightarrow 3)]- β -D-glucopyranosyl-(1 \rightarrow 4)- β -D-galactopyranoside}	A. macleanii	bulbs	[40]

No.	Common Name	Structure Name	Species	Parts	References
122	macrostemonoside	(25 <i>R</i>)-5 α -spirostan-3 β -ol	A. chinense G. Don	bulbs	[46]
155	А	3-O-{O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[β -D- glucopyranosyl-(1 \rightarrow 3)]-O- β -D-glucopyranosyl- (1 \rightarrow 4)- β -D-galactopyraoside	A. macrostemon Bunge	bulbs	[47]
		$(25S)-5\alpha$ -spirostan-3 β -ol			
134		3-O-{O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[β -D- glucopyranosyl-(1 \rightarrow 3)]-O- β -D-glucopyranosyl- (1 \rightarrow 4)- β -D-galactopyraoside)	A. chinense G. Don	bulbs	[46]
125		$(25R)$ -5 α -spirostane-2 α ,3 β -diol	A. chinense G. Don	bulbs	[46]
155		3-O-{O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[β -D- glucopyranosyl-(1 \rightarrow 3)]-O- β -D-glucopyranosyl- (1 \rightarrow 4)- β -D-galactopyranoside}	<i>A. sativum</i> L. var. Voghiera	bulbs	[20]
136		(25 <i>S</i>)-5 α -spirostane-2 α ,3 β -diol 3-O-{O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[β -D- glucopyranosyl-(1 \rightarrow 3)]-O- β -D-glucopyranosyl- (1 \rightarrow 4)- β -D-galactopyranoside} (25 <i>R</i>)-5 α -spirostano-2 α 3 β -diol	A. chinense G. Don	bulbs	[46]
137		3-O-{O-β-D-glucopyranosyl- $(1\rightarrow 2)$ -O-β-D- glucopyranosyl- $(1\rightarrow 4)$ -β-D-galactopyranoside} (255)-5α-spirostane-2α,3β-diol	A. chinense G. Don	bulbs	[46]
138		3-O-{O- β -D-glucopyranosyl-(1 \rightarrow 2)-O- β -D-glucopyranosyl-(1 \rightarrow 4)- β -D-galactopyranoside}	A. chinense G. Don	bulbs	[46]
139	agigenin	spirostan- 2α , 3β , 6β –triol	A. porrum L	bulbs flowers	[48] [37]
140	neoagigenin		A. porrum L	bulbs	[48]
			Regel	bulbs	[14]
141	porrigenin A	$(25R)$ -5 α -spirostan-2 β ,3 β ,6 β -triol	A. porrum L	bulbs	[48]
142	neoporrigenin A	(25S)-5α-spirostan-2 β ,3 β ,6 β -triol agigenin 3-O- β -D-glucopyranosyl-(1 \rightarrow 3)- β -D-	A. porrum L	bulbs	[48]
143	yayoisaponin A	glucopyranosyl-(1 \rightarrow 2)-[β-D-xylopyranosyl- (1 \rightarrow 3)]-β-D-glucopyranosyl-(1 \rightarrow 4)-β-D- galactopyranoside	A. ampeloprasum L	bulbs	[41]
144	yayoisaponin C	agigenin 3-O- β -D-glucopyranosyl-(1 \rightarrow 2)-[β -D-glucopyranosyl-(1 \rightarrow 3)]- β -D-glucopyranosyl-(1 \rightarrow 4)- β -D-galactopyranoside	A. ampeloprasum L	bulbs	[41]
145	timosaponin A III	sarsasapogenin 3-O- β -D-glucopyranosyl-(1 \rightarrow 2)- β - D-galactopyranoside	A. chinense G. Don	bulbs	[49]
146	macrostemonoside D	tigogenin 3-O- β -D-glucopyranosyl-(1 \rightarrow 2)-[β -D-glucopyranosyl-(1 \rightarrow 3)]-(6-acetyl- β -D-glucopyranosyl)-(1 \rightarrow 4)- β -D-galactopyranoside	A. chinense G. Don	bulbs	[49]
147	neomacrostemonoside D	neotigogenin 3-O- β -D-glucopyranosyl-(1 \rightarrow 2)-[β -D-glucopyranosyl-(1 \rightarrow 3)]-(6-acetyl- β -D-glucopyranosyl)-(1 \rightarrow 4)- β -D-galactopyranoside	A. chinense G. Don	bulbs	[49]
148		alliogenin 3-O-{O- β -D-glucopyranosyl-(1 \rightarrow 2)-O- [β -D-xylopyranosyl-(1 \rightarrow 3)]-O- β -D- glucopyranosyl-(1 \rightarrow 4)- β -D-galactopyranoside}	A. karataviense	bulbs	[9]
149		(25 <i>R</i>)-3-O-(2-hydroxybutyryl)-5 α -spirostane- 2 α ,3 β ,5,6 β -tetrol 2-O- β -D-glucopyranoside	A. karataviense	bulbs	[9]
150		(245,255)-3-O-benzoy1-5α-spirostane-2α,3β,5,6β,24- pentol 2-O-β-D-glucopyranoside	A. karataviense	bulbs	[9]
151		$(24S,25S)-5\alpha$ -spirostane- 2α , 3β , 5 , 6β , 24 -pentol 2,24-di-O- β -D-glucopyranoside $(24S,25S), 2, O$ homeoutles consistence 2α , 2β , 5 , β , 24	A. karataviense	bulbs	[9]
152		243,233,-3-0-benzoyi-3a-spirostane-2α,5p,5,6p,24- pentol 2,24-di-O-β-D-glucopyranoside	A. karataviense	bulbs	[9]

No.	Common Name	Structure Name	Species	Parts	References
153		(24 <i>S</i> ,25 <i>S</i>)-5 <i>α</i> -spirostane-2 <i>α</i> ,3 <i>β</i> ,5,6 <i>β</i> ,24-pentol 2-O- <i>β</i> -D-glucopyranosyl 24-O-{O- <i>β</i> -D- glucopyranosyl-(1 \rightarrow 2)- <i>β</i> -D-glucopyranoside (25 <i>R</i>)-5 <i>α</i> -spirostan-2 <i>α</i> ,3 <i>β</i> -diol	A. karataviense	bulbs	[9]
154		3-O-{O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[β -D- xylopyranosyl-(1 \rightarrow 3)]-O- β -D-glucopyranosyl- (1 \rightarrow 4)- β -D-glactopyranoside}	A. porrum L	bulbs	[50]
155		$(25R)$ - 5α -spirostan- 2α , 3β -diol 3-O-{O- β -D- glucopyranosyl- $(1 \rightarrow 3)$ -O- β -D-glucopyranosyl-	A. porrum L	bulbs inflorescences	[50]
		$(1\rightarrow 2)$ -O-[β -D-xylopyranosyl- $(1\rightarrow 3)$]-O- β -D-glucopyranosyl- $(1\rightarrow 4)$ - β -D-galactopyranoside}	A. rotundum	and flower stalks	[19]
156		$(25R)$ -5 α -spirostan-3 β ,6 β -diol 3-O-{O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[β -D- xylopyranosyl-(1 \rightarrow 3)]-O- β -D-glucopyranosyl- (1 \rightarrow 4)- β -D-galactopyranoside}	A. porrum L A. leucanthum	bulbs flowers	[50] [42]
157		(25 <i>K</i>)-5 <i>a</i> -spirostan-3 β ,6 β -diol 3-O-{O- β -D- glucopyranosyl-(1 \rightarrow 3)-O- β -D-glucopyranosyl- (1 \rightarrow 2)-O-[β -D-xylopyranosyl-(1 \rightarrow 3)]-O- β -D- glucopyranosyl-(1 \rightarrow 4)- β -D-galactopyranoside} (25 <i>K</i>)-5 <i>a</i> -spirostano-2 <i>a</i> 3 β -diol	A. porrum L	bulbs	[50]
158	tuberoside D	3-O-α-L-rhamnopyranosyl-(1 \rightarrow 2)-O-[α-L- rhamnopyranosyl-(1 \rightarrow 4)]-O-β-D-glucopyranoside	A. tuberosum	seeds	[51]
159	tuberoside E	3-O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[α -L- rhamnopyranosyl-(1 \rightarrow 4)]O- β -D-glucopyranoside	A. tuberosum	seeds	[51]
160		(25S)-spirostane- 3β , 5β , 6α -triol 3-O- α -L- rhamnopyranosyl-($1 \rightarrow 4$)- β -D-glucopyranoside (25S)- 5β -spirostane- 3β , 6α -diol (25pi-ruizgenin)	A. tuberosum	seeds	[52]
161		3-O- α -L-rhamnopyranosyl-(1 \rightarrow 4)- β -D- glucopyranoside	A. tuberosum	seeds	[52]
162	tuberoside J	(25 <i>R</i>)-5α-spirostan-2α,3β,27-triol 3-O-α-L- rhamnopyranosyl-(1 \rightarrow 2)-β-D-glucopyranoside (25 <i>R</i>)-5α-spirostan-2α,3β,27-triol	A. tuberosum	seeds	[53]
163	tuberoside K	3-O- α -L-rhamnopyranosyl-(1 \rightarrow 2)-[α -L- rhamnopyranosyl-(1 \rightarrow 4)]- β -D-glucopyranoside 27-O- β -D-glucopyranosyl-(25 <i>R</i>)-5 α -spirostan-	A. tuberosum	seeds	[53]
164	tuberoside L	2 α ,3 β ,27-triol 3-O- α -D-rhamnopyranosyl-(1 \rightarrow 2)-[α -L- rhamnopyranosyl-(1 \rightarrow 4)]- β -D-glucopyranoside	A. tuberosum	seeds	[53]
165	tuberoside	$(2\alpha, 3\beta, 5\alpha, 25S)$ -2,3,27-trihydroxyspirostane 3-O- α -L-rhamnopyranoyl- $(1\rightarrow 2)$ -O- $[\alpha$ -L- rhamnopyranoyl- $(1\rightarrow 4)$]- β -D-glucopyranoside $(25S)$ -5 β -spirostan-2 $\beta, 3\beta$ -diol 3-O- β -D-	A. tuberosum Rottl. ex Spreng	seeds	[54]
166	tuberoside N	glucopyranosyl- $(1\rightarrow 2)$ - $[\alpha$ -L-rhamnopyranosyl $(1\rightarrow 4)]$ - β -D-glucopyranoside	A. tuberosum L	seeds	[29]
167	tuberoside O	(25S)-5 β -spirostan-2 β ,3 β ,5-triol 3-O- β -D-glucopyranoside (25S) 5 β emirator 2 β 2 β 5 trial	A. tuberosum L	seeds roots	[29] [55]
168	tuberoside P	(255)-5 p -spirostan-2 p ,3 p , 5-triol 3-O- α -L-rhamnopyranosyl $(1 \rightarrow 4)$ - β -D-glucopyranoside	A. tuberosum L	seeds	[29]
169	tuberoside Q	(245,255)-5 β -spirostan-2 β ,3 β ,5,24-tetraol 3-O- α -L-rhamnopyranosyl (1 \rightarrow 4)- β -D-glucopyraposido	A. tuberosum L	seeds	[29]
170	agapanthagenin	(1 / 1) p D Bracopyranosae	A. elburzense	bulbs	[10]

No.	Common Name	Structure Name	Species	Parts	References
		spirostan- 2α , 3β , 6β -triol			
171	hirtifolioside D	3-O- β -D-xylopyranosyl-(1 \rightarrow 3)-O- β -D-glucopyranosyl-(1 \rightarrow 4)-O- β -D-galactopyranoside	A. hirtifolium Boiss	flowers	[12]
172		agapanthagenin 3-O- β -D-glucopyranoside	A. hirtifolium Boiss	flowers	[12]
173	atroviolacegenin	$(25R)$ -5 α -spirostan-2 α ,3 β ,6 β ,27-tetrol	A. atroviolaceum	flowers	[56]
174	atroviolaceoside	(25 <i>R</i>)-5 <i>α</i> -spirostan-2 <i>α</i> ,3 <i>β</i> ,6 <i>β</i> ,27-tetrol 3-O- <i>β</i> -D- glucopyranosyl-(1 \rightarrow 4)-O- <i>β</i> -D-galactopyranoside	A. atroviolaceum	flowers	[56]
175	minutoside B	(25 <i>S</i>)-spirostan- 2α , 3β , 6β -triol 3-O- β -D-xylopyranosyl-(1 \rightarrow 3)-O- β -D-	A. minutiflorum Regel	bulbs	[14]
176	eruboside B	glucopyranosyl-(1 \rightarrow 4)-O- β -D-galactopyranoside β -chlorogenin 3-O- β -glucopyranosyl(1 \rightarrow 2)-[β -	A. leucanthum	flowers	[42]
170	er uboside b	glucopyranosyl- $(1\rightarrow 3)$]- β -glucopyranosyl $(1\rightarrow 4)$ - β - galactopyranoside	A. sativum L	bulbs	[2]
177	leucospiroside A	(25 <i>R</i>)-5 α -spirostane-2 α ,3 β ,6 β -triol	A. leucanthum	flowers	[42]
177		3-O-β-glucopyranosyl- $(1\rightarrow 3)$ -β-glucopyranosyl- $(1\rightarrow 2)$ -[β-glucopyranosyl- $(1\rightarrow 3)$]-β- glucopyranosyl- $(1\rightarrow 4)$ -β-galactopyranoside	A. ampeloprasum var. porrum	bulbs	[57]
		$(25R)$ - 5α -spirostane- 2α , 3β , 6β -triol			
178		3-O- β -D-glucopyranosyl-(1 \rightarrow 2)- β -D-	A. leucanthum	flowers	[42]
		glucopyranosyl-(1 \rightarrow 4)-β-D-galactopyranoside (25 <i>R</i>)-5α-spirostane-3β,6β-diol 3-O-β-D-			
179		glucopyranosyl-(1 \rightarrow 3)-β-D-glucopyranosyl-(1 \rightarrow 2)- [β-D-glucopyranosyl-(1 \rightarrow 3)]-β-D-	A. leucanthum	flowers	[42]
		$(24S, 25S)$ - 5β -spirostan- 2β , 3β ,24-triol	1 tuberosum Rottl		
180	tuberoside A	3-O-a-L-rhamnopyranoyl- $(1 \rightarrow 2)$ -O- $[\alpha$ -L-	ex Spreng	seeds	[58]
		rhamnopyranosyl- $(1 \rightarrow 4)$]- β -D-glucopyranoside $(3\beta,5\alpha,6\beta,25R)$ -6- $[(\beta$ -D-			
181		glucopyranosyl)oxy]spirostan-3-yl O-β-D-glucopyranosyl-(1→2)-O-[β-D-	A. ampeloprasum var. porrum	bulbs	[59]
		glucopyranosyl-(1 \rightarrow 3)]- β -D-galactopyranoside			
182	nigroside A1	$25(R)$ - 5α -spirostan- 2α , 3β , 6β -triol 3-O- α -L-	A. niorum I.	bulbs	[43]
102	ingroonde i ii	rhamnopyranosyl- $(1 \rightarrow 2)$ - β -D-glucopyranoside	11 1131 1112	<i>cuico</i>	
183	nigroside A2	rhamnopyranosyl- $(1\rightarrow 2)$ - β -D-glucopyranoside	A. nigrum L	bulbs	[43]
184	nigroside B1	$25(R)$ - 5α -spirostan- 2α , 3β , 6β -trio 1-2-O-[β -D-glucopyranosyl]-3-O- β -D-galactopyranoside	A. nigrum L	bulbs	[43]
185	nigroside B2	25(S)-5α-spirostan-2α,3β,6β-trio 1-2-O-[β-D-	A. nigrum L	bulbs	[43]
	8	glucopyranosyl]-3-O- β -D-galactopyranoside β -D-glucopyranosyl-(1 \rightarrow 2)-[4-O-(3-bydroxy-3-			[]
107		methylglutaryl)- β -D-xylopyranosyl-(1 \rightarrow 3)]- β -D-	A	1 11	[20]
186		glucopyranosyl- $(1 \rightarrow 4)$ - β -D-galactopyranosyl-	A. cyrillii	bulbs	[38]
		$(1\rightarrow 3)$ - $(25R)$ - 5α -spirostan- 2α , 3β -diol			
		(25S)-spirostan- 2α , 3β , 6β -triol	A 7		
187	persicoside A	3-O-[β-D-glucopyranosyl-(1 \rightarrow 3)]	A. ampeloprasum	seeds	[21]
	*	$[\beta-D-xylopyranosyl-(1 \rightarrow 2)]-\beta-D-glucopyranosyl-(1 \rightarrow 4)-\beta-D-galactopyranoside$	subsp. <i>persicum</i>		
		$(1 \rightarrow 4)$ -p-D-galactopyratioside (25S)-spirostan-2 α -3 β 6 β -triol			
100		(200) spherical $24,000,000$ (here) $3-O-[\beta-D-xylopyranosyl-(1\rightarrow3)]$	A. ampeloprasum		[01]
188	persicoside B	$[\alpha$ -L-rhamopyranosyl $(1 \rightarrow 2)$]- β -D-	subsp. persicum	seeds	[21]
		glucopyranosyl- $(1\rightarrow 4)$ -O- β -D-galactopyranoside			
		$(25R)$ -5 α -spirostan-3 β ,11a α -diol		whole	
189		3-O- β -D-glucopyranosyl-(1 \rightarrow 3)-[β -D-	A. schoenoprasum	plants	[24]
		glucopyranosyl- $(1 \rightarrow 4)$]- β -D-galactopyranoside		Phillip	

