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Abstract: Despite the known effects of diet on gut microbiota composition, not many studies have
evaluated the relationship between distinct dietary patterns and gut microbiota. The aim of our study
was to determine whether gut microbiota composition could be a useful indicator of a long-term
dietary pattern. We collected data from 89 subjects adhering to omnivorous, vegetarian, vegan, and
low-carbohydrate, high-fat diet that were equally distributed between groups and homogenous by
age, gender, and BMI. Gut microbiota composition was analyzed with a metabarcoding approach
using V4 hypervariable region of the 16S rRNA gene. K-means clustering of gut microbiota at the
genus level was performed and the nearest neighbor classifier was applied to predict microbiota
clustering classes. Our results suggest that gut microbiota composition at the genus level is not a
useful indicator of a subject’s dietary pattern, with the exception of a vegan diet that is represented by
a high abundance of Prevotella 9. Based on our model, a combination of 26 variables (anthropometric
measurements, serum biomarkers, lifestyle factors, gastrointestinal symptoms, psychological factors,
specific nutrients intake) is more important to predict an individual’s microbiota composition cluster,
with 91% accuracy, than the dietary intake alone. Our findings could serve to develop strategies to
educate individuals about changes of some modifiable lifestyle factors, aiming to classify them into
clusters with favorable health markers, independent of their dietary pattern.

Keywords: gut microbiota; dietary pattern; omnivorous; vegan; vegetarian; low-carbohydrate; high-fat

1. Introduction

The gut microbiota is the largest microbial community in humans and its importance
for human health is hard to estimate. Observational studies have observed its influences
on human metabolic health, and different comparative surveys have demonstrated asso-
ciations between metabolic disorders such as obesity, cardiovascular disease, and type
2 diabetes and the underrepresentation of certain commensal microbial taxa as well as the
increased prevalence of potential pathobionts [1]. Gut microbiota mainly include prokary-
otic species (bacteria) that can be taxonomically classified into kingdoms, phyla, classes,
orders, families, genera, and species [2]. The phyla Bacteroidota and Firmicutes repre-
sent 90% of total gut microbiota, but other phyla, such as Actinobacteria, Proteobacteria,
Fusobacteria, and Verrucomicrobia, are also frequently present [3].

A growing body of evidence accumulated by studies of gut microbiota in world
populations emphasizes that lifestyle, and especially diet, strongly impacts microbiota
composition and, thus, human health. In addition to most common omnivorous (O) diet,
dietary patterns such as vegan (V), vegetarian (VE), and low-carbohydrate, high-fat (LCHF)
diet have become popular recently [4]. It has been shown that the gut microbiota of
adults that consume more animal protein is dominated by Bacteroides, whereas Prevotella is
associated with a plant-based diet [2]. A high intake of saturated fatty acids (SFA), sugar,
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and salt promote the growth of pathogenic bacteria, and, contrarily, the intake of dietary
fiber and plant protein increases the abundance of beneficial bacteria that promote the
production of short-chain fatty acids (SCFAs) [5].

Despite the known effects of diet on shaping gut microbiota composition, not many
studies have systematically evaluated the associations between dietary patterns and gut
microbiota. In studies comparing O, VE, and V, a lower relative abundance of Bacteroides
in V and VE [6], and a greater diversity of microbiota in V, compared to O, have been
observed [7]. Additionally, a higher relative abundance of bacteria from the phylum
Actinobacteria, a lower abundance of bacteria from the phylum Proteobacteria, and a
higher ratio between the genera Prevotella and Bacteroides in VE, compared to O, have been
reported [8]. The phylum Bacteroidota was dominant among all three diet groups, and a
statistically significant difference in the abundance of Bacteroidota was observed between
V and O, and VE and O [7].

On the contrary, a systematic review of the literature found no associations between
V or VE diets and microbiota composition compared to O. Some studies show conflicting
results, which could be due to differences between individuals and different methods
used [9]. An LCHF diet has been associated with a lower relative abundance of Bifidobacteria
and a higher abundance of Akkermansia and E. coli [5], but no studies have compared it to
other dietary patterns. It seems that, more than by dietary pattern, gut microbiota could
be shaped by the intake of specific nutrients [7]. Moreover, due to the immense variability
in microbial composition at the species level, it is still not known what may constitute the
elusive “golden standard” of a healthy gut microbiota [10].

The aim of the present study was to determine whether a long-term dietary pattern
can impact the composition of gut microbiota at the genus level. In particular, we were
interested in whether adherence to a particular dietary pattern alters the microbiota to
such an extent that it is possible to determine which pattern a person adheres to based
on their gut microbiota composition. For that purpose, dietary data were collected from
a cohort of subjects adhering to O, VE, V, and LCHF diet that were equally distributed
between groups and were homogenous by age, gender, and BMI. K-means clustering of the
microbiota dataset at the genus level was performed, and the nearest neighbor classifier
based on approximately two hundred variables was applied to predict the clustering classes
of gut microbiota.