No.	Common Name	Structure Name	Species	Parts	References
190	tuberoside B	(24 <i>S</i> ,25 <i>S</i>)-5 β -spirostan-2 α ,3 β ,5,24-tetraol 3-O- α -L-rhamnopyranoyl-(1 \rightarrow 2)-O-[α -L- rhamnopyranosyl-(1 \rightarrow 4)]- β -D-glucopyranoside	A. tuberosum Rottl. ex Spreng	seeds	[60]
191	tuberosine A	(25 <i>S</i>)-5 β -spirostan-2 β ,3 β -diol 3-O- β -D-glucopyranoside	A. tuberosum	roots	[55]
192	tuberosine B	(25 <i>S</i>)-5 β -spirostan-2 β ,3 β ,19-triol 3-O- β -D-glucopyranoside	A. tuberosum	roots	[55]
193	tuberosine C	(25S)-5β-spirostan-2β,3β-diol 3-O-α-L- rhamnopyranoyl-(1 \rightarrow 4)-O-β-D-glucopyranoside	A. tuberosum	roots	[55]
194	25(S)-schidigera- saponin D5		A. tuberosum	roots	[55]
195	shatavarin IV	(24 <i>S</i> ,25 <i>S</i>)-24-[(O-β-D-glucopyranosyl(1→2)-β-D- glucopyranosyl)oxy]-2 α ,5 α ,6 β -	A. tuberosum	roots	[55]
196	karatavioside I	trihydroxyspirostan- 3β -yl O- β -D-glucopyranosyl-($1 \rightarrow 2$)-[β -D-xylopyranosyl- ($1 \rightarrow 3$)]- β -D-glucopyranosyl-($1 \rightarrow 4$)- β -D- galactopyranoside	A. karataviense	bulbs	[25]
197	neogitogenin	$(25R)$ -5 α -spirostan-3 β -yl-3-O-acetyl-O- β -D-	A. chinense G. Don	bulbs	[61]
198		glucopyranosyl- $(1\rightarrow 2)$ -O- $[\beta$ -D-glucopyranosyl- $(1\rightarrow 3)$]-O- β -D-glucopyranosyl- $(1\rightarrow 4)$ - β -D-galactopyranoside	A. chinense G. Don	bulbs	[61]
199		glucopyranosyl-(1- β -D-glucopyranosyl- (1- β -D-galactopyranoside} (24 <i>S</i> ,25 <i>S</i>)-24-[(β -D-glucopyranosyl)oxy]-5α-	A. chinense G. Don	bulbs	[61]
200	allimacroside B	spirostan-3 β -yl-O- β -D-glucopyranosyl(1 \rightarrow 2)-[β -D-glucopyranosyl(1 \rightarrow 3)]- β -D-glucopyranosyl(1 \rightarrow 4)- β -D-galactopyranoside (2a, 3b, 6b, 25R)-2 6-dihydroxyspirostan-3-yl	A. macrostemon Bunge	whole plants	[26]
201	yayoisaponin A/alliporin	β -D-glucopyranosyl- $(1\rightarrow 3)$ - β -D-glucopranosyl- $(1\rightarrow 2)$ - $[\beta$ -D-xylopyranosyl- $(1\rightarrow 3)]$ - β -D-glucopyranosyl]- $(1\rightarrow 4)$ - β -D-galactopyranoside	A. porrum L	flowers	[37]
202	alliospiroside A	(25 <i>S</i>)-3 β -hydroxyspirost-5-en-1 β -yl-2-O-(6-deoxy- α -L-mannopyranosyl)- α -L-arabinopyranoside	A. cepa L	collective fruit	[62]
			<i>A. cepa</i> L. Aggregatum group	roots	[63]
203	alliospiroside B		A. cepa L	collective fruit	[62]
204	alliospiroside D		A. cepa L	collective fruit	[62]
205		(25 <i>R</i>)-spirost-5-en-3 β -ol (diosgenin) 3-O-{O- α -L-rhamnopyranosyl-(1 \rightarrow 2)-O-[O- α -L- rhamnopyranosyl-(1 \rightarrow 4)- α -L-rhamnopyranosyl- (1 \rightarrow 4)]- β -D-glucopyanoside}	A. senescens	bulbs	[40]
206		3-O-{O- α -L-rhamnopyranosyl-(1 \rightarrow 2)-O-[β -D- glucopyranosyl-(1 \rightarrow 3)]- β -D-glucopyranoside)	A. senescens	bulbs	[40]
207	dioscin	$(25R)$ -spirost-5-ene- 2α , 3β -diol	A. ampeloprasum L	bulbs	[41]
208		3-O-{O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[β -D-xylopyranosyl-(1 \rightarrow 3]-O- β -D-glucopyranosyl-(1 \rightarrow 4)- β -D-galactopyranoside}	A. karataviense	bulbs	[9]
209	β-chacotriosyl lilagenin		A. tuberosum	seeds	[52]

No.	Common Name	Structure Name	Species	Parts	References
210		(205,255)-spirost-5-en-3 β ,12 β ,21-triol 3-O- α -L-rhamnopyranosyl-(1 \rightarrow 2)- β -D-glucopyranoside	A. schoenoprasum	whole plants	[24]
211		(20 <i>S</i> ,25 <i>S</i>)-spirost-5-en-3 β ,11 α ,21-triol 3-O- α -L- rhamnopyranosyl-(1 \rightarrow 2)- β -D-glucopyranoside	A. schoenoprasum	whole plants	[24]
212		diosgenin 3-O- α -L-rhamnopyranosyl-(1 \rightarrow 2)-O- β - D-glucopyranoside	A. schoenoprasum	whole plants	[24]
213	deltonin	diosgenin 3-O- β -D-glucopyranosyl-(1 \rightarrow 4)-[α -L- rhamnopyranosyl-(1 \rightarrow 2)]- β -D-glucopyranoside (24 <i>S</i> ,25 <i>S</i>)-24-[(O- β -D-glucopyranosyl-(1 \rightarrow 2)- β -D- glucopyranosyl)	A. schoenoprasum	whole plants	[24]
214	karatavioside H	oxy]- 2α -hydroxyspirost-5-en- 3β -yl O- β -D-glucopyranosyl-($1 \rightarrow 2$)-[β -D-xylopyranosyl- ($1 \rightarrow 3$)]- β -D-glucopyranosyl-($1 \rightarrow 4$)- β -D- galactopyranoside	A. karataviense	bulbs	[25]
215	allimacroside C	(24 <i>S</i> ,25 <i>S</i>)-24-[(β-D-glucopyranosyl)oxy]-spirost-5- ene-3 β ,24-diol-3-O- β -D-glucopyranosyl(1 \rightarrow 2)-[β - D-glucopyranosyl(1 \rightarrow 3)]- β -D- glucopyranosyl(1 \rightarrow 4)- β -D-galactopyranoside	A. macrostemon Bunge	whole plants	[26]
216		sa spirostane 25(27)-ene-2α, sp-utor-5-O- $(O-p-D-g)$ glucopyranosyl- $(1\rightarrow 2)$ -O- β -D-glucopyranosyl- $(1\rightarrow 4)$ - β -D-galactopyranoside}	A. chinense G. Don	bulbs	[61]
217	porrigenin B	$(25R)$ -2-oxo-5 α -spirostan-3 β ,6 β -diol	A. porrum L	bulbs	[48]
218	neoporrigenin B	(25 <i>S</i>)-2-oxo-5 <i>α</i> -spirostan-3 β ,6 β -diol porrigenin B 3-O- β -D-glucopyranosyl-(1 \rightarrow 3)- β -D-	A. porrum L	bulbs	[48]
219	yayoisaponin B	glucopyranosyl- $(1 \rightarrow 2)$ - $[\beta$ -D-xylopyranosyl- $(1 \rightarrow 3)$]- β -D-glucopyranosyl- $(1 \rightarrow 4)$ - β -D-	A. ampeloprasum L	bulbs	[41]
220		(3 β ,5 α ,6 β ,25 R)-3-{(O- β -D-glucopyranosyl-(1 \rightarrow 3)- β - D-glucopyranosyl-(1 \rightarrow 2)-O-[O- β -D- glucopyranosyl-(1 \rightarrow 3)]-O- β -D-glucopyranosyl- (1 \rightarrow 4)- β -D-galactopyranosyl)oxy}-6- hydroxyspirostan-2-one	A. ampeloprasum var. porrum	bulbs	[64]
221	3-keto umbilicagenin A	(25 <i>R</i>)-3-keto-spirostan- 2α , 5α , 6β -triol	A. umbilicatum Boiss	flowers	[65]
222	3-keto umbilicagenin B	(25 <i>R</i>)-3-keto-spirostan- 2α , 5α -diol	A. umbilicatum Boiss	flowers	[65]
223	anzurogenin A	2α , 3β , 5β -trihydroxy-(25 <i>R</i>)-spirostan-6-one	A. suvorovii and A. stipitatum	fruit	[66]
224	anzuroside	(24 <i>S,</i> 25 <i>S</i>)-2α,3β,5,24-tetrahydroxy-5β-spirostan-6-one 24-O-β-D-glucopyranoside	A. suvorovii and A. stipitatum	fruits	[67]
225	anzurogenin C	(245,	A. suvorovii and A. stipitatum	fruits	[67]
	-	255)-2 <i>a</i> ,5 <i>p</i> ,5,24-tetranydroxy-5 <i>p</i> -spirostan-6-one	A. chinense G. Don	bulbs	[49]
226		(25 <i>R</i>)-3 β -hydroxy-5 α -spirostan-6-one (laxogenin) 3-O-{O- α -L-arabinopyranosyl-(1 \rightarrow 6)- β -D- glucopyranoside}	A. chinense G. Don	bulbs	[46]
227		laxogenin 3-O-{O-(2-O-acetyl- α -L- arabinopyranosyl)-(1 \rightarrow 6)- β -D-glucopyranoside}	A. chinense G. Don	bulbs	[46]
228	xiebai-saponin I	laxogenin 3-O-{O- β -D-xylopyranosyl-(1 \rightarrow 4)-O-[α - L-arabinopyranosyl-(1 \rightarrow 6)]- β -D-glucopyranoside} (25 <i>R</i>)-24-O- β -D-glucopyranosyl-3 β ,24 β -dihydroxy-	A. chinense G. Don	bulbs	[46]
229	chinenosideVI	5α-spirost 3-O-α-arabinopyranosyl-(1→6)-β-D- glucopyranoside	A. chinense G. Don	bulbs	[49]