2. Materials and Methods
2.1. Study Design

To compare gut microbiota composition and other health-related markers in subjects
with distinct dietary patterns, we performed a cross-sectional study named “The Link be-
tween Diets and Health Indicators (DIETE)” that lasted from February 2020 to October 2021.
The study protocol was approved by the Slovenian National Medical Ethics Committee
(No. 0120-557/2017/4 and 53/03/15) and was registered on ClinicalTrials.gov (Identifier:
NCT04347213), accessed on 15 April 2020. The study design is presented in Figure 1.

2.2. Study Subjects

Subjects with four distinct dietary patterns (O, V, VE, LCHF) were recruited through a
post in newspapers and on social media in different targeted groups. The subjects were
asymptomatic, aged from 20 to 60 years, with a BMI of 18.5 to 30 kg/m2 and an unchanged
eating pattern for at least 6 months prior to participation in the study. The exclusion criteria
were (a) taking medications or antibiotics 3 months prior to participation, (b) being pregnant
or lactating, and (c) a significant change in body mass 3 months prior to participation. The
required sample size to compare four groups of subjects, that was calculated a priori using
G*Power 3.1.9.7 (Heinrich-Heine-Universität Düsseldorf, Germany), assuming an α level
of 5% and β level of 20% and a medium effect size (d = 0.4), was n = 76. Overall, a total of
89 subjects fulfilled the inclusion criteria to participate in the present study. Others (n = 54)
were excluded from the study due to not meeting the inclusion criteria or due to incomplete
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measurements (Figure 1). The subjects were equally distributed between groups and were
homogenous by age, gender, and BMI.
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GSRS—Gastrointestinal Symptoms Rating Scale; BSFS—Bristol Stool Form Scale. 
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Gastrointestinal Symptoms Rating Scale; BSFS—Bristol Stool Form Scale.

2.3. Anthropometric Measurements

Anthropometric measurements were performed in the morning after fasting and
refraining from physical exercise for at least 12 h in standardized conditions. Systolic blood
pressure, diastolic blood pressure, and heart rate were measured on the left upper arm,
in a seated position, with an automatic device (automatic blood pressure monitor SEM-1,
Omron Healthcare Company, Singapore). Body mass was measured wearing light clothing
and without shoes using Tanita BC 418MA (Tanita Corporation, Arlington Heights, IL,
USA). Body fat mass, fat-free mass, total body water, and phase angle were measured in a
lying position after a 10 min rest using a bioelectric impedance analyzer (BIA) Bodystat
Quadscan 4000 (Bodystat Ltd., Douglas, Isle of Man, British Isles).

2.4. Serum Biomarkers

Venous blood samples were collected in 5 mL serum vacuum blood collection tubes in
the morning after anthropometric measurements. Serum samples were prepared after clot
formation by full blood centrifugation at 2000 rpm for 10 min. Serum aliquots were imme-
diately frozen and stored at −80 ◦C. Serum glucose, triacylglycerol (TAG), total cholesterol,
low-density lipoprotein (LDL), high-density lipoprotein (HDL), iron, aspartate transami-
nase (AST), total bilirubin, and C-reactive protein (CRP) levels were measured using Cobas
reagents on a Cobas c111 analyzer (Roche, Basel, Switzerland). Serum lipopolysaccharide
binding protein (LBP), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) levels were
determined in duplicate on a microplate reader (Tecan, Mannedorf, Switzerland) using
human ELISA kits (BioVendor, Brno, Czech Republic) for LBP (Cat. No. RD191513100R),
IL-6 (Cat. No. RD194015200R), and TNF-α (Cat. No. RAF145R).

2.5. Gut Microbiota Composition

Gut microbiota composition was analyzed as described previously [11]. Briefly, DNA
was extracted from the frozen stool samples using the commercial QIAamp DNA Stool
Mini Kit (Qiagen N. V., Venlo, The Netherlands) following the manufacturer’s instructions.
Concentration of DNA was quantified with fluorometer Qubit® 3.0 and QubitTM dsDNA
BR Assay kit (Thermo Fisher Scientific, Hillsboro, OR, USA). The hypervariable region
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V4 of the 16S rRNA gene was amplified with fusion primers that produced a barcoded
sequencing library. Primer 806R contained the sequence of the P1 adapter at its 5′ end,
while primer 515Fcontained the sequence of the A adapter, barcode, and linker upstream
of the target specific sequence. Each sample was amplified in triplicate. The negative
control was prepared for the PCR reaction and sequenced. The PCR reaction mixture and
temperature profile were set as described in the Earth Microbiome Project [12]. DNA in
pooled triplicate PCR reactions from each sample was measured using the Ion Quantitation
Library Kit (Thermo Fisher Scientific, Vilnius, Lithuania). The same amount of DNA from
the amplicons was pooled to form the final pool and purified using Agencourt AMPure
XP beads (Beckman Coulter, Brea, CA, USA), with a bead to DNA ratio of 0.7:1. The
concentration of final pooled amplicon library was determined with the Agilent 2100
Bioanalyzer using the High Sensitivity DNA Assay Kit (Agilent Technologies, Santa Clara,
CA, USA). The template for sequencing on the Ion GeneStudio S5TM System was prepared
using the Ion 520TM & Ion 530TM Kit-OT2. Samples were sequenced on three Ion 530TM

chips (Thermo Fisher Scientific, Santa Clara, CA, USA). Fastq files from each run were
imported into QIIME2 v.2021.8 [13]. Cutadapt (qiime cutadapt trim-single) was used to
remove primers, and only amplicons with trimmed forward and reverse primers were
retained for further analysis. DADA2 [14] (qiime dada2 denois-pyro plugin) was used
for denoising and determining amplicon sequence variants (ASVs) using the following
arguments: –p-trim-left 0 and –p-trunc-len 0 (resulting in a final set of full-length V4 region
sequences). Feature tables and ASVs of samples from different runs were merged using the
feature-table merge and merge-seqs plugins. Taxonomy classification was performed with
the plugin classify-sklearn. The amplicon-region-specific naive Bayes classifier was trained
based on the SILVA reference database, release 138.1, with representative sequences at 99%
identity [15]. The reference database was prepared with the RESCRIPt QIIME 2 plugin [16].
The number of reads per sample was normalized to 30,000. Bacterial phyla, families, and
genera that were present in at least 10% of the subjects were analyzed. Gut microbiota
α-diversity (at the species level) was calculated using the Shannon index.

2.6. Questionnaires
2.6.1. Lifestyle Questionnaire

The online lifestyle questionnaire consisted of 9 demographical questions (age, gender,
family status, education, socioeconomic status), 17 questions about health family history
(diseases, allergies, use of medications and antibiotics, menstruation), 10 questions about
sleep and work schedule, 12 questions about the perceived quality of life, 6 questions about
substance use (alcohol, smoking, psychoactive substance use), 6 questions about hunger
and fullness, 5 questions about factors that could influence gut microbiota composition
(mode of birth, having been breastfed, type of environment growing up, and growing up
and living with pets), and 6 validated psychological questionnaires: The State-Trait Anxiety
Inventory (STAIX-1), The Centre for Epidemiologic Studies Depression Scale (CES-D), The
Positive and Negative Affect Schedule (PANAS), A Measure Instrument for Orthorexia
Nervosa (ORTO-15), Body Dissatisfaction subscale from the Eating Disorders Inventory-2
(EDI-2) (BD), and Binge Eating (BE). STAIX-1 [17] was used to evaluate the state of anxiety
in adults. It contains 20 items and is scored on a 4-point Likert scale; a higher score implies
higher anxiety. CES-D [18] was used to measure symptoms associated with depression.
It includes 20 items, through which factors such as sleep, appetite, and loneliness are
evaluated on a 4-point scale. A higher score indicates a more depressed mood. PANAS
was used to determine subjective mood [19]. It measures positive and negative affect and
includes 20 adjectives, where subjects indicate to which extent they feel a certain way.
Positive affect refers to the extent to which a person feels enthusiastic, active, or alert, and
negative affect includes mood states such as anger, contempt, disgust, fear, and nervousness.
The ORTO-15 questionnaire [20] was used to measure eating behaviors associated with
orthorexia nervosa. It consists of 15 items, through which a subject’s behavior related to
the selection, shopping, preparation, and consumption of healthy food is assessed. The
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questionnaire measures three fundamental components of orthorexia nervosa on a 4-point
Likert scale: cognitive–rational, clinical, and the emotional eating component. Items that
reflect problematic eating behavior or a tendency to orthorexia are rated as 1, and items that
represent normal eating behavior as 4; a higher score represents normal eating behavior.
BD [21] consists of ten items assessing how satisfied or dissatisfied an individual is with
both overall body shape and the size or shape of specific body parts. Responses are rated on
a 5-point Likert scale from 0 to 4; a higher score indicates the highest body dissatisfaction.
BE was evaluated by how frequently the subjects rapidly consumed an excessive amount of
food in the last week. It includes 10 items that were developed on the basis of the definition
in the Diagnostic and Statistical Manual of Mental Disorders [22] of binge eating and the
literature in this field [23]. The items are rated 0 or 1; a higher score represents a more
frequent occurrence of symptomatology associated with binge eating episodes.

2.6.2. Gastrointestinal Symptoms and Stool Consistency

The frequency of gastrointestinal (GI) symptoms was determined using the sub-
jective Gastrointestinal Symptom Rating Scale (GSRS). Subjects reported the frequency
(0—never; 1—hardly ever; 2—sometimes; 3—many times) and intensity (0—none; 1—light;
2—moderate; 3—severe) of nausea, bloating, borborygmi, abdominal pain, flatulence, and
heartburn [24]. The subjects were asked about their bowel movement habits, and a Bristol
Stool Form Scale (BSFS) was used to subjectively determine stool consistency. The scale
consists of 7 types of stool: type 1 represents stool in separate hard lumps, similar to nuts;
type 2: sausage-shaped stool, but lumpy; type 3: stool similar to a sausage, but with cracks
on its surface; type 4: stool similar to a sausage or snake, smooth, and soft; type 5: stool
in soft blobs with clear cut edges; type 6: stool in fluffy pieces with ragged edges; type 7:
watery stool, entirely liquid. Types 1 and 2 indicate constipation, whereas 6 and 7 indicate
diarrhea. Types 3–5 indicate normal stool consistency [25].