No.	Common Name	Structure Name	Species	Parts	References
230		laxogenin 3-O- β -D-glucopyranosyl-(1 \rightarrow 4)-[α -L- arabinopyranosyl-(1 \rightarrow 6)]- β -D-glucopyranoside	A. chinense G. Don	bulbs	[49]
231	laxogenin		A. chinense G. Don	bulbs	[68]
232		laxogenin 3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-β-D-glucopyranoside	A. schoenoprasum	whole plants	[24]
233		laxogenin 3-O-α-L-rhamnopyranosyl-(1 \rightarrow 2)-β-D- glucopyranoside	A. schoenoprasum	whole plants	[24]
234		laxogenin 3-O- β -D-glucopyranoside	A. chinense G. Don	bulbs	[61]
235		laxogenin 3-O-{ β -D-xylopyranosyl-(1 \rightarrow 4)- β -D- glucopyranoside}	A. chinense G. Don	bulbs	[61]
236		(25 <i>R</i>)-5α-spirostan 3-O-{O-(4-O-acetyl-α-L- arabinopyranosyl)-(1→6)-β-D-glucopyranoside} (25 <i>R</i>)-3β-hydroxy-5β-spirostan-6-one	A. chinense G. Don	bulbs	[61]
237		3-O-β-D-xylopyranosyl(1→4)-[α-L- arabinopyranosyl-(1→6)]-β-D-glucopyranoside (25P) 2β bydrowy 5g opirostan (opo	A. chinense G. Don	bulbs	[61]
238		3-O-{[O- β -D-glucopyranosyl-(1 \rightarrow 3)-O- β -D- xylopyranosyl]-(1 \rightarrow 4)-O-[α -L-arabinopyranosyl- (1 \rightarrow 6)]}- β -D-glucopyranoside	A. chinense G. Don	bulbs	[61]
239		(25 <i>S</i>)-3 β ,24 β -dihydroxy-5 α -spirostan-6-one 3-O-[α - L-arabinopyranosyl-(1 \rightarrow 6)]- β -D-glucopyranoside	A. chinense G. Don	bulbs	[61]
240		(25S)-24-O- β -D-glucopyranosyl-3 β ,24 β -dihydroxy- 5 α -spirostan-6-one	A. chinense G. Don	bulbs	[61]
241	12-keto-porrigenin	$(25R)$ -5 α -spirostan-3 β , 6 β -diol-12-one	A. porrum L		[69]
242		(25 <i>S</i>)-5 α -spirostan-3 β , 6 β -diol-12-one	A. porrum L		[69]
243		(25 <i>R</i>)-3 β ,6 β ,dihydroxy-5 α -spirostan-12-one-3-O- {O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[β -D- xylopyranosyl-(1 \rightarrow 3)]-O- β -D-glucopyranosyl- (1 \rightarrow 4)- β -D-galactopyranoside}	A. porrum L	bulbs	[36]
244		(25 <i>R</i>)-5 α -spirostan-3 β ,6 β -diol-12-one 3-O- β -D-glucopyranosyl-(1 \rightarrow 2)-[β -D- fucopyranosyl-(1 \rightarrow 3)]- β -D-glucopyranosyl-(1 \rightarrow 4)- β -D-galactopyranoside	A. porrum L	bulbs	[70]
245	porrigenin C		A. porrum L		[71]
246	neoporrigenin C		A. porrum L		[71]
247		(25 <i>R</i>)-3 β ,6 β -dihydroxy-5 α -spirostan-2,12-dione-3- O-{O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[β -D- xylopyranosyl-(1 \rightarrow 3)]-O- β -D-glucopyranosyl- (1 \rightarrow 4)- β -D-galactopyranoside} (25 <i>R</i>)-5 α -spirostane-3 β 6 β -diol-2 12-dione	A. porrum L	bulbs	[36]
248		3-O-{ β -D-glucopyranosyl-(1 \rightarrow 3)- β -D- glucopyranosyl-(1 \rightarrow 2)-[β -D-xylopyranosyl-(1 \rightarrow 3)]- β -D-glucopyranosyl- (1 \rightarrow 4)- β -D-galactopyranoside}	A. porrum L	bulbs	[72]
249		(25R)-spirost-4-ene-3-one-2-ol	A. fistulosum L	seeds	[73]
250		(25R)-spirost-1,4-diene-3-one-2,6-diol	A. fistulosum L	seeds	[73]
251		(25R)-spirost-1,4-diene-3-one-2-ol	A. fistulosum L	seeds	[73]
252		(25R)-19-norspirosta-1,3,5 (10)-triene-4-methyl-2-ol	A. fistulosum L	seeds	[73]
253	anzurogenin B	2α , 5α -epoxy-(25 <i>R</i>)-spirostan- 3β , 6β -diol	A. suvorovii and A. stipitatum	fruit	[74]
254		(22S)-cholest-5-ene-1 β ,3 β ,16 β ,22-tetraol 1-O- α -L-rhamnopyranoside 16-O-{O- α -L- rhamnopyranosyl-(1 \rightarrow 3)- β -D-glucopyranoside}	A. albopilosum	bulbs	[5]

No.	Common Name	Structure Name	Species	Parts	References
255		(22 <i>S</i>)-cholest-5-ene-1 β ,3 β ,16 β ,22-tetraol 16-O-{O- β -D-glucopyranosyl-(1 \rightarrow 3)- β -D-glucopyranoside}	A. ostrowskianum	bulbs	[5]
256		1,3-di-O,O'-α-L-rhamnopyranoside 16-O-β-D-glucopyranoside	A. macleanii	bulbs	[40]
257		(22 <i>S</i>)-cholest-5-ene-1 <i>β,</i> 3 <i>β,</i> 16 <i>β,</i> 22-tetrol 1,16-di-O-β-D-glucopyranoside (22 <i>S</i>)-cholest-5-ene-1 <i>β,</i> 3 <i>β,</i> 16 <i>β,</i> 22-tetrol	A. jesdianum	bulbs	[35]
258		1-O-α-L-rhamnopyranosyl 16-O-β-D-glucopyranoside 22S-cholest-5-ene-1 β 3 β 16 β 22-tetrol	A. jesdianum	bulbs	[35]
259		1-O- α -L-rhamnopyranosyl 16-O- β -D-galactopyranoside 22S-cholost 5-ono-16-38-166-22-totrol 1-O-IO- β -D-	A. porrum L	bulbs	[36]
260		glucopyranosyl-(1 \rightarrow 4)- α -L-rhamnopyranoside] 16-O- β -D-galactopyranoside	A. porrum L	bulbs	[36]
261	tuberoside U	$3\beta,16\beta,22,26$ -tetraol 3-O- <i>α</i> -L-rhamnopyranosyl (1→2)-[<i>α</i> -L-rhamnopyranosyl (1→4)]- <i>β</i> -D-glucopyranoside	A. tuberosum L	seeds	[29]
262	nigroside C	(225)-choiest-5-ene-1 ρ , σ	A. nigrum L	bulbs	[43]
263	nigroside D	(22 <i>S</i>)-cholest-5-ene-1 β ,3 β ,16 β ,22-tetraol 16-O- α -L- rhamnopyranosyl-(1 \rightarrow 3)- β -D-galactopyranoside (22 <i>S</i>)-cholesta-1 β ,3 β ,16 β ,22 β -tetraol 5-en	A. nigrum L	bulbs	[43]
264	persicoside E	1-O-α-L-rhamnopyranosyl 16-O-α-L-rhamnopyranosyl (1 \rightarrow 2)-β-D-galactopyranoside (228) 16β [(β D glucopyranosylogyul 22)	A. ampeloprasum subsp. persicum	seeds	[21]
265	karatavioside J	(223)-10 β -(β -D-glucopyranosyl-(3β -yl O- β -D-glucopyranosyl-($1\rightarrow$ 2)-[β -D-xylopyranosyl- ($1\rightarrow$ 3)]- β -D-glucopyranosyl-($1\rightarrow$ 4)- β -D-galactopyranoside	A. karataviense	bulbs	[25]
266	karatavioside K	 (225)-16β-[(O-β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl)oxy]-22-hydroxycholest-5-en-3β-yl O-β-D-glucopyranosyl-(1→2)-[β-D-xylopyranosyl-(1→3)]β-D-glucopyranosyl-(1→4)-β-D-glucopyranoside 	A. karataviense	bulbs	[25]
267		1β ,3β,16β-trihydroxy-5α-cholestan-22-one 1-O-α-L-rhamnopyranoside 16-O-{O-α-L- rhamnopyranosyl-(1→3)-β-D-glucopyranoside} 1β 3β 16β-trihydroxycholest-5-on-22-one	A. albopilosum	bulbs	[5]
268		1-O- α -L-rhamnopyranoside 16-O-{O- α -L- rhamnopyranosyl-(1 \rightarrow 3)- β -D-glucopyranoside}	A. albopilosum	bulbs	[5]
269	2,3-seco-porrigenin	(25R)-5α-2,3-secospirostan-2,3-dioic acid-6β-hydroxy-3,6-γ-lactone	A. porrum L		[69]
270		(255)-5α-2,3-secospirostan-2,3-dioic acid-6β-hydroxy-3,6- γ -lactone 3-O-α-L-rhamnopyranosyl-(1 \rightarrow 4)-β-D-	A. porrum L		[69]
271		glucopyranosyl 3β,5β,6α,16β-tetrahydroxypregnane 16-(5-O-β-D- glucopyranoyl-4(S)-methyl-5-hydroxypentanoic acid) ester	A. tuberosum Rottler	seeds	[11]

No.	Common Name	Structure Name	Species	Parts	References
272		5 <i>α</i> -cholano-22,16-lactone-3-O- β -D-glucopyranosyl- (1 \rightarrow 2)-[β -D-glucopyranosyl-(1 \rightarrow 3)]- β -D- glucopyranosyl-(1 \rightarrow 4)- β -D-galacopyranoside	A. chinense G. Don	bulbs	[13]
273		6-ketone-5 <i>α</i> -cholano-22,16-lactone-3-O- β -D-6- xylopyranosyl-(1 \rightarrow 4)-[<i>α</i> -L-arabinopyranosyl- (1 \rightarrow 6)]- β -D-glucopyranoside	A. chinense G. Don	bulbs	[13]
274	allimacroside A	pregna-5,16-dien-3 β -ol-20-one-3-O- β -D-glucopyranosyl(1 \rightarrow 2)-[β -D-glucopyranosyl(1 \rightarrow 3)]- β -Dglucopyranosyl(1 \rightarrow 4)- β -D-galactopyranoside	A. macrostemon Bunge	whole plants	[26]

Table 1. Cont.

2.1. Furostane Saponins/Sapogenins

Furostane saponins usually have a saturated sapogenin, and its F ring is split. Some furostane saponins form double bonds at C-5(6), C-20(22), C-22(23), and C-25(27), or carbonyl groups at C-2, C-6, and C-12. The C-22 position of furostane saponins has α and β configurations. The sugar chains are often attached to C-3, C-26, C-2, and C-1. C-26 is mostly attached to monosaccharides and a few to disaccharides, in particular, C-26 of compound **73** isolated from the bulbs of *A. karataviense* is linked to trisaccharide [25]. The chemical structures of furostane saponins isolated from *Allium* in recent years are shown in Figure 1.

2.2. Spirostane Saponins/Sapogenins

Most spirostane saponins have a saturated spirostane skeleton, except that some saponins form carbonyl groups at C-2, C-3, C-6, C-12, or double bonds at C-5(6) and C-25(27). Notably, the A ring of compound **252** is aromatized, compound **249** forms a cyclohexenone structure at the A ring, compounds **250** and **251** form a cyclohexadienone structure at the A ring [73], and compound **253** forms an oxygen bridge between C-2 and C-5 [74]. The sugar moiety is commonly linked to C-2, C-3, and C-24, while compound **164** forms a glycosidic bond at C-27 [53], and compound **181** forms a glycosidic bond at C-6 [59]. The chemical structures of spirostane saponins isolated from *Allium* in recent years are shown in Figure 2.

2.3. Cholestane Saponins/Sapogenins

Cholestane saponins, also known as open-chain saponins, usually have double bonds at C-5(6) and are oxidized at C-1, C-3, C-16, and C-22, except that compound **267** has no double bond at C-5(6) [5], and the C-1 of compounds **261**, **265**, and **266** are not oxidized [25,29]. This class of compounds usually forms glycosidic bonds at C-1, C-3, and C-16. The chemical structures of cholestane saponins isolated from *Allium* in recent years are shown in Figure 3.

2.4. Other Types of Steroidal Saponins/Sapogenins

In addition to the three main types mentioned above, there are some steroidal saponins with rare skeletons. Compounds **271** and **274** are derived from pregnane [11,26]. Compounds **269** and **270** have an open A-ring and form a lactone ring at C-5 and C-6 [69]. Compounds **272** and **273** form a lactone ring structure at the E ring [13]. The chemical structures of other types of saponins isolated from *Allium* in recent years are shown in Figure 4.

 R₁=Gal(1-4)-Glc-[(1-2)-Glc]-(1-3)-Glc, R₂=H, R₃=H, R₄=H, R₅=OH, R₆=Glc, R₇=β-OH, R₈=α-H (25*R*) 2 R1=Gal(1-4)-Glc(1-3)-Glc, R2=α-OH, R3=H, R4=H, R5=OH, R6=Glc, R7=β-OH, R8=α-H (25R) 3 R1=Gal(1-4)-Glc, R2=α-OH, R3=H, R4=H, R5=OH, R6=Glc, R7=β-OH, R8=α-H (25R) 4 R1=Gal(1-4)-Glc-[(1-3)-Glc]-(1-2)-Glc(1-3)-Glc, R2=H, R3=H, R3=H, R5=OH, R6=Glc, R7=β-OH, R8=α-H (25R) R1=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc, R2=H, R3=H, R4=H, R5=OH, R6=Glc, R7=H, R8=α-H (25R) R₁=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc(1-3)-Glc, R₂=H, R₃=H, R₄=H, R₅=OH, R₆=Glc, R₇=H, R₈=α-H (25R) 7 R1=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc, R2=α-OH, R3=H, R4=H, R5=OCH3, R6=Glc, R7=β-OH, R8=α-H (25R) 8 R1=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc, R2=α-OH, R3=H, R4=H, R5=OCH3, R6=Glc, R7=β-OH, R8=α-H (25S) R₁=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc, R₂=α-OH, R₃=H, R₄=H, R₅=OH, R₆=Glc, R₇=β-OH, R₈=α-H (25R) R₁=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc, R₂=α-OH, R₃=H, R₄=H, R₅=OH, R₆=Glc, R₇=β-OH, R₈=α-H (25S) 11 R1=Gal(1-2)-Glc, R2=\$\vert OH, R3=H, R4=H, R5=OH, R6=Glc, R7=H, R8=\$\vert -H\$ (25R) R₁=Bz, R₂=α-O-Glc, R₃=H, R₄=H, R₅=OCH₃, R₆=Glc, R₇=β-OH, R₈=α-OH (25*R*) R₁=Ac, R₂=α-O-Glc, R₃=H, R₄=H, R₅=OCH₃, R₆=Glc, R₇=β-OH, R₈=α-OH (25*R*) 14 R1=H, R2=α-O-Glc, R3=H, R4=H, R5=OCH3, R6=Glc, R7=β-OH, R8=α-OH (25R) R1=Glc, R2=α-OH, R3=H, R4=H, R5=OH, R6=Glc, R7=β-OH, R8=α-OH (22α, 25R) 16 R1=Glc, R2=α-OH, R3=H, R4=H, R5=OH, R6=Glc, R7=β-OH, R8=α-OH (22β, 25R) R₁=Glc(1-4)-Glc, R₂= α -OH, R₃=H, R₄=H, R₅=OH, R₆=Glc, R₇= β -OH, R₈= α -OH (22 α , 25R) R₁=Glc(1-4)-Glc, R₂=α-OH, R₃=H, R₄=H, R₅=OH, R₆=Glc, R₇=β-OH, R₈=α-OH (22β, 25R) R₁=Glc, R₂=α-OH, R₃=H, R₄=H, R₅=OH, R₆=Glc, R₇=H, R₈=α-OH (22α, 25R) R₁=Glc, R₂=α-OH, R₃=H, R₄=H, R₅=OH, R₆=Glc, R₇=H, R₈=α-OH (22β, 25R) 21 R1=Gal(1-4)-Glc(1-3)-Xyl, R2=α-OH, R3=H, R4=H, R5=OH, R6=Glc, R7=H, R8=α-OH (22α, 25R) 22 R1=Gal(1-4)-Glc(1-3)-Xyl, R2=α-OH, R3=H, R4=H, R5=OH, R6=Glc, R7=H, R8=α-OH (22β, 25R) 23 R1=Glc-[(1-2)-Rha]-(1-4)-Rha, R2=H, R3=H, R4=H, R5=OH, R6=Glc, R7=H, R8=α-H (25R) 24 R1=Glc(1-4)-Rha, R2=H, R3=H, R4=H, R5=OH, R6=Glc, R7=α-OH, R8=β-OH (25S) R₁=Gal(1-4)-Glc(1-3)-Xyl, R₂=α-OH, R₃=H, R₄=H, R₅=OH, R₆=Glc, R₇=H, R₈=α-H (22α, 25R) R₁=Gal(1-4)-Glc(1-3)-Xvl, R₂=α-OH, R₃=H, R₄=H, R₅=OH, R₆=Glc, R₇=H, R₈=α-H (22β, 25R) 27 R1=H, R2=α-OH, R3=H, R4=H, R5=OH, R6=Glc, R7=H, R8=α-H (22α, 25R) 28 R1=H, R2=α-OH, R3=H, R4=H, R5=OH, R6=Glc, R7=H, R8=α-H (22β, 25R) R₁=Gal(1-4)-Glc(1-3)-Xyl, R₂=α-OH, R₃=H, R₄=H, R₅=OH, R₆=Glc, R₇=β-OH, R₈=α-H (25R) R1=Gal(1-4)-Glc(1-3)-Xyl, R2=α-OH, R3=H, R4=H, R5=OH, R6=Glc, R7=β-OH, R8=α-OH (25R) R1=Gal(1-2)-Glc, R2=H, R3=β-OH, R4=H, R5=OH, R6=Glc, R7=H, R8=β-H (25R) R1=Gal(1-2)-Glc, R2=β-OH, R3=α-OH, R4=H, R5=OH, R6=Glc, R7=H, R8=β-H (25*R*) 33 R1=Gal(1-2)-Glc, R2=H, R3=H, R4=H, R5=OH, R6=Glc, R7=H, R8=β-H (25R) R1=Gal(1-4)-Glc-[(1-2)-Glc]-(1-3)-Glc, R2=α-OH, R3=H, R4=H, R5=OH, R6=Glc, R7=H, R8=α-H (25R) R₁=Gal(1-4)-Glc-[(1-2)-Glc]-(1-3)-Glc, R₂=H, R₃=H, R₄=H, R₅=OH, R₆=Glc, R₇=H, R₈=α-H (25R) R1=H, R2=β-OH, R3=β-OH, R4=H, R5=OH, R6=Glc, R7=α-OH, R8=β-H (25*R*) R₁=Gal(1-4)-Glc-[(1-2)-Glc]-(1-3)-Glc, R₂=H, R₃=H, R₄=β-OH, R₅=OH, R₆=Glc, R₇=H, R₈=α-H (25*R*) R1=Gal(1-4)-Glc-[(1-2)-Glc]-(1-3)-Glc, R2=H, R3=H, R4=α-OH, R5=OH, R6=Glc, R7=H, R8=α-H (25R) R₁=Gal(1-2)-Glc, R₂=H, R₃=H, R₄= α -OH, R₅=OH, R₆=Glc, R₇=H, R₈= β -H (25*R*) 40 R1=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc, R2=A-OH, R3=H, R4=H, R5=OH, R6=Glc, R7=H, R8=A-H (22a, 25R) R₁=Gal(1-4)-Glc-[(1-3)-Glc]-(1-2)-Glc(1-3)-Glc, R₂=α-OH, R₃=H, R₄=H, R₅=α-OH, R₆=Glc, R₇=H, R₈=α-OH (25R) R₁=Gal(1-4)-Glc-[(1-3)-Glc]-(1-2)-Glc(1-3)-Glc, R₂=α-OH, R₃=H, R₄=H, R₅=β-OH, R₆=Glc, R₇=H, R₈=α-OH (25R) R1=Gal(1-4)-Glc-[(1-2)-Glc]-(1-3)-Glc, R2=α-OH, R3=H, R4=H, R5=α-OH, R6=Glc, R7=H, R8=α-OH (25R)