2.6.3. Physical Activity

To determine physical activity, the International Physical Activity Questionnaire
(IPAQ) was used. The questionnaire serves to calculate the physical-activity-induced
energy expenditure and consists of work-related physical activity, transport-related ac-
tivity, and activity during leisure time. Data from the duration and intensity of physical
activity were used to determine daily energy expenditure in metabolic equivalent of task
(MET) [26].

2.7. Dietary Intake and Adherence to Mediterranean Diet

The subjects recorded their dietary intake for 3 days using a food diary. They were
instructed to weigh foods and beverages before consumption, to weigh any leftovers, and to
include food labels and recipes, where applicable. They were also asked to report all dietary
supplements taken that day and in general. Dietary data from the food diary were analyzed
using the Open Platform for Clinical Nutrition (OPEN), accessible through the website
https://opkp.si/, accessed on 10 November 2022. Dietary supplements were calculated
and summed to the total daily intake. Adherence to Mediterranean diet was determined
using The Mediterranean Diet Adherence Score (MEDAS). It consists of 14 questions that
are scored 0 or 1; 12 are related to the food intake frequency and 2 to the food intake habits
that are characteristic of the Mediterranean diet. The final score ranged from 0 to 14 [27].

2.8. Statistical Analysis

Statistical analysis was performed using IBM SPSS Statistics, version 26.0 (IBM Corp.,
Armonk, NY, USA). The normality of data distribution was evaluated using the Shapiro–
Wilk test. Descriptive variables are expressed as means (M) and standard deviations (SD) for
continuous variables, and discrete variables are reported as the frequency (%) of subjects.
The chi-squared test was used for categorical variables. Groups of subjects with four
dietary patterns were compared using one-way ANOVA or Kruskal–Wallis test, and Tukey

https://opkp.si/
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or Bonferroni post hoc test. Pearson’s or Spearman’s correlation was used to investigate
associations between dietary intake and gut microbiota composition. p-values < 0.05 were
considered statistically significant.

2.9. Visualization of High-Dimensional Dietary Data

The t-distributed stochastic neighbor embedding (t-SNE) was used to observe the
distribution between subjects with distinct dietary patterns. It is a nonlinear dimensionality
reduction technique that is used to visualize high-dimensional dietary data. The consol-
idation of the intake of protein (total, animal, plant), carbohydrates (total, sugars, free
sugars, dietary fiber), and fats (total, SFA, ω-3 FA, ω-6 FA, MUFA, PUFA) into principle
components (relative to total daily intake) was used for visualization. The t-SNE algo-
rithm embeds high-dimensional points into low dimensions in such a way that similarities
between points are reflected and distant (near) points in high-dimensional space corre-
spond to distant (near) embedded low-dimensional points. The basic steps of the t-SNE
algorithm are as follows: (i) computing the pairwise distance between all points in the
high-dimensional space, (ii) computing a standard deviation for each high-dimensional
point such that the perplexity of each point is at a predetermined level, (iii) computing the
similarity matrix, (iv) creating an initial set of low-dimensional points, and then minimizing
the Kullback–Leibler divergence between a Gaussian distribution in the high-dimensional
space and a t-distribution in the low-dimensional space. The analysis was conducted in
MATLAB 2020A.

2.10. Cluster Analysis and General Predictors of Gut Microbiota Composition

Clustering analysis of the microbiota dataset at the genus level was performed using
an unsupervised technique called k-means clustering. The k-means algorithm clusters data
into similar subsets, minimizing the distances within a cluster and maximizing the distance
between different clusters. In the present study, the clustering criterion was the sum of
squared Euclidean distances between each data point xi and the centroid mk (cluster center)
of the subset ck containing xi. We used the elbow method to determine the optimal number
of clusters.

After the clustering analysis of the microbiota data, we built a model to predict the
clustering classes of the microbiota. One hundred and ninety-nine features were initially
used to build the model. We used the k-nearest neighbor classifier to build a model and
predict the microbiota classes based on the variables. The k-nearest neighbor classifier finds
the k-nearest neighbors whose classes are known and then assigns the classification label to
a new input. The input is assigned to the class with which it shares the nearest neighbors.
For this particular study, we used cosine distance to calculate the similarities between data
points and two nearest neighbors. In other words, our model was a 2-nearest neighbor
classifier using the cosine of the included angle between variables as the distance metric.