Figure 1. Cont.

44 Ri=Gal(1-4)-Glc-[(1-2)-Glc]-(1-3)-Glc, R2= α -OH, R3=H, R4=H, R5= β -OH, R6=Glc, R7=H, R8= α -OH (25*R*) **45** Ri=Gal(1-4)-Glc-[(1-2)-Glc]-(1-3)-Glc, R2= α -OH, R3=H, R4=H, R5= α -OH, R6=Glc, R7= β -OH, R8= α -H (25*R*) **46** Ri=Gal(1-4)-Glc-[(1-2)-Glc]-(1-2)-Glc(1-3)-Glc, R2= α -OH, R3=H, R4=H, R5= α -OH, R6=Glc, R7= β -OH, R8= α -H (25*R*) **47** Ri=Gal(1-4)-Glc-[(1-3)-Glc]-(1-2)-Glc(1-3)-Glc, R2= α -OH, R3=H, R4=H, R5= α -OH, R6=Glc, R7= β -OH, R8= α -H (25*R*) **48** Ri=Gal(1-4)-Glc-[(1-3)-Glc]-(1-2)-Glc(1-3)-Glc, R2= α -OH, R3=H, R4=H, R5= α -OH, R6=Rha, R7=H, R8= α -H (25*R*) **49** Ri=Gal(1-4)-Glc-[(1-2)-Glc]-(1-3)-Glc, R2= α -OH, R3=H, R4=H, R5= α -OH, R6=Rha, R7=H, R8= α -H (25*R*) **50** Ri=Gal(1-4)-Glc-[(1-2)-Glc]-(1-3)-Glc, R2= α -OH, R3=H, R4=H, R5= α -OH, R6=Rha, R7=H, R8= α -H (25*R*) **51** Ri=Gal(1-2)-Glc(1-3)-Glc, R2= α -OH, R3=H, R4=H, R5= β -OH, R6=Rha, R7=H, R8= α -H (25*R*) **52** Ri=Gal(1-2)-Glc(1-3)-Glc, R2= α -OH, R3=H, R4=H, R5= β -OH, R6=Rha, R7=H, R8= α -H (25*R*) **53** Ri=Gal(1-2)-Glc(1-3)-Glc, R2= α -OH, R3=H, R4=H, R5= β -OH, R6=Rha, R7=H, R8= α -H (22*R*) **54** Ri=Gal(1-2)-Glc(1-3)-Glc, R2= α -OH, R3=H, R4=H, R5=OH, R6=Glc, R7=H, R8= α -H (22*R*, 25*R*) **53** Ri=Gal(1-4)-Glc-[(1-3)-Glc, R2= α -OH, R3=H, R4=H, R5=OH, R6=Glc, R7= β -OH, R8= α -H (22 α , 25*R*) **54** Ri=Glc(1-4)-Glc, R2=H, R3=H, R4=H, R5=OH, R6=Glc, R7=H, R8= α -H (22 α , 25*R*) **55** Ri=Gal(1-4)-Glc, R2=H, R3=H, R4=H, R5=OH, R6=Glc, R7=H, R8= α -H (22 α , 25*R*) **56** Ri=Gal(1-4)-Glc, R2=H, R3=H, R4=H, R5=OH, R6=Glc, R7=H, R8= α -H (22 α , 25*R*) **56** Ri=Gal(1-4)-Glc-[(1-2)-Glc]-(1-3)-Glc, R2=H, R3=H, R4=H, R5=OCH3, R6=Glc, R7=H, R8= α -H (22 α , 25*R*) **57** Ri=Gal(1-4)-Glc-[(1-2)-Glc]-(1-3)-Glc, R2=H, R3=H, R4=H, R5=OCH3, R6=Glc, R7=H, R8= α -H (22 α , 25*R*) **57** Ri=Gal(1-4)-Glc-[(1-2)-Glc]-(1-3)-Glc, R2=H, R3=H, R4=H, R5=OCH3, R6=Glc, R7=H, R8= α -H (22 α , 25*R*) **57** Ri=Gal(1-4)-Glc-[(1-2)-Glc]-(1-3)-Glc, R2=H, R3=H, R4=H, R5=OCH3, R6=Glc, R7=H, R5= α -H (22 α , 25*R*) **57** Ri=Gal(1-4)-Glc-[(1-2)-Glc]-(1-

58 R1=Glc-[(1-2)-Rha]-(1-4)-Rha(1-4)-Rha, R2=H, R3=H, R4=H, R5=Glc (22α) **59** R₁=Glc(1-2)-[(1-4)-AraF]-Rha, R₂=H, R₃=H, R₄=H, R₅=Glc (22α) 60 R1=H, R2=H, R3=O-Gal(1-2)-Glc(1-3)-Glc, R4=H, R5=Gal(1-2)-Rha (22α) 61 R1=H, R2=H, R3=O-Gal(1-2)-Glc(1-3)-Glc, R4=H, R5=Gal(1-2)-Rha (22β) 62 R1=H, R2=H, R3=O-Glc(1-2)-Glc, R4=H, R5=Gal(1-2)-Rha (22α) 63 R1=H, R2=H, R3=O-Glc(1-2)-Glc, R4=H, R5=Gal(1-2)-Rha (22β) 64 R1=H, R2=H, R3=O-Gal(1-2)-Glc, R4=H, R5=Gal(1-2)-Rha (22α) 65 R1=H, R2=H, R3=O-Gal(1-2)-Glc, R4=H, R5=Gal(1-2)-Rha (22β) **66** R1=H, R2=H, R3=O-Gal, R4=H, R5=Rha (22α) 67 R1=H, R2=H, R3=O-Gal, R4=H, R5=Rha (22β) 68 R1=H, R2=H, R3=O-Glc, R4=H, R5=Rha (22α) **69** R₁=H, R₂=H, R₃=O-Glc, R₄=H, R₅=Rha (22β) 70 R1=H, R2=H, R3=O-Gal, R4=H, R5=Glc(1-2)-Rha (22α) 71 R1=H, R2=H, R3=O-Gal, R4=H, R5=Glc(1-2)-Rha (22β) 72 R1=Glc-[(1-2)-Rha]-(1-4)-Glc, R2=H, R3=H, R4=H, R5=Glc (22α) 73 R1=Gal(1-6)-[(1-3)-Xyl]-Glc(1-2)-Glc, R2=α-OH, R3=H, R4=CH3, R5=Glc(1-6)-Glc(1-6)-Glc (22α) 74 R1=Gal(1-6)-[(1-3)-Glc]-Glc(1-2)-Glc, R2=α-OH, R3=H, R4=H, R5=Glc (22α)

75 R₁=Glc-[(1-2)-Kha]-(1-4)-Rha, R₂=OH, R₃=OCH3, R₄=CH3, R₅=Glc (20R) 76 R₁=Glc-[(1-2)-Rha]-(1-4)-Rha, R₂=OH, R₃=OH, R₄=CH3, R₅=Glc (20R) 77 R₁=Glc-[(1-2)-Rha]-(1-4)-Rha, R₂=OH, R₃=CH3, R₄=OH, R₅=Glc (20S) 78 R₁=Glc-[(1-2)-Rha]-(1-4)-Rha, R₂=H, R₃=CH3, R₄=OH, R₅=Glc (20S)

Figure 1. Cont.

79 R₁=Gal(1-2)-Glc, R₂= β -OH, R₃=Glc, R₄= β -OH (25*R*)

 80 R₁=Glc(1-2)-Rha, R₂= α -OH, R₃=Glc, R₄= α -OH (25*S*)

 81 R₁=Glc-[(1-2)-Rha]-(1-4)-Rha, R₂= α -OH, R₃=Glc, R₄= α -OH (25*S*)

 82 R₁=Glc-[(1-2)-Rha]-(1-3)-Glc, R₂= α -OH, R₃=Glc, R₄= α -OH (25*S*)

 83 R₁=Glc, R₂= β -OH, R₃=Glc, R₄= β -OH (25*S*)

 84 R₁=Glc(1-2)-[(1-4)-Rha]-Glc, R₂=H, R₃=Glc, R₄= β -OH (25*S*)

 85 R₁=Glc(1-2)-[(1-4)-Rha]-Rha, R₂=H, R₃=Glc, R₄= α -OH (25*S*)

 86 R₁=Gal(1-4)-Glc(1-3)-Xyl, R₂= α -OH, R₃=Glc, R₄= α -H (25*R*)

 87 R₁=Gal(1-4)-Glc-[(1-2)-Glc]-(1-3)-Glc, R₂=H, R₃=Glc, R₄= α -H (25*R*)

88 R₁=Gal(1-2)-Glc, R₂=H, R₃=H, R₄=OH, R₅=Glc, R₆=H (5β)
89 R₁=Gal(1-2)-Glc, R₂=H, R₃=H, R₄=H, R₅=Glc, R₆=H (5β)
90 R₁=H, R₂=OH, R₃=OH, R₄=H, R₅=Glc, R₆=OH (5β)
91 R₁=Gal(1-4)-Glc-[(1-2)-Glc]-(1-3)-Glc, R₂=H, R₃=H, R₄=OH, R₅=Glc, R₆=H (5α)

92 R1=Gal(1-6)-[(1-3)-Glc]-Glc(1-2)-Glc, R2=Glc

93 R1=Gal(1-2)-Glc, R2=Glc

94 R1=Glc(1-2)-Rha, R2=H, R3=Glc 95 R1=Glc(1-2)-Rha, R2=CH3, R3=Glc

96 R1=Glc-[(1-6)-Ara]-(1-4)-Xyl, R2=H, R3=Glc 97 R1=H, R2=H, R3=Glc 98 R1=Glc, R2=H, R3=Glc 99 R1=Glc(1-6)-Ara, R2=H, R3=Glc 100 R1=Glc(1-4)-Xyl, R2=H, R3=Glc 101 R1=Glc-[(1-6)-Ara]-(1-4)-Xyl, R2=β-OH, R3=H

102 Ri=Glc-[(1-6)-Ara]-(1-4)-Xyl, R2=H, R3=Glc 103 Ri=Glc(1-6)-Ara, R2=H, R3=Glc 104 Ri=Glc-[(1-6)-Ara]-(1-4)-Xyl, R2=CH2OH, R3=Glc 105 Ri=Glc(1-6)-Ara, R2=CH2OH, R3=Glc 106 Ri=H, R2=H, R3=Glc

107 R1=Gal(1-2)-Glc, R2=Glc

Figure 1. Furostane saponins/sapogenins isolated from Allium plants in recent years.

R R₂ R₁0

 R₁=Gal(1-4)-Glc, R₂=α-OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇=β-OH, R₈=α-H (25*R*) R1=Gal(1-4)-Glc(1-3)-Glc, R2=α-OH, R3=H, R4=H, R5=H, R6=H, R7=β-OH, R8=α-H (25R) 110 R1=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc, R2=H, R3=H, R4=H, R5=H, R6=H, R7=H, R8=a-H (25R) R₁=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc, R₂=α-OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇=H, R₈=α-H (25*R*) R1=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc(1-3)-Glc, R2=H, R3=H, R4=H, R5=H, R6=H, R7=H, R8=α-H (25R) R₁=H, R₂=α-OH, R₃=H, R₄=H, R₅=H, R₆=O-Glc, R₇=β-OH, R₈=α-OH (25*R*) R₁=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc, R₂=α-OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇=β-OH, R₈=α-H (25*R*) 115 R1=H, R2=α-O-Glc, R3=H, R4=H, R5=H, R6=H, R7=α-OH, R8=α-OH (25R) R1=H, R2=α-OH, R3=H, R4=H, R5=H, R6=H, R7=β-OH, R8=α-OH (25R) 117 R1=Ac, R2=α-O-Glc, R3=H, R4=H, R5=H, R6=H, R7=β-OH, R8=α-OH (25R) 118 R1=H, R2=α-O-Glc, R3=H, R4=H, R5=H, R6=H, R7=β-OH, R8=α-OH (25R) 119 R1=Bz, R2=α-O-Glc, R3=H, R4=H, R5=H, R6=H, R7=β-OH, R8=α-OH (25R) R₁=Gal(1-4)-Glc-[(1-3)-Xyl-(1-3)-Ac]-(1-2)-Glc, R₂= α -OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇= β -OH, R₈= α -H (25R) R₁=Gal(1-4)-Glc-[(1-3)-Xyl-(1-3)-Ac]-(1-2)-Glc, R₂=α-OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇=β-OH, R₈=α-H (255) R₁=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc, R₂=α-O-(S)-HMG, R₃=H, R₄=H, R₅=H, R₆=H, R₇=β-OH, R₈=α-H (25R) 123 R1=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc, R2=α-OH, R3=H, R4=H, R5=H, R6=H, R7=β-OH, R8=α-H (25S) R₁=Gal(1-4)-Glc-[(1-3)-Xyl-(1-4)-Bz]-(1-2)-Glc, R₂=α-OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇=β-OH, R₈=α-H (25R) R₁=Gal(1-4)-Glc-[(1-3)-Xyl-(1-4)-Bz]-(1-2)-Glc, R₂=α-OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇=β-OH, R₈=α-H (25S) R₁=Gal(1-4)-Glc-[(1-3)-Xyl-(1-3)-Bz]-(1-2)-Glc, R₂=α-OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇=β-OH, R₈=α-H (25R) R1=Gal(1-4)-Glc-[(1-3)-Xyl-(1-3)-Bz]-(1-2)-Glc, R2=α-OH, R3=H, R4=H, R5=H, R6=H, R7=β-OH, R8=α-H (25S) R₁=Gal(1-4)-Glc-[(1-3)-Xyl-(1-4)-(S)-HMG]-(1-2)-Glc, R₂=α-OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇=β-OH, R₈=α-H (25R) R₁=Gal(1-4)-Glc-[(1-3)-Xyl-(1-4)-(S)-HMG]-(1-2)-Glc, R₂=α-OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇=β-OH, R₈=α-H (25S) 130 R1=Ac, R2=α-O-Glc, R3=H, R4=H, R5=H, R6=OH, R7=β-OH, R8=α-OH (25S) R1=Gal(1-4)-Glc-[(1-3)-Xyl-(1-4)-(S)-Me-HMG]-(1-2)-Glc, R2=α-OH, R3=H, R4=H, R5=H, R6=H, R7=β-OH, R8=α-H (25R) R1=Gal-[(1-2)-Rha]-(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Xyl, R2=H, R3=H, R4=H, R5=H, R6=H, R7=H, R8=α-H (25R) R₁=Gal(1-4)-Glc-[(1-3)-Glc]-(1-2)-Glc, R₂=H, R₃=H, R₄=H, R₅=H, R₆=H, R₇=H, R₈=α-H (25R) 134 R1=Gal(1-4)-Glc-[(1-3)-Glc]-(1-2)-Glc, R2=H, R3=H, R4=H, R5=H, R6=H, R7=H, R8=α-H (25S) R₁=Gal(1-4)-Glc-[(1-3)-Glc]-(1-2)-Glc, R₂=α-OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇=H, R₈=α-H (25*R*) 136 R1=Gal(1-4)-Glc-[(1-3)-Glc]-(1-2)-Glc, R2=α-OH, R3=H, R4=H, R5=H, R6=H, R7=H, R8=α-H (255) 137 R1=Gal(1-4)-Glc(1-2)-Glc, R2=α-OH, R3=H, R4=H, R5=H, R6=H, R7=H, R8=α-H (25R) 138 R1=Gal(1-4)-Glc(1-2)-Glc, R2=α-OH, R3=H, R4=H, R5=H, R6=H, R7=H, R8=α-H (25S) R₁=H, R₂=α-OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇=β-OH, R₈=α-H (25R) R₁=H, R₂=α-OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇=β-OH, R₈=α-H (25*S*) R₁=H, R₂=β-OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇=β-OH, R₈=α-H (25*R*) R₁=H, R₂=β-OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇=β-OH, R₈=α-H (25*S*) 143 R1=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc(1-3)-Glc, R2=α-OH, R3=H, R4=H, R5=H, R6=H, R7=β-OH, R8=α-H (25R) 144 R1=Gal(1-4)-Glc-[(1-3)-Glc]-(1-2)-Glc, R2=α-OH, R3=H, R4=H, R5=H, R6=H, R7=β-OH, R8=α-H (25R) R₁=Gal(1-2)-Glc, R₂=H, R₃=H, R₄=H, R₅=H, R₆=H, R₇=H, R₈=β-H (25*S*) R1=Gal(1-4)-Glc-[(1-6)-Ac]-[(1-2)-Glc]-(1-3)-Glc, R2=H, R3=H, R4=H, R5=H, R6=H, R7=H, R8=β-H (25R) 147 R1=Gal(1-4)-Glc-[(1-6)-Ac]-[(1-2)-Glc]-(1-3)-Glc, R2=H, R3=H, R4=H, R5=H, R6=H, R7=H, R8=β-H (25S) R1=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc, R2=α-OH, R3=H, R4=H, R5=H, R6=H, R7=β-OH, R8=α-OH (25R) R₁=2-Hydroxybutyry, R₂=α-O-Glc, R₃=H, R₄=H, R₅=H, R₆=H, R₇=β-OH, R₈=α-OH (25*R*) R1=Bz, R2=α-O-Glc, R3=H, R4=H, R5=H, R6=OH, R7=β-OH, R8=α-OH (25*R*) R1=H, R2=α-O-Glc, R3=H, R4=H, R5=H, R6=O-Glc, R7=β-OH, R8=α-OH (25*R*)

Figure 2. Cont.

24 of 37

152 R1=Bz, R2=α-O-Glc, R3=H, R4=H, R5=H, R6=O-Glc, R7=β-OH, R8=α-OH (25R) 153 R1=H, R2=α-O-Glc, R3=H, R4=H, R5=H, R6=O-Glc(1-2)-Glc, R7=β-OH, R8=α-OH (25R) 154 R1=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc, R2=α-OH, R3=H, R4=H, R5=H, R6=H, R7=H, R8=α-H (25R) R1=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc(1-3)-Glc, R2=α-OH, R3=H, R4=H, R5=H, R6=H, R7=H, R8=α-H (25R) 156 R1=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc, R2=H, R3=H, R4=H, R5=H, R6=H, R7=β-OH, R8=α-H (25R) 157 R1=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc(1-3)-Glc, R2=H, R3=H, R4=H, R5=H, R6=H, R7=β-OH, R8=α-H (25R) R1=Glc-[(1-2)-Rha]-(1-4)-Rha, R2=α-OH, R3=H, R4=H, R5=H, R6=H, R7=H, R8=α-H (25S) R1=Glc-[(1-4)-Rha]-(1-2)-Glc, R2=α-OH, R3=H, R4=H, R5=H, R6=H, R7=H, R8=α-H (25S) R₁=Glc(1-4)-Rha, R₂=H, R₃=H, R₄=H, R₅=H, R₆=H, R₇=α-OH, R₈=β-OH (25*S*) R₁=Glc(1-4)-Rha, R₂=H, R₃=H, R₄=H, R₅=H, R₆=H, R₇=α-OH, R₈=β-H (25*S*) R₁=Glc(1-2)-Rha, R₂=α-OH, R₃=H, R₄=H, R₅=OH, R₆=H, R₇=H, R₈=α-H (25R) R₁=Glc-[(1-2)-Rha]-(1-4)-Rha, R₂=α-OH, R₃=H, R₄=H, R₅=OH, R₆=H, R₇=H, R₈=α-H (25*R*) R₁=Glc-[(1-2)-Rha]-(1-4)-Rha, R₂=α-OH, R₃=H, R₄=H, R₅=O-Glc, R₆=H, R₇=H, R₈=α-H (25*R*) R₁=Glc-[(1-2)-Rha]-(1-4)-Rha, R₂=α-OH, R₃=H, R₄=H, R₅=OH, R₆=H, R₇=H, R₈=α-H (25S) R1=Glc-[(1-4)-Rha]-(1-2)-Glc, R2=β-OH, R3=H, R4=H, R5=H, R6=H, R7=H, R8=β-H (25S) R₁=Glc, R₂=β-OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇=H, R₈=β-OH (25*S*) R₁=Glc(1-4)-Rha, R₂=β-OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇=H, R₈=β-OH (25*S*) R₁=Glc(1-4)-Rha, R₂=β-OH, R₃=H, R₄=H, R₅=H, R₆=OH, R₇=H, R₈=β-OH (25S) R₁=H, R₂=α-OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇=H, R₈=α-OH (25*R*) 171 R1=Gal(1-4)-Glc(1-3)-Xyl, R2=α-OH, R3=H, R4=H, R5=H, R6=H, R7=β-OH, R8=α-H (25R) R₁=Glc, R₂=*α*-OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇=H, R₈=*α*-OH (25*R*) R₁=H, R₂=α-OH, R₃=H, R₄=H, R₅=OH, R₆=H, R₇=β-OH, R₈=α-H (25*R*) 174 R1=Gal(1-4)-Glc, R2=α-OH, R3=H, R4=H, R5=OH, R6=H, R7=β-OH, R8=α-H (25R) 175 R1=Gal(1-4)-Glc(1-3)-Xyl, R2=α-OH, R3=H, R4=H, R5=H, R6=H, R7=β-OH, R8=α-H (25S) R₁=Gal(1-4)-Glc-[(1-3)-Glc]-(1-2)-Glc, R₂=H, R₃=H, R₄=H, R₅=H, R₆=H, R₇=β-OH, R₈=α-H (25*R*) 177 R1=Gal(1-4)-Glc-[(1-3)-Glc]-(1-2)-Glc(1-3)-Glc, R2=α-OH, R3=H, R4=H, R5=H, R6=H, R7=β-OH, R8=α-H (25R) R₁=Gal(1-4)-Glc(1-2)-Glc, R₂=α-OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇=β-OH, R₈=α-H (25*R*) R₁=Gal(1-4)-Glc-[(1-3)-Glc]-(1-2)-Glc(1-3)-Glc, R₂=H, R₃=H, R₄=H, R₅=H, R₆=H, R₇=β-OH, R₈=α-H (25R) R1=Glc-[(1-2)-Rha]-(1-4)-Rha, R2=α-OH, R3=H, R4=H, R5=H, R6=OH, R7=H, R8=α-H (25S) 181 R1=Gal-[(1-3)-Glc]-(1-2)-Glc, R2=H, R3=H, R4=H, R5=H, R6=H, R7=β-O-Glc, R8=α-H (25R) 182 R1=Glc(1-2)-Rha, R2=α-OH, R3=H, R4=H, R5=H, R6=H, R7=β-OH, R8=α-H (25R) 183 R1=Glc(1-2)-Rha, R2=α-OH, R3=H, R4=H, R5=H, R6=H, R7=β-OH, R8=α-H (25S) R₁=Gal, R₂=*α*-O-Glc, R₃=H, R₄=H, R₅=H, R₆=H, R₇=β-OH, R₈=*α*-H (25*R*) R₁=Gal, R₂=*α*-O-Glc, R₃=H, R₄=H, R₅=H, R₆=H, R₇=β-OH, R₈=*α*-H (25*S*) R1=Gal(1-4)-Glc-[(1-3)-Xyl-(1-4)-(S)-HMG]-(1-2)-Glc, R2=α-OH, R3=H, R4=H, R5=H, R5=H, R7=H, R8=α-H (25R) 187 R1=Gal(1-4)-Glc-[(1-2)-Xyl]-(1-3)-Glc, R2=α-OH, R3=H, R4=H, R5=H, R6=H, R7=β-OH, R8=α-H (25R) R1=Gal(1-4)-Glc-[(1-2)-Rha]-(1-3)-Xyl, R2=α-OH, R3=H, R4=H, R5=H, R6=H, R7=β-OH, R8=α-H (25R) 189 R1=Gal-[(1-4)-Glc]-(1-3)-Glc, R2=H, R3=H, R4=OH, R5=H, R6=H, R7=H, R8=α-H (25R) R1=Glc-[(1-2)-Rha]-(1-4)-Rha, R2=α-OH, R3=H, R4=H, R5=H, R6=OH, R7=H, R8=α-OH (25S) R1=Glc, R2= β -OH, R3=H, R4=H, R5=H, R6=H, R7=H, R8= β -H (25S) R1=Glc, R2=β-OH, R3=OH, R4=H, R5=H, R6=H, R7=H, R8=β-H (25S) R₁=Glc(1-4)-Rha, R₂=β-OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇=H, R₈=H (25*S*) R₁=Glc(1-2)-Glc, R₂=H, R₃=H, R₄=H, R₅=H, R₆=H, R₇=H, R₈=β-H (25*S*) R₁=Glc-[(1-4)-Rha]-(1-2)-Glc, R₂=H, R₃=H, R₄=H, R₅=H, R₆=H, R₇=H, R₈=β-H (25*S*) R₁=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc, R₂=α-OH, R₃=H, R₄=H, R₅=H, R₆=O-Glc(1-6)-Glc, R₇=β-OH, R₈=α-OH (25R) R₁=H, R₂=α-OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇=H, R₈=α-H (25*R*) R₁=Gal(1-4)-Glc-[(1-3)-Glc]-(1-2)-Glc(1-3)-Ac, R₂=H, R₃=H, R₄=H, R₅=H, R₆=H, R₇=H, R₈=α-H (25R) 199 R1=Gal(1-4)-Glc(1-2)-Glc, R2=H, R3=H, R4=H, R5=H, R6=H, R7=H, R8=α-H (25S) R1=Gal(1-4)-Glc-[(1-3)-Glc]-(1-2)-Glc, R2=H, R3=H, R4=H, R5=H, R6=O-Glc, R7=H, R8=α-H (25R) R₁=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc(1-3)-Glc, R₂=α-OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇=β-OH, R₈=α-H (25R)

Figure 2. Cont.