The sequentialfs function is a MATLAB function and part of the Statistics and Ma-
chine Learning Toolbox. The sequentialfs function selects features sequentially based on
a user-defined criterion. After calculating the mean criterion values for each candidate
feature subset, sequentialfs selects the candidate feature subset that minimizes the mean
criterion value. This process continues until adding or removing more features no longer
decreases the criterion. There are generally two options for sequential search: forward and
backward. We used the backward search, where the search starts with all 199 variables
and an algorithm sequentially removes features until the criterion decreases. The criterion
used in this study was classification error. Thus, at each step of feature selection, a model is
created using the k-nearest neighbor method, which is validated using the leave-one-out
procedure. This process is repeated until the criterion (classification error) decreases.

The predictive power of the k-nearest-neighbor classifier was tested by leave-one-out
cross-validation, a special case of k-fold cross-validation where k is equal to the number of
data points in the dataset. Leave-one-out cross-validation uses the entire dataset to build
the model, except for one data point. The prediction is made for a single point that is
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excluded from the training set. The predicted value is then compared to the true value for
validation purposes. The entire process is repeated k times, where k is the number of data
points in the dataset.

3. Results
3.1. Characteristics of Subjects with Distinct Dietary Patterns

As shown in Table 1, subjects with four distinct dietary patterns (O, V, VE, LCHF)
did not significantly differ in age, gender, anthropometric measurements, education, or
socioeconomic status. Regarding the relationship between dietary patterns and lifestyle
factors that could influence the gut microbiota composition, a statistically significant
relationship between groups was observed only in the type of environment growing up
(χ2 (3) = 10.965, p = 0.012), and growing up with pets (χ2 (3) = 13.732, p = 0.003). The
majority of V (75.0%) and only 29.2% of O grew up in a rural environment. The same
was observed for pets, as 91.7% V grew up with pets, compared to only 41.7% of O. No
other statistically significant relationships were observed between dietary pattern and
lifestyle factors.

Table 1. Study subjects (n = 89).

O (n = 24) V (n = 24) VE (n = 21) LCHF (n = 20)

Gender % % % % p-value
Males/Females 33.3/66.7 33.3/66.7 33.3/66.7 30.0/70.0 0.994

Age M (SD) M (SD) M (SD) M (SD) p-value
Age (years) 36.2 (10.4) 33.6 (9.6) 37.1 (10.8) 39.4 (6.9) 0.097

Anthropometric measurements M (SD) M (SD) M (SD) M (SD) p-value
BMI (kg/m2) 22.2 (3.0) 21.7 (2.2) 22.3 (2.4) 23.3 (3.2) 0.381

Waist circumference (cm) 75.5 (9.8) 74.5 (7.6) 76.2 (8.8) 76.8 (8.3) 0.845
Hip circumference (cm) 95.5 (5.5) 94.5 (5.1) 96.2 (5.8) 97.2 (7.1) 0.477

Fat mass (%) 21.8 (7.3) 19.7 (8.2) 22.0 (7.2) 21.5 (7.1) 0.713
Total body water (%) 57.6 (6.0) 58.7 (7.2) 57.2 (6.1) 57.9 (6.7) 0.890

Phase angle (◦) 6.6 (1.0) 6.4 (0.9) 6.2 (0.8) 6.5 (1.0) 0.559

Blood pressure M (SD) M (SD) M (SD) M (SD) p-value
Systolic BP (mmHg) 119.5 (13.6) 124.2 (16.5) 124.6 (18.3) 121.8 (9.1) 0.619
Diastolic BP (mmHg) 76.4 (8.8) 77.1 (10.9) 77.6 (11.8) 77.4 (7.9) 0.890

Family status % % % % p-value
Single 29.2 29.2 19.0 10.0

0.367In a relationship or married 70.8 70.8 81.0 90.0

Education % % % % p-value
High school 25.0 29.2 28.6 35.0

0.708Bachelor’s degree 50.0 62.5 61.9 50.0
Master’s degree or PhD 25.0 8.3 9.5 15.0

Socioeconomic status % % % % p-value
Employed 79.2 66.7 76.2 80.0

0.818Unemployed/housewife 8.3 12.5 9.5 15.0
Student 12.5 20.8 14.3 5.0

Work schedule % % % % p-value
Not working 4.2 12.5 19.0 10.0

0.225
One-shift 50.0 41.7 52.4 75.0
Two-shifts 37.5 25.0 14.3 10.0

Flexible 8.3 20.8 14.3 5.0

Living with % % % % p-value
Alone 16.7 20.8 14.3 5.0

0.220
With partner and/or children 62.5 54.2 61.9 85.0

With parents 20.8 20.8 9.5 10.0
With friends/roommates 0.0 4.2 14.3 0.0
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Table 1. Cont.

O (n = 24) V (n = 24) VE (n = 21) LCHF (n = 20)

Alcohol intake M (SD) M (SD) M (SD) M (SD) p-value
Alcohol (units/week) 2.1 (3.8) 1.0 (1.3) 1.3 (1.8) 2.0 (3.6) 0.925

Physical activity M (SD) M (SD) M (SD) M (SD) p-value
IPAQ (MET/day) 11.7 (9.3) 11.8 (11.4) 9.7 (8.7) 7.5 (6.3) 0.443

Other lifestyle factors influencing
gut microbiota % % % % p-value

Smoking 25.0 12.5 4.8 20.0 0.270
Psychoactive substances use 8.3 16.7 9.5 15.0 0.788

Use of antibiotics in the last year 20.9 25.0 0.0 5.0 0.104
Allergies 33.3 25.0 14.3 15.0 0.367

Vaginal birth 95.8 91.7 85.7 90.0 0.696
Having been breastfed 83.3 91.7 90.5 80.0 0.236

Growing up in a rural environment 29.2 75.0 61.9 60.0 0.012 *
Growing up with pets 41.7 91.7 61.9 70.3 0.003 *

Currently living with pets 54.2 54.2 57.1 55.0 0.997

O—omnivorous; V—vegan; VE—vegetarian; LCHF—low-carbohydrate, high-fat; *—statistically significant
difference (chi-squared test); IPAQ—International Physical Activity Questionnaire.

3.2. Serum Biomarkers in Subjects with Distinct Dietary Patterns

Despite no major differences in lifestyle factors, we were interested in differences in
serum biomarkers between subjects with four distinct dietary patterns that are presented
in Table 2. Statistically significant differences between the four groups were observed
for serum cholesterol (χ2 (3) = 24.550, p < 0.001), HDL (F (3,85) = 6.176, p = 0.001), and
LDL (χ2 (3) = 18.727, p < 0.001) levels that were the highest in LCHF and lowest in V.
The average cholesterol and LDL levels in LCHF exceeded Slovenian reference values
(LCHF–all other diets p < 0.05). All groups had, on average, adequate HDL levels (LCHF–V
p < 0.001). Serum iron levels were the highest in O and lowest in LCHF (O–LCHF and
O–VE p < 0.01), and a statistically significant difference was observed between the four
groups (F (3,85) = 7.756, p < 0.001). No statistically significant differences between groups
were observed in serum glucose levels, inflammatory profile, and other serum biomarkers.

Table 2. Serum biomarkers (n = 89).

Serum Biomarkers
O (n = 24) V (n = 24) VE (n = 21) LCHF (n = 20)

p-Value
M (SD) M (SD) M (SD) M (SD)

Glucose (mmol/L) 4.81 (0.48) 4.63 (0.37) 4.64 (0.48) 4.63 (0.58) 0.519
Cholesterol (mmol/L) 4.45 (0.72) 4.00 (0.92) 4.48 (0.88) 7.57 (4.67) <0.001 b,c,d

HDL (mmol/L) 1.89 (0.45) 1.58 (0.44) 1.86 (0.38) 2.16 (0.51) 0.001 c

LDL (mmol/L) 2.84 (0.64) 2.67 (0.82) 2.94 (0.86) 5.87 (4.87) <0.001 b,c,d

TAG (mmol/L) 0.91 (0.61) 0.88 (0.42) 0.86 (0.32) 0.92 (0.72) 0.730
Iron (µmol/L) 27.79 (9.35) 22.95 (10.00) 18.11 (8.31) 16.35 (6.38) <0.001 a,b

AST (U/L) 22.90 (10.22) 21.54 (7.94) 19.34 (6.44) 18.94 (5.11) 0.461
Albumines (g/L) 46.45 (4.63) 46.15 (3.44) 46.45 (3.52) 45.39 (3.42) 0.778

Bilirubin (µmol/L) 9.74 (5.68) 8.88 (6.58) 9.23 (4.17) 6.77 (4.53) 0.157
CRP (mg/L) 1.21 (2.01) 0.57 (0.66) 0.62 (0.80) 0.73 (0.64) 0.631
LBP (µg/mL) 4.31 (1.20) 3.76 (1.60) 3.57 (1.60) 3.67 (1.95) 0.608
IL-6 (pg/mL) 2.22 (2.80) 1.45 (1.41) 1.21 (0.59) 2.47 (3.98) 0.935

TNF-α (pg/mL) 0.45 (0.27) 1.14 (2.99) 0.78 (0.64) 1.21 (1.93) 0.149

O—omnivorous; V—vegan; VE—vegetarian; LCHF—low-carbohydrate, high-fat; a—O–VE; b—O–LCHF; c—V–
LCHF; d—VE–LCHF (post hoc tests); HDL—high-density lipoprotein; LDL—low-density lipoprotein; TAG—
triacylglycerol; AST—aspartate aminotransferase; CRP—C-reactive protein; LBP—lipopolysaccharide binding
protein; IL-6—interleukin-6; TNF-α—tumor necrosis factor-α.
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3.3. Dietary Intake in Subjects with Distinct Dietary Patterns

The analysis of dietary intake is presented in Table 3. As expected, the four dietary
patterns differed significantly in the intake of protein (all types), carbohydrates (total, sugar,
dietary fiber), and fats (total, SFA, and MUFA) (p < 0.001). The intake ofω-3 FA (p = 0.008)
and ω-6 PUFA (p = 0.010) was also significantly different, and the same was found for
EPA, DHA, and cholesterol intake (p < 0.001). V was the only group in which the average
intake of all macronutrients was in line with the recommended dietary intake (RDI) for the
Slovenian population (Table 3).

Table 3. Dietary intake of macronutrients (n = 89).

O (n = 24) V (n = 24) VE (n = 21) LCHF (n = 20)

Energy M (SD) M (SD) M (SD) M (SD) p-value
Energy intake (kcal) 2162 (800) 2141 (716) 2143 (664) 1981 (568) 0.895

Protein M (SD) M (SD) M (SD) M (SD) p-value RDI
Total protein (%) 16.0 (3.1) 12.3 (2.8) 13.1 (3.7) 22.5 (5.7) <0.001 a,c,d,e 10–15
Plant protein (%) 5.9 (2.1) 11.6 (2.9) 8.0 (2.3) 1.9 (1.6) <0.001 a,c,d,e

Carbohydrates M (SD) M (SD) M (SD) M (SD) p-value RDI
Total carbohydrates (%) 46.6 (7.1) 59.0 (11.2) 50.5 (10.4) 9.4 (6.0) <0.001 a,c,d,e >50

Sugars (%) 16.3 (5.2) 17.4 (8.3) 17.7 (5.7) 5.1 (3.9) <0.001 c,d,e

Free sugars (%) 7.2 (4.0) 4.1 (3.6) 6.4 (2.6) 1.6 (2.4) <0.001 a,c,e <10
Dietary fiber (g) 27.6 (17.6) 55.4 (48.1) 35.1 (13.9) 16.3 (22.9) <0.001 a,c,d,e >30

Fats M (SD) M (SD) M (SD) M (SD) p-value RDI
Total fats (%) 35.5 (7.1) 27.6 (9.8) 36.1 (9.3) 66.2 (8.2) <0.001 a,c,d,e,f 25–30

SFA (%) 10.7 (2.7) 5.8 (3.2) 9.8 (3.5) 25.1 (6.1) <0.001 a,c,d,e,f <10
MUFA (%) 10.2 (3.8) 9.6 (4.7) 10.9 (5.1) 22.0 (6.7) <0.001 c,d,e >10

ω-3 PUFA (%) 0.6 (0.6) 0.7 (0.7) 0.7 (0.7) 1.1 (0.7) 0.008 c,d 0.5
ω-6 PUFA (%) 2.9 (2.1) 3.1 (2.1) 3.9 (2.6) 4.6 (1.7) 0.010 c 2.5

ω-3/ω-6 PUFA (ratio) 0.2 (0.2) 0.4 (0.7) 0.2 (0.2) 0.3 (0.2) 0.333 >0.2
EPA (mg) 131.7 (218.4) 46.6 (152.7) 72.5 (154.6) 370.3 (533.5) <0.001 a,b,d,e

DHA (mg) 268.9 (449.4) 47.7 (129.3) 104.8 (223.5) 530.2 (675.9) <0.001 a,b,d,e

Cholesterol (mg) 322.6 (181.8) 12.4 (18.2) 137.9 (126.1) 1106.0 (529.9) <0.001 a,c,d,e,f

Use of probiotics % % % % p-value
Probiotics 16.7 29.2 4.8 0.0 0.021 *

Adherence to Mediterranean diet M (SD) M (SD) M (SD) M (SD) p-value
MEDAS (score) 6.8 (2.3) 8.8 (1.7) 8.2 (1.8) 5.9 (1.8) <0.001 a,d,e

O—omnivorous; V—vegan; VE—vegetarian; LCHF—low-carbohydrate; high-fat; a—O–V; b—O–VE; c—O–LCHF;
d—V–LCHF; e—VE–LCHF; f—V–VE (post hoc tests); *—statistically significant difference (chi-squared test); FA—
fatty acids; SFA—saturated fatty acids; MUFA—monounsaturated fatty acids; PUFA—polyunsaturated fatty acids;
MEDAS—Mediterranean Diet Adherence Score; RDI—recommended dietary intake (for Slovenian population).

Total and animal protein intake was the highest in LCHF and lowest in V, and the
contrary occurred for plant protein (LCHF–all other diets and O–V p < 0.05), carbohydrates,
and dietary fiber (LCHF–all other diets and O–V p < 0.05). Only V and VE reached the RDI
for dietary fiber (>30 g). The intake of free sugars was the lowest in LCHF (LCHF–VE and
LCHF–O p < 0.001, V–O p = 0.035), but no group exceeded the RDI. The intake of fats, SFA,
and cholesterol was the highest in LCHF and lowest in V (LCHF–all other diets p < 0.001,
V–VE and O–V p < 0.05), and the same was true for MUFA (LCHF–all other diets p < 0.001).
The intake ofω-3 (LCHF–all other diets p < 0.05) andω-6 (LCHF–O p = 0.008) PUFA was
adequate in all groups and was the highest in LCHF (Table 3).