202 R₁=H, R₂=H, R₃=O-Ara(1-2)-Rha, R₄=H, R₅=H, R₆=H, R₇=H (25S) 203 R₁=H, R₂=H, R₃=O-Gal(1-2)-Rha, R₄=H, R₅=H, R₆=H, R₇=H (25*R*) 204 R₁=H, R₂=H, R₃=O-Gal(1-2)-Rha, R₄=H, R₅=H, R₆=H, R₇=OH (25*R*) 205 R₁=Glc-[(1-2)-Rha]-(1-4)-Rha(1-4)-Rha, R₂=H, R₃=H, R₄=H, R₅=H, R₆=H, R₇=H (25*R*) 206 R₁=Glc-[(1-2)-Rha]-(1-3)-Glc, R₂=H, R₃=H, R₄=H, R₅=H, R₆=H, R₇=H (25*R*) 207 R₁=Glc-[(1-2)-Rha]-(1-4)-Rha, R₂=H, R₃=H, R₄=H, R₅=H, R₆=H, R₇=H (25*R*) 208 R₁=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc, R₂=OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇=H (25*R*) 209 R₁=Glc-[(1-2)-Rha]-(1-4)-Rha, R₂=OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇=H (25*S*) 210 R₁=Glc(1-2)-Rha, R₂=H, R₃=H, R₄=H, R₅=OH, R₇=H (25*S*) 211 R₁=Glc(1-2)-Rha, R₂=H, R₃=H, R₄=H, R₅=H, R₆=H, R₇=H (25*R*) 213 R₁=Glc-[(1-2)-Rha]-(1-4)-Glc, R₂=H, R₃=H, R₄=H, R₅=H, R₆=H, R₇=H (25*R*) 213 R₁=Glc-[(1-2)-Rha]-(1-4)-Glc, R₂=H, R₃=H, R₄=H, R₅=H, R₆=H, R₇=H (25*R*) 213 R₁=Glc-[(1-2)-Rha]-(1-4)-Glc, R₂=H, R₃=H, R₄=H, R₅=H, R₆=H, R₇=H (25*R*) 213 R₁=Glc-[(1-2)-Rha]-(1-4)-Glc, R₂=H, R₃=H, R₄=H, R₅=H, R₆=H, R₇=-O-Glc(1-6)-Glc (25*R*) 215 R₁=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc, R₂=OH, R₃=H, R₄=H, R₅=H, R₆=H, R₇=-O-Glc(1-6)-Glc (25*R*)

216 R1=Gal(1-4)-Glc(1-2)-Glc

217 R1=H (25R) 218 R1=H (25S) 219 R1=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc(1-3)-Glc (25R) 220 R1=Gal(1-4)-Glc-[(1-3)-Glc]-(1-2)-Glc(1-3)-Glc (25R)

221 R1=OH **222** R1=H

223 R1=H, R2=OH, R3=H, R4=β-OH **224** R₁=H, R₂=OH, R₃=O-Glc, R₄=β-OH **225** R₁=H, R₂=OH, R₃=OH, R₄=β-OH 226 R1=Glc(1-6)-Ara, R2=H, R3=H, R4=α-H 227 R1=Glc(1-6)-Ara(1-2)-Ac, R2=H, R3=H, R4=α-H **228** R₁=Glc-[(1-4)-Xyl]-(1-6)-Ara, R₂=H, R₃=H, R₄=α-H **229** R₁=Glc(1-6)-Ara, R₂=H, R₃=O-Glc, R₄=α-H **230** R1=Glc-[(1-6)-Ara]-(1-4)-Glc, R2=H, R3=H, R4=α-H **231** R₁=H, R₂=H, R₃=H, R₄=α-H **232** R₁=Glc-[(1-2)-Rha]-(1-4)-Glc, R₂=H, R₃=H, R₄=α-H 233 R1=Glc(1-2)-Rha, R2=H, R3=H, R4=α-H 234 R1=Glc, R2=H, R3=H, R4=α-H 235 R1=Glc(1-4)-Xyl, R2=H, R3=H, R4=α-H 236 R1=Glc(1-6)-Ara(1-4)-Ac, R2=H, R3=H, R4=α-H **237** R₁=Glc-[(1-6)-Ara]-(1-4)-Xyl, R₂=H, R₃=H, R₄=β-H 238 R1=Glc-[(1-6)-Ara]-(1-4)-Xyl(1-3)-Glc, R2=H, R3=H, R4=α-H 239 R1=Glc(1-6)-Ara, R2=H, R3=OH, R4=α-H 240 R1=H, R2=H, R3=O-Glc, R4=α-H

241 Ri=H (25*R*) 242 Ri=H (25*S*) 243 Ri=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc (25*R*) 244 Ri=Gal(1-4)-Glc-[(1-3)-Fuc]-(1-2)-Glc (25*R*)

250 R₁=OH **251** R₁=H

245 Ri=H (25*R*) 246 Ri=H (25*S*) 247 Ri=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc (25*R*) 248 Ri=Gal(1-4)-Glc-[(1-3)-Xyl]-(1-2)-Glc(1-3)-Glc (25*R*)

Figure 2. Spirostane saponins/sapogenins isolated from Allium plants in recent years.

254 R1=H, R2=O-Rha, R3=Glc(1-3)-Rha 255 R1=H, R2=O-Rha, R3=Glc(1-3)-Glc 256 R1=Rha, R2=O-Rha, R3=Glc 257 R1=H, R2=O-Rha, R3=Glc 258 R1=H, R2=O-Rha, R3=Glc 259 R1=H, R2=O-Rha, R3=Gal 260 R1=H, R2=O-Rha(1-4)-Glc, R3=Gal 261 R1=Glc-[(1-2)-Rha]-(1-4)-Rha, R2=H, R3=Glc 262 R1=H, R2=O-Rha, R3=Gal(1-3)-Rha 263 R1=H, R2=O-Rha, R3=Gal(1-2)-Rha 264 R1=H, R2=O-Rha, R3=Gal(1-2)-Rha 265 R1=Gal(1-4)-Glc-[(1-3)-Xy1]-(1-2)-Glc, R2=H, R3=Glc 266 R1=Gal(1-4)-Glc-[(1-3)-Xy1]-(1-2)-Glc, R2=H, R3=Glc(1-3)-Glc

267 R1=Rha, R2=Glc(1-3)-Rha

268 R1=Rha, R2=Glc(1-3)-Rha

Figure 3. Cholestane saponins isolated from *Allium* plants in recent years.

269 (25R) 270 (25S)

271 R1=Glc(1-4)-Rha, R2=Glc (25S)

272 R1=Gal(1-4)-Glc-[(1-2)-Glc]-(1-3)-Glc

273 R1=Glc-[(1-6)-Ara]-(1-4)-Xyl

274 R1=Gal(1-4)-Glc-[(1-2)-Glc]-(1-3)-Glc

Figure 4. Other types of saponins/sapogenins isolated from Allium plants in recent years.

3. Biological Activities of Allium Steroidal Saponins

Now it is generally believed that *Allium* exerts good biological activities due to the presence of organosulfur compounds and steroidal saponins. However, sulfur-containing compounds are much less stable than steroidal saponins, so it is of certain significance to study the biological activities of steroidal saponins of *Allium*. Modern pharmacological studies have demonstrated the hypoglycemic, antiplatelet aggregation, anti-inflammatory and other activities of these components through in vitro and in vivo experiments, confirming the medicinal value of *Allium*.

3.1. Hypoglycemic Effect

Visfatin is an insulin-mimetic adipocytokine that acts synergistically with insulin to enhance glucose uptake in vivo and in vitro and to inhibit the breakdown of liver glycogen into glucose, with insulin resistance-reducing and antidiabetic effects. Compound **133** isolated from *A. macrostemon* Bunge can increase the transcription of visfatin partly through the p38 MAPK pathway in differentiated 3T3-L1 adipocytes, which in turn increases the mRNA expression of visfatin and enhances the synthesis and secretion of the visfatin protein, thus having a hypoglycemic effect [47].

3.2. Antiplatelet Aggregation Effect

Adenosine diphosphate (ADP) can cause platelet aggregation through ADP receptors on platelet membranes, leading to thrombosis. Thrombus often causes angina pectoris, myocardial infarction, cerebral infarction, pulmonary embolism, and other acute diseases. *A. macrostemon* Bunge is a common traditional Chinese medicine used to treat cardiovascular diseases in China, as well as a common edible vegetable, and experiments have shown that the compound **88** isolated from this plant can inhibit platelet aggregation induced by ADP in vitro with an IC_{50} of 0.871 mM, confirming the plausibility of the pharmacological effect of this plant [30].

3.3. Gastroprotective Effect

Compounds **177** and **181** from the bulbs of *A. ampeloprasum* var. *porrum*, a Brazilian vegetable, have been proven to have anti-gastric ulcerative effects [57,59]. They may show protective properties on gastric cells by interfering with the ulcerogenesis mechanism, protecting the gastric mucosa, and reducing gastric congestion caused by acidified ethanol-induced acute gastric injury.

3.4. Immune Adjuvant Effect

Immune adjuvants are non-specific immune-enhancing substances that are injected into the body in advance or simultaneously with antigens and enhance the response of the body to the antigen or change the type of response. The immune adjuvant effect of compound **220**, which was isolated from *A. ampeloprasum* L. var. *porrum*, was higher than that of commercial adjuvants Freund's Complete Adjuvant (FCA) and Freund's Incomplete Adjuvant (FIA) in mice with ovalbumin (OVA) as an antigen by the delayedtype hypersensitivity (DTH) method [64]. The immune adjuvant effect of this compound may be due to its amphiphilic structure with hydrophilic sugar chains and lipophilic glycosides, which form adjuvant–antigen complexes and enhance antigen delivery to antigen-presenting cells for processing.

3.5. Anti-Inflammatory Effect

Ten compounds from the bulbs of *A. chinense* were evaluated for their anti-inflammatory effects by inhibiting NO production induced by lipopolysaccharide (LPS) in RAW 264.7 cells, and it was found that the NO inhibitory activity of steroidal saponins was related to both aglycones and sugar chains [16]. Compounds **34** and **54** showed significant anti-inflammatory effects with IC₅₀ values of $2.01 \pm 1.40 \ \mu$ M and $2.49 \pm 1.54 \ \mu$ M, respectively. The compounds **225** and **230**, also from the bulbs of *A. chinense* showed anti-inflammatory activity with IC₅₀ values of $32.20 \pm 0.65 \ \mu$ M and $34.33 \pm 5.04 \ \mu$ M [61]. Comparison with other compounds isolated in the same period showed that the A/B ring was active in *trans* and inactive in *cis*. The carbonyl group at C-6 increased the activity, while the hydroxylation at C-24 made the activity disappear, and the sugar chain at C-3 also affected the anti-inflammatory activity.

The anti-inflammatory effects of compounds **177** and **181** from the bulbs of *A. ampeloprasum* var. *porrum* were evaluated using an in vivo model of acute inflammation formed by foot swelling caused by carrageenan gum, and both compounds showed significant anti-inflammatory effects by rapidly controlling both stages of inflammation [57,59]. PCR was used to detect the inhibitory effects of compounds **37**, **38**, and **39** from the bulbs of *A. macrostemon* Bunge on the expression of CD40 ligand (CD40L) on the surface of platelet membranes activated by ADP stimulation [18]. Compounds **37** and **38** were able to significantly inhibit CD40L expression in a dose-dependent manner, indicating that they could be used as CD40L inhibitors for the treatment of platelet inflammation.

Figure 5 presents the effect of the structure–activity relationship of steroidal saponins on the anti-inflammatory effect.

Figure 5. Effect of structure-activity relationship of steroidal saponins on anti-inflammatory effect.

3.6. Cytotoxicity and Antitumor Effects

Studies have shown that some steroidal saponins from *Allium* are cytotoxic to tumor cells and may serve as drug candidates to treat cancer. Currently, it has been reported that steroidal saponins have significant antitumor activity on more than twenty types of tumor cells, such as A549 (human lung cancer cells), AGS (human gastric gland cancer cells), CNE-1 (human nasopharyngeal cancer cells), DLD-1 (human colorectal cancer cells), HeLa (human cervical cancer cells), HepG2 (human liver cancer cells), HT-29 (human colon cancer cells), MCF-7 (human breast cancer cells), etc.

The cytotoxicity of steroidal saponins is influenced by both aglycone and sugar chains. Compounds 111, 155, and 247 of spirostane saponins and compounds 259 and 260 of cholestane saponins from the bulbs of A. porrum L. exhibited strong cytotoxicity against both J-774 (IC₅₀ 3.7, 2.1, 5.8, 4.6, and 4.0 μ g/mL, respectively) and WEHI-164 cells (IC₅₀ 4.8, 1.9, 4.3, 5.8, and 5.4 μ g/mL, respectively), although a lack of activity of cholestane saponin was previously reported in the literature [36]. Compounds 111, 114, and 201 from the flowers of A. porrum L. were cytotoxic to mouse peritoneal cells, with an IC_{50} ranging from 5.70 to 11.13 µM [37]. Compounds 133, 134, 137, 138, 198, 199, and 216 from the bulbs of A. chinense exhibited significant cytotoxicity against HepG2, A549, SPC-A-1 (human lung adenocarcinoma cells), CNE-1, and MGC80-3 (human gastric adenocarcinoma cells), with an IC₅₀ ranging from 1.43 to 22.32 μ M [61]. Compound 199 was not cytotoxic to MRC-5 (human embryonic lung fibroblasts), and its antitumor effects were selective. Comparison with other compounds isolated at the same time reveals that the configuration of H at C-5 and the selective acetylation of the hydroxyl group of sugar significantly affected the cytotoxicity. Beyond that, the polar oxygen-containing group (C=O) at C-6 of the B ring and the hydroxyl group at C-24 of the F ring led to a decrease in antitumor activity. Compounds 34, 54, 55, and 56, also from the bulbs of A. chinense, showed significant inhibitory effects on HepG2,2 A549, SPC-A-1, MGC80-3, MDA-MB-231(human breast cancer cells), SW620 (human colon cancer cell), and CNE-1, with IC_{50} values ranging from 1.76 to 22.83 µM [16]. Compound 54 also exhibited selective inhibitory effects and showed no cytotoxicity to MRC-5, and it could exert antitumor effects by inducing HepG2 cell cycle arrest and apoptosis. The relationship between steroidal saponins' cytotoxicity on normal cells and the pharmacological activities, such as anti-inflammation and immune enhancement, deserves more in-depth study.

Figure 6 presents the effect of the structure–activity relationship of steroidal saponins on cytotoxicity.

Figure 6. Effect of structure-activity relationship of steroidal saponins on cytotoxicity.

3.7. Antimicrobial Effect

Steroidal saponins usually have the effect of inhibiting fungi and bacteria. Several studies have investigated the antifungal effect of steroidal saponins isolated from *Allium*. The reported fungal species include *Aspergillus niger*, *Alternaria alternata*, *Alternaria porri*, *Botrytis cinerea*, *Candida albicans*, *Fusarium solani*, *Fusarium oxysporum*, *Fusarium oxysporum* f. sp. *lycopersici*, *Mortierella ramanniana*, *Penicillium italicum*, *Pythium ultimum*, *Rhizoctonia solani*, *Trichoderma harzianum*, *Trichoderma harzianum* (strains P1), and *Trichoderma harzianum* (strain T39). Compared to fungi, bacteria are usually less sensitive to saponin components, and fewer species of bacteria have been reported to be inhibited by steroidal saponins from *Allium*, including *Bacillus subtilis*, *Escherichia coli*, etc.

Compounds **29**, **30**, **116**, **140**, and **175** from the bulbs of *Allium minutiflorum* Regel inhibited ten soil-borne fungal pathogens, including *Fusarium oxysporum*, *Fusarium oxysporum* f. sp. *lycopersici*, *Fusarium solani*, and biocontrol fungi, but not against bacteria such as *Xanthomonas campestris* pv. *Campestris*, *Agrobacterium tumefaciens*, and *Streptomyces turgidiscabies* [14]. Compound **175**, with a high content in bulbs (83.5 mg/kg), showed the strongest antifungal activity. A structure–activity relationship analysis revealed that the spirostane skeleton was more active than the furostane skeleton, and the hydroxyl group at C-5 of the furostane saponins promoted antifungal activity. Compounds **187** and **188** from the seeds of *Allium ampeloprasum* subsp. *Persicum* showed antifungal activity against *Penicillium italicum*, *Aspergillus niger*, and *Trichoderma harzianum*, while other steroidal saponins isolated at the same time showed no antifungal activity, indicating that the spirostane skeleton was more active than the furostane skeletons [21]. This also confirms that the hydroxyl group at C-6 could enhance the antifungal activity.

Six spirostane saponins from the roots of *Allium tuberosum* were evaluated for their antibacterial effects against *Bacillus subtilis* and *Escherichia coli*, and the results showed that compound **192** exhibited good antibacterial activity (MIC 64 μ g/mL, both), compounds **194** (MIC 16 and 32 μ g/mL, respectively) and **195** (MIC 16 μ g/mL, both) showed potent antibacterial activity, while compounds **167**, **191**, and **193** showed almost no bacterial inhibitory effect (MIC > 128 μ g/mL) [55]. A structure–activity relationship analysis revealed that the sugar at C-3 and the hydroxyl group at C-19 enhanced the antibacterial activity, while the hydroxyl groups at C-5 attenuated the antibacterial activity.

Figure 7 presents the effects of steroidal saponins on antifungal and antibacterial activities, respectively.

Figure 7. Effect of structure–activity relationship of steroidal saponins on antimicrobial effect. (**a**) Effect of structure–activity relationship on antifungal activity. (**b**) Effect of structure–activity relationship on antibacterial activity.

3.8. Enzyme Activity Inhibition Effect

Na,K-ATPase is responsible for the active transport of Na⁺ and K⁺ in cells, and drugs that inhibit Na,K-ATPase activity can be used to treat diseases associated with ion active transport disorders for which the transporter enzyme is responsible. Fourteen compounds from the collective fruit of *A. karataviense* Rgl and *A. cepa* L were tested for their inhibition of Na,K-ATPase activity [62]. Compounds **202**, **203**, and **204** had the strongest enzyme inhibitory activity, with IC₅₀ values of 1.0×10^{-5} M, 3.4×10^{-5} M, and 8.8×10^{-5} M. Furthermore, compounds **202** and **203** had non-competitive inhibition, and compound **204** had competitive inhibition. The results of the structure–activity analysis show that the hydroxyl group at C-24 of the F ring decreased the inhibitory activity, and when the F ring was opened and the sugar was connected to the hydroxyl group at C-25, the inhibitory activity was weakened, and even enzyme activity was promoted. In addition, compounds **133** and **134** from the bulbs of *A. chinense* also inhibited Na, K-ATPase, with an IC₅₀ of 4×10^{-5} M [46].

cAMP phosphodiesterases are enzymes that catabolize cyclic adenosine acids under the activation of calmodulin bound to Ca²⁺. The inhibition of cAMP phosphodiesterase increases intracellular cAMP content, which enhances myocardial contraction, dilates peripheral blood vessels, and improves heart failure. Compounds **133**, **134**, **226**, **227**, and **228** from the bulbs of *A. chinense* significantly reduced the activity of cAMP phosphodiesterase, especially compound **227**, with an IC₅₀ of 3.3×10^{-5} M, which is comparable to the positive drug papaverine (IC₅₀ 3.0×10^{-5} M) [46].

The compounds **7**, **12**, **13**, **114**, **117**, **128**, and **130** from the bulbs of *A. giganteum* can significantly inhibit the activity of cAMP phosphodiesterase [6]. A structure–activity relationship analysis revealed that the inhibition activity was enhanced when the (S)-3-hydroxy-3-methylglutaroyl (HMG group) was attached to the hydroxyl group at C-4 of xylose. Furostane steroidal saponins **7**, **12**, and **13** exhibited stronger activity than the corresponding spirostane steroidal saponins **114** and **117**, which may be related to the multiple hydroxyl groups in their A and B rings.

3.9. Antispasmodic Effect

Compounds **27**, **28**, and **172** isolated from the flowers of *A. hirtifolium* Boiss and compounds **15**, **16**, **19**, **20**, and **170** isolated from the bulbs of *A. elburzense* were tested for their antispasmodic activity by using the histamine-induced contractions of isolated ileum of guinea-pig as a model [12]. Compounds **19**, **20**, and **170** exhibited the strongest inhibitory contractile activity. A structure–activity relationship analysis showed that the antispasmodic activity can be enhanced by the hydroxyl group at C-5 and glucose at C-26, while it can be attenuated by the hydroxyl group at C-6 and glucose at C-3.

3.10. Cardiomyocyte Regulation Effect

Calcium ions play an important role in the regulation of cell physiological function. Under normal physiological conditions, the intracellular calcium levels are relatively stable and in dynamic regulation; otherwise, it may lead to cell damage or apoptosis. Compounds **33**, **35**, **36**, and **90** isolated from *A. macrostemon* further increased KCl-induced $[Ca^{2+}]_i$ increase in guinea pig cardiomyocytes, suggesting that it may enhance myocardial function [17]. In contrast, compound **87** inhibited the KCl-induced $[Ca^{2+}]_i$ increase, suggesting its potential for the treatment of heart failure.

3.11. Nerve Cell Protection Effect

The antioxidant activity was investigated using the CCK-8 method for six compounds isolated from *A. chinense* G. Don, and hydrogen peroxide was selected to induce a neuronal oxidative damage model in PC12 cells [13]. Compared to five other compounds isolated simultaneously, compound **57** had a significant protective effect on neuronal cell injury induced by hydrogen peroxide in a dose-dependent manner, which may be related to its H at C-22 and the higher amounts of glucose and galactose in the sugar chain.

3.12. Hemolysis Effect

Steroidal saponins can bind to cholesterol on the erythrocyte membrane to form insoluble complexes, disrupting the osmotic pressure of the cell membrane and inducing hemolysis. Usually, spirostane saponins have stronger hemolytic activity due to a higher affinity with cholesterol. Compounds **177**, **181**, and **220** isolated from the bulbs of *A. ampeloprasum* var. *porrum*, have all shown hemolytic ability, with HD₅₀ values of 20 μ g/mL, 6.5 μ g/mL, and 13 μ g/mL, respectively [57,59,64]. Their hemolysis is on the same order of magnitude as that of the reference commercial saponin QS-21 isolated from *Quillaja saponaria* (HD₅₀ 5 μ g/mL).

4. Proposed Biosynthetic Pathways of Allium Steroidal Saponins

The biosynthetic pathway of steroid saponins is acetyl coenzyme A through the mevalonate (MVA) pathway or pyruvate through the methylerythritol 4-phosphate (MEP) pathway to produce farnesyl pyrophosphate (FPP), which is then catalyzed by squalene synthase (SQS) to produce squalene, and by squalene epoxidase (SQE) to produce 2, 3-oxidized squalene, and then catalyzed by cycloatenol synthase (CAS) to produce cycloatenol, which is the precursor of steroid compounds. The cycloatenol further synthesizes cholestanol, which is then hydroxylated at C-22, C-26, and C-16 to form semi-ketal structure compounds, which in turn synthesizes furostane saponin. The glycosidic bond at C-26 of furostane saponin is easily hydrolyzed, and after hydrolysis, it cyclizes into a spiral ketal structure to synthesize spirostane saponin.

Cholestane compounds **259** and **260** can be produced by the glycosylation of 1,16,22trihydroxycholestrol. Pregnane compound **274** can be synthesized from cholesterol by multi-step oxidative breakage to produce pregnenolone, which in turn synthesizes compound **274** by glycosylation. Compound **271** can be synthesized from furostane compound **24** by oxidative breakage at C-22, and compound **272** can be synthesized from furostane compound **35** by a similar mechanism. The oxygen bridge of the A-ring of spirostane compound **253** can be synthesized by the dehydration cyclization of compound **116**. Compound **269** can be synthesized from compound **141** by oxidation at C-2 and C-3, and then C-3 is dehydrated with C-6 to form a lactone ring. The proposed biosynthetic pathways of *Allium* steroidal saponin are shown in Figure 8.

Figure 8. Proposed biosynthetic pathways of *Allium* steroidal saponins (MVA: mevalonate; MEP: methylerythritol 4-phosphate).

5. Conclusions

In recent decades, as common functional vegetables, a wide variety of *Allium* plants have been extensively studied for their important edible and medicinal values. Undoubtedly, their secondary metabolite, a steroidal saponin, is one of the most important chemical bases for the healthcare functions of *Allium*. In this paper, we have summarized the chemical constituents, biological activities, and structure–activity relationships of steroidal saponins isolated from *Allium* and have proposed the biosynthetic pathways of some key compounds to clarify the molecular basis of the rich health function of *Allium* as a vegetable and condiment from the perspective of secondary metabolites. In addition, we have explored the positive role of *Allium* in the prevention and treatment of diseases more comprehensively.

Author Contributions: Conceptualization, H.W., J.W. and J.S.; writing—original draft preparation, H.W. and A.D.; writing—review and editing, H.W. and Q.Z.; supervision, J.W. and J.S. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the CAMS Innovation Fund for Medical Sciences (CIFMS), grant number 2022-I2M-1-017.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Omar, S.H.; Al-Wabel, N.A. Organosulfur Compounds and Possible Mechanism of Garlic in Cancer. Saudi Pharm. J. 2010, 18, 51–58. [CrossRef] [PubMed]
- Matsuura, H.; Ushiroguchi, T.; Itakura, Y.; Hayashi, N.; Fuwa, T. A Furostanol Glycoside from Garlic, Bulbs of *Allium sativum* L. *Chem. Pharm. Bull.* 1988, 36, 3659–3663. [CrossRef]
- Morita, T.; Ushiroguchi, T.; Hayashi, N.; Matsuura, H.; Itakura, Y.; Fuwa, T. Steroidal Saponins from Elephant Garlic, Bulbs of *Allium ampeloprasum L. Chem. Pharm. Bull.* 1988, 36, 3480–3486. [CrossRef]
- 4. Matsuura, H.; Ushiroguchi, T.; Itakura, Y.; Fuwa, T. Further Studies on Steroidal Glycosides from Bulbs, Roots and Leaves of *Allium sativum* L. *Chem. Pharm. Bull.* **1989**, *37*, 2741–2743. [CrossRef]
- 5. Mimaki, Y.; Kawashima, K.; Kanmoto, T.; Sashida, Y. Steroidal Glycosides from *Allium albopilosum* and *A. ostrowskianum*. *Phytochemistry* **1993**, *34*, 799–805. [CrossRef]
- 6. Mimaki, Y.; Nikaido, T.; Matsumoto, K.; Sashida, Y.; Ohmoto, T. New Steroidal Saponins from the Bulbs of *Allium giganteum* Exhibiting Potent Inhibition of CAMP Phosphodiesterase Activity. *Chem. Pharm. Bull.* **1994**, *42*, 710–714. [CrossRef]
- 7. Kawashima, K.; Mimaki, Y.; Sashida, Y. Steroidal Saponins from the Bulbs of *Allium schubertii*. *Phytochemistry* **1993**, *32*, 1267–1272. [CrossRef]
- 8. Peng, J.; Yao, X.; Okada, Y.; Okuyama, T. Further Studies on New Furostanol Saponins from the Bulbs of *Allium macrostemon*. *Chem. Pharm. Bull.* **1994**, *42*, 2180–2182. [CrossRef]
- 9. Mimaki, Y.; Kuroda, M.; Fukasawa, T.; Sashida, Y. Steroidal Saponins from the Bulbs of *Allium karataviense*. *Chem. Pharm. Bull.* **1999**, 47, 738–743. [CrossRef]
- 10. Barile, E.; Zolfaghari, B.; Sajjadi, S.E.; Lanzotti, V. Saponins of Allium elburzense. J. Nat. Prod. 2004, 67, 2037–2042. [CrossRef]
- 11. Ikeda, T.; Tsumagari, H.; Okawa, M.; Nohara, T. Pregnane- and Furostane-Type Oligoglycosides from the Seeds of *Allium tuberosum*. *Chem. Pharm. Bull.* **2004**, *52*, 142–145. [CrossRef] [PubMed]
- 12. Barile, E.; Capasso, R.; Izzo, A.A.; Lanzotti, V.; Sajjadi, S.E.; Zolfaghari, B. Structure-Activity Relationships for Saponins from *Allium hirtifolium* and *Allium elburzense* and Their Antispasmodic Activity. *Planta Med.* **2005**, *71*, 1010–1018. [CrossRef] [PubMed]
- Yiran, Y.; Hua, Y.; Jianghong, Y.; Zhiheng, S.; Yu, Z.; Xueqing, F.; Xuwen, L.; Yongri, J. Chemical Constituents of New Steroidal Saponins from *Allium chinense* G. Don. *Gaodeng Xuexiao Huaxue Xuebao/Chem. J. Chin. Univ.* 2021, 42, 1742–1753. [CrossRef]
- 14. Barile, E.; Bonanomi, G.; Antignani, V.; Zolfaghari, B.; Sajjadi, S.E.; Scala, F.; Lanzotti, V. Saponins from *Allium minutiflorum* with Antifungal Activity. *Phytochemistry* **2007**, *68*, 596–603. [CrossRef]
- 15. Chen, H.; Wang, G.; Wang, N.; Yang, M.; Wang, Z.; Wang, X.; Yao, X. New Furostanol Saponins from the Bulbs of *Allium macrostemon* Bunge and Their Cytotoxic Activity. *Pharmazie* **2007**, *62*, 544–548. [CrossRef]
- 16. Wang, Y.; Yi, X.; Xiang, L.; Huang, Y.; Wang, Z.; He, X. Furostanol Saponins from Chinese Onion Induce G2/M Cell-Cycle Arrest and Apoptosis through Mitochondria-Mediate Pathway in HepG2 Cells. *Steroids* **2019**, *148*, 11–18. [CrossRef]