The intake of micronutrients represents the sum of micronutrient intake from diet
and from dietary supplements (not described in Table 3). The intake of calcium was the
lowest in V (755.5 mg), and did not reach the RDI (1000 mg); however, the difference
between the groups was not significant. The same was true for vitamin D, where only
VE (25.5 µg) reached the RDI (20 µg). Statistically significant differences between the
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four groups were observed in the intake of biotin, folate, vitamin B12, copper, manganese
(p < 0.001), selenium, riboflavin, pantothenic acid, α- and β-carotene (p < 0.01), vitamin E,
vitamin K, and vitamin C (p < 0.05). V had the highest intakes of α- and β-carotene, vitamin
K (LCHF–V p < 0.05), copper (V–LCHF and VE–LCHF p < 0.01), vitamin E (LCHF–O
p = 0.017), vitamin C (O–V p = 0.007), and folate (O–V p = 0.002, LCHF–V p = 0.020). Due
to dietary supplements, the intake of vitamin B12 was also the highest in V (VE–V and
O–V p < 0.01, VE–LCHF and O–LCHF p < 0.05). On the other hand, LCHF had the highest
intake of biotin, pantothenic acid, manganese, selenium (LCHF–V and LCHF–VE p < 0.01),
and riboflavin (LCHF–V p = 0.002).

Along with other dietary supplements, we also analyzed the intake of probiotics and
found a statistically significant difference between the four groups (p = 0.021). The intake
of probiotics was the highest in V (29.2%), whereas none in the LCHF reported taking
probiotics. The subjects also reported taking other dietary supplements (not described
in Table 3); the most frequent ones were collagen, algae, and methylsulfonylmethane (MSM)
in all diet groups.

In addition to the food diary analysis, we assessed the subjects’ adherence to a Mediter-
ranean diet that was significantly different between groups (F (3,85) = 10.502, p < 0.001),
and was the highest in V and lowest in LCHF (V–LCHF p < 0.001, O–V and VE–LCHF
p < 0.01) (Table 3).

Many differences in dietary intake were observed between the four groups, especially
with LCHF, which was distinctively different from other diet groups. The t-distributed
stochastic neighbor embedding plot revealed a somewhat clear separation of the dietary
intake between LCHF, O, and V. LCHF was the most distinct diet group compared to other
three groups, whereas VE was a more heterogenous group and was distributed mainly
between O and V (Figure 2).
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3.4. GI Symptoms and Gut Microbiota Composition in Subjects with Distinct Dietary Patterns

In addition to dietary intake, we were interested in differences in stool consistency
and GI symptoms between subjects with four distinct dietary patterns (O, V, VE, LCHF);
these are presented in Table 4. The subjects adhering to an LCHF diet reported having
fewer GI symptoms. The frequency of bloating between the four groups was significantly
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different (χ2 (3) = 10.029, p = 0.018), and the same was the case for flatulence (χ2 (3) = 14.581,
p = 0.002). The frequency of flatulence was the lowest in LCHF and highest in V (LCHF–V
p = 0.001, LCHF–O p = 0.022) (Table 4). For stool consistency, a statistically significant
difference was observed between the four groups (χ2 (3) = 9.989, p = 0.019), with V having
the loosest stools and LCHF the hardest (LCHF–V p = 0.020) (Table 4).

Table 4. GI symptoms and stool consistency (n = 89).

O (n = 24) V (n = 24) VE (n = 21) LCHF (n = 20)

Stool consistency M (SD) M (SD) M (SD) M (SD) p-value
Bristol stool scale (score) 3.9 (0.9) 4.2 (1.2) 3.8 (0.7) 3.3 (1.0) 0.019 b

GI symptoms M (SD) M (SD) M (SD) M (SD) p-value
Nausea (frequency) 0.5 (0.8) 0.4 (0.7) 0.3 (0.7) 0.2 (0.4) 0.415
Bloating (frequency) 1.6 (1.1) 1.7 (1.0) 0.9 (0.9) 1.0 (1.1) 0.018 *

Borborygmi (frequency) 1.3 (1.0) 1.5 (1.1) 1.1 (0.9) 0.9 (1.0) 0.186
Abdominal pain (frequency) 0.6 (0.7) 0.8 (0.8) 0.5 (0.8) 0.4 (0.7) 0.151

Flatulence (frequency) 1.7 (0.9) 1.9 (0.9) 1.5 (0.9) 0.8 (0.9) 0.002 a,b

Heartburn (frequency) 0.5 (0.9) 0.7 (1.0) 0.6 (1.0) 0.4 (0.6) 0.763

O—omnivorous; V—vegan; VE—vegetarian; LCHF—low-carbohydrate, high-fat; a—O–LCHF; b—V–LCHF (post
hoc tests