- 17. Chen, H.-F.; Wang, N.-L.; Sun, H.-L.; Yang, B.-F.; Yao, X.-S. Novel Furostanol Saponins from the Bulbs of *Allium macrostemon* B. and Their Bioactivity on [Ca²⁺]i Increase Induced by KCl. J. Asian Nat. Prod. Res. **2006**, *8*, 21–28. [CrossRef]
- Chen, H.; Ou, W.; Wang, G.; Wang, N.; Zhang, L.; Yao, X. New Steroidal Glycosides Isolated as CD40L Inhibitors of Activated Platelets. *Molecules* 2010, 15, 4589–4598. [CrossRef]
- 19. Maisashvili, M.R.; Kuchukhidze, D.K.; Kikoladze, V.S.; Gvazava, L.N. Steroidal Glycosides of Gitogenin from *Allium rotundum*. *Chem. Nat. Compd.* **2012**, *48*, 86–90. [CrossRef]
- 20. Lanzotti, V.; Barile, E.; Antignani, V.; Bonanomi, G.; Scala, F. Antifungal Saponins from Bulbs of Garlic, *Allium sativum* L. Var. Voghiera. *Phytochemistry* **2012**, *78*, 126–134. [CrossRef]
- Sadeghi, M.; Zolfaghari, B.; Senatore, M.; Lanzotti, V. Spirostane, Furostane and Cholestane Saponins from Persian Leek with Antifungal Activity. *Food Chem.* 2013, 141, 1512–1521. [CrossRef] [PubMed]
- 22. Mskhiladze, L.; Chincharadze, D.; Mshvildadze, V.; Pichette, A.; Frederich, M.; Ollivier, E.; Elias, R. Steroidal Glycosides from the Flowers of *Allium leucanthum*. *Chem. Nat. Compd.* **2015**, *51*, 900–904. [CrossRef]
- Kang, L.-P.; Liu, Z.-J.; Zhang, L.; Tan, D.-W.; Zhao, Y.; Zhao, Y.; Chen, H.-B.; Ma, B.-P. New Furostanol Saponins from Allium ascalonicum L. Magn. Reson. Chem. 2007, 45, 725–733. [CrossRef]
- 24. Timité, G.; Mitaine-Offer, A.-C.; Miyamoto, T.; Tanaka, C.; Mirjolet, J.-F.; Duchamp, O.; Lacaille-Dubois, M.-A. Structure and Cytotoxicity of Steroidal Glycosides from *Allium schoenoprasum*. *Phytochemistry* **2013**, *88*, 61–66. [CrossRef] [PubMed]
- 25. Kuroda, M.; Ori, K.; Takayama, H.; Sakagami, H.; Mimaki, Y. Karataviosides G–K, Five New Bisdesmosidic Steroidal Glycosides from the Bulbs of *Allium karataviense*. *Steroids* **2015**, *93*, 96–104. [CrossRef]
- Kim, Y.S.; Suh, W.S.; Park, K.J.; Choi, S.U.; Lee, K.R. Allimacrosides A–E, New Steroidal Glycosides from Allium macrostemon Bunge. Steroids 2017, 118, 41–46. [CrossRef] [PubMed]
- Sang, S.; Mao, S.; Lao, A.; Chen, Z.; Ho, C.-T. Four New Steroidal Saponins from the Seeds of Allium tuberosum. J. Agric. Food Chem. 2001, 49, 1475–1478. [CrossRef]
- 28. Sang, S.; Lao, A.; Wang, H.; Chen, Z. Furostanol Saponins from Allium tuberosum. Phytochemistry 1999, 52, 1611–1615. [CrossRef]
- 29. Sang, S.; Mao, S.; Lao, A.; Chen, Z.; Ho, C.-T. New Steroid Saponins from the Seeds of *Allium tuberosum* L. *Food Chem.* **2003**, *83*, 499–506. [CrossRef]
- 30. Peng, J.; Yao, X.; Kobayashi, H.; Ma, C. Novel Furostanol Glycosides from Allium macrostemon. Planta Med. 1995, 61, 58–61. [CrossRef]
- Chen, H.-F.; Wang, G.-H.; Luo, Q.; Wang, N.-L.; Yao, X.-S. Two New Steroidal Saponins from *Allium macrostemon* Bunge and Their Cytotoxity on Different Cancer Cell Lines. *Molecules* 2009, 14, 2246–2253. [CrossRef] [PubMed]
- Matsuura, H.; Ushiroguchi, T.; Itakura, Y.; Fuwa, T. A Furostanol Glycoside from *Allium chinense* G. DON. *Chem. Pharm. Bull.* 1989, 37, 1390–1391. [CrossRef]
- Peng, J.-P.; Yao, X.-S.; Tezuka, Y.; Kikuchi, T. Furostanol Glycosides from Bulbs of Allium chinense. Phytochemistry 1996, 41, 283–285. [CrossRef] [PubMed]
- Peng, J.; Yao, X.; Tezuka, Y.; Kikuchi, T.; Narui, T. New Furostanol Glycosides, Chinenoside IV and V, from Allium chinense. Planta Med. 1996, 62, 465–468. [CrossRef] [PubMed]
- Mimaki, Y.; Kuroda, M.; Fukasawa, T.; Sashida, Y. Steroidal Glycosides from the Bulbs of *Allium jesdianum*. J. Nat. Prod. 1999, 62, 194–197. [CrossRef]
- Fattorusso, E.; Lanzotti, V.; Taglialatela-Scafati, O.; Di Rosa, M.; Ianaro, A. Cytotoxic Saponins from Bulbs of *Allium porrum* L. J. Agric. Food Chem. 2000, 48, 3455–3462. [CrossRef]
- Harmatha, J.; Buděšínský, M.; Zídek, Z.; Kmoníčková, E. Spirostanol Saponins from Flowers of Allium porrum and Related Compounds Indicating Cytotoxic Activity and Affecting Nitric Oxide Production Inhibitory Effect in Peritoneal Macrophages. Molecules 2021, 26, 6533. [CrossRef]
- Tolkacheva, N.V.; Shashkov, A.S.; Chirva, V.Y. Steroidal Glycosides from *Allium cyrillii* Bulbs. *Chem. Nat. Compd.* 2012, 48, 272–275.
 [CrossRef]
- Kawashima, K.; Mimaki, Y.; Sashida, Y. Steroidal Saponins from *Allium giganteum* and *A. aflatunense*. *Phytochemistry* 1991, 30, 3063–3067. [CrossRef]
- Inoue, T.; Mimaki, Y.; Sashida, Y.; Nishino, A.; Satomi, Y.; Nishino, H. Steroidal Glycosides from *Allium macleanii* and *A. senescens*, and Their Inhibitory Activity on Tumour Promoter-Induced Phospholipid Metabolism of Hela Cells. *Phytochemistry* 1995, 40, 521–525. [CrossRef]
- 41. Sata, N.; Matsunaga, S.; Fusetani, N.; Nishikawa, H.; Takamura, S.; Saito, T. New Antifungal and Cytotoxic Steroidal Saponins from the Bulbs of an Elephant Garlic Mutant. *Biosci. Biotechnol. Biochem.* **1998**, 62, 1904–1911. [CrossRef] [PubMed]
- 42. Mskhiladze, L.; Legault, J.; Lavoie, S.; Mshvildadze, V.; Kuchukhidze, J.; Elias, R.; Pichette, A. Cytotoxic Steroidal Saponins from the Flowers of *Allium leucanthum*. *Molecules* **2008**, *13*, 2925–2934. [CrossRef] [PubMed]
- 43. Jabrane, A.; Ben Jannet, H.; Miyamoto, T.; Mirjolet, J.-F.; Duchamp, O.; Harzallah-Skhiri, F.; Lacaille-Dubois, M.-A. Spirostane and Cholestane Glycosides from the Bulbs of *Allium nigrum* L. *Food Chem.* **2011**, *125*, 447–455. [CrossRef]
- 44. Mostafa, A.; Sudisha, J.; El-Sayed, M.; Ito, S.; Ikeda, T.; Yamauchi, N.; Shigyo, M. Aginoside Saponin, a Potent Antifungal Compound, and Secondary Metabolite Analyses from *Allium nigrum* L. *Phytochem. Lett.* **2013**, *6*, 274–280. [CrossRef]

- Sashida, Y.; Kawashima, K.; Mimaki, Y. Novel Polyhydroxylated Steroidal Saponins from *Allium giganteum. Chem. Pharm. Bull.* 1991, 39, 698–703. [CrossRef]
- Kuroda, M.; Mimaki, Y.; Kameyama, A.; Sashida, Y.; Nikaido, T. Steroidal Saponins from *Allium chinense* and Their Inhibitory Activities on Cyclic AMP Phosphodiesterase and Na⁺K⁺ ATPase. *Phytochemistry* **1995**, *40*, 1071–1076. [CrossRef]
- Zhou, H.; Yang, X.; Wang, N.; Zhang, Y.; Cai, G. Macrostemonoside A Promotes Visfatin Expression in 3T3-L1 Cells. *Biol. Pharm. Bull.* 2007, *30*, 279–283. [CrossRef]
- 48. Carotenuto, A.; Fattorusso, E.; Lanzotti, V.; Magno, S.; De Feo, V.; Carnuccio, R.; D'Acquisto, F. Porrigenins A and B, Novel Cytotoxic and Antiproliferative Sapogenins Isolated from *Allium porrum*. J. Nat. Prod. **1997**, 60, 1003–1007. [CrossRef]
- Jiang, Y.; Wang, N.-L.; Yao, X.-S.; Kitanaka, S. Steroidal Saponins from the Bulbs of Allium chinense. Stud. Plant. Sci. 1999, 6, 212–219. [CrossRef]
- Carotenuto, A.; Fattorusso, E.; Lanzotti, V.; Magno, S. Spirostanol Saponins of Allium porrum L. Phytochemistry 1999, 51, 1077–1082. [CrossRef]
- Sang, S.; Lao, A.; Wang, H.; Chen, Z. Two New Spirostanol Saponins from Allium tuberosum. J. Nat. Prod. 1999, 62, 1028–1029. [CrossRef] [PubMed]
- 52. Ikeda, T.; Tsumagari, H.; Nohara, T. Steroidal Oligoglycosides from the Seeds of *Allium tuberosum. Chem. Pharm. Bull.* 2000, 48, 362–365. [CrossRef] [PubMed]
- 53. Sang, S.; Zou, M.; Xia, Z.; Lao, A.; Chen, Z.; Ho, C.-T. New Spirostanol Saponins from Chinese Chives (*Allium tuberosum*). J. Agric. Food Chem. 2001, 49, 4780–4783. [CrossRef] [PubMed]
- Zou, Z.-M.; Yu, D.-Q.; Cong, P.-Z. A Steroidal Saponin from the Seeds of Allium tuberosum. Phytochemistry 2001, 57, 1219–1222. [CrossRef] [PubMed]
- Fang, Y.-S.; Cai, L.; Li, Y.; Wang, J.-P.; Xiao, H.; Ding, Z.-T. Spirostanol Steroids from the Roots of Allium tuberosum. Steroids 2015, 100, 1–4. [CrossRef]
- 56. Zolfaghari, B.; Barile, E.; Capasso, R.; Izzo, A.A.; Sajjadi, S.E.; Lanzotti, V. The Sapogenin Atroviolacegenin and Its Diglycoside Atroviolaceoside from *Allium atroviolaceum. J. Nat. Prod.* **2006**, *69*, 191–195. [CrossRef]
- 57. Adão, C.R.; da Silva, B.P.; Parente, J.P. A New Steroidal Saponin from *Allium ampeloprasum* Var. *porrum* with Antiinflammatory and Gastroprotective Effects. *Phytochem. Lett.* **2011**, *4*, 306–310. [CrossRef]
- 58. Hu, G.; Mao, R.; Ma, Z. A New Steroidal Saponin from the Seeds of Allium tuberosum. Food Chem. 2009, 113, 1066–1068. [CrossRef]
- 59. Adão, C.R.; da Silva, B.P.; Parente, J.P. A New Steroidal Saponin with Antiinflammatory and Antiulcerogenic Properties from the Bulbs of *Allium ampeloprasum* Var. *porrum. Fitoterapia* **2011**, *82*, 1175–1180. [CrossRef]
- 60. Hu, G.; Lu, Y.; Yu, W.; Ding, Q.; Yang, Q.; Zhou, J.; Ma, Z. A Steroidal Saponin from the Seeds of *Allium tuberosum*. *Chem. Nat. Compd.* **2014**, 49, 1082–1086. [CrossRef]
- 61. Wang, Y.; Li, C.; Wang, L.; Huang, W.; He, X. Spirostanol Saponins from Chinese Onion (*Allium chinense*) Exert Pronounced Anti-Inflammatory and Anti-Proliferative Activities. *J. Funct. Foods* **2016**, *25*, 208–219. [CrossRef]
- Mirsalikhova, N.M.; Kravets, S.S.; Sokolova, S.F.; Abubakirov, N.K. Inhibition of Highly Purified Porcine Kidney Na,K-ATPase by Steroid Glycosides of the Spirostan and Furostan Series and a Study of Structure-Activity Relationships. *Chem. Nat. Compd.* 1993, 29, 490–497. [CrossRef]
- Abdelrahman, M.; Mahmoud, H.Y.A.H.; El-Sayed, M.; Tanaka, S.; Tran, L.S. Isolation and Characterization of Cepa2, a Natural Alliospiroside A, from Shallot (*Allium cepa* L. Aggregatum Group) with Anticancer Activity. *Plant Physiol. Biochem.* 2017, 116, 167–173. [CrossRef] [PubMed]
- 64. Adão, C.R.; Pereira da Silva, B.; Tinoco, L.W.; Parente, J.P. Haemolytic Activity and Immunological Adjuvant Effect of a New Steroidal Saponin from *Allium ampeloprasum* Var. *porrum. Chem. Biodivers* **2012**, *9*, 58–67. [CrossRef] [PubMed]
- 65. Sadeghi, M.; Zolfaghari, B.; Troiano, R.; Lanzotti, V. 3-Keto Umbilicagenin A and B, New Sapogenins from *Allium umbilicatum* Boiss. *Fitoterapia* **2015**, *102*, 198–202. [CrossRef]
- Vollerner, Y.S.; Kravits, S.D.; Shashkov, A.S.; Gorovits, M.B.; Abubakirov, N.K. Steroids of the Spirostan and Furostan Series from Plants of the Genus *Allium*. Structure of Anzurogenin A from *Allium suvorovii* and *A. stipitatum*. *Chem. Nat. Compd.* 2004, 24, 58–62. [CrossRef]
- 67. Vollerner, Y.S.; Kravets, S.D.; Shashkov, A.S.; Gorovits, M.B.; Abubakirov, N.K. Steroids of the Spirostan and Furostan Series from Plants of the Genus *Allium*. XXVI. Structure of Anzurogenin and Anzuroside from the Collective Fruits of *Allium suvorovii* and *Allium stipitatum*. *Chem. Nat. Compd.* **1989**, *25*, 431–435. [CrossRef]
- Baba, M.; Matsuda, M.O.; Kishi, N.; Okada, Y.; Shibata, S.; Peng, J.; Yao, S.-S.; Nishino, H.; Okuyama, T. Saponins Isolated from *Allium Chinense G. DON* and Antitumor-Promoting Activities of Isoliquiritigenin and Laxogenin from the Same Drug. *Biol. Pharm. Bull.* 2000, 23, 660–662. [CrossRef]
- 69. Carotenuto, A.; Fattorusso, E.; Lanzotti, V.; Magno, S.; Carnuccio, R.; D'Acquisto, F. 12-Keto-Porrigenin and the Unique 2,3-Seco-Porrigenin, New Antiproliferative Sapogenins from *Allium porrum*. *Tetrahedron* **1997**, *53*, 3401–3406. [CrossRef]
- 70. Gvazava, L.N.; Skhirtladze, A.V. Steroidal Saponin from Allium porrum. Chem. Nat. Compd. 2017, 53, 1093–1095. [CrossRef]
- 71. Fattorusso, E.; Lanzotti, V.; Magno, S.; Taglialatela-Scafati, O. Sapogenins of *Allium porrum* L. J. Agric. Food Chem. **1998**, 46, 4904–4908. [CrossRef]
- 72. Gvazava, L.N.; Skhirtladze, A.V. Steroidal Glycoside from Allium porrum. Chem. Nat. Compd. 2018, 54, 487–489. [CrossRef]

- 73. Lai, W.; Yang, Y.B.; Li, X.; Sun, L.N.; Wu, Z.J.; Chen, W.S. New Steroidal Sapogenins from the Acid Hydrolysis Product of the Whole Glycoside Mixture of Welsh Onion Seeds. *Chin. Chem. Lett.* **2012**, *23*, 193–196. [CrossRef]
- Vollerner, Y.S.; Kravets, S.D.; Shashkov, A.S.; Gorovits, M.B.; Abubakirov, N.K. Steroids of the Spirostan and Furostan Series from Plants of the Genus *Allium*. XXV. Structure of Anzurogenin B from *Allium Suvorovii* and *Allium Stipitatum*. *Chem. Nat. Compd.* 1988, 24, 183–186. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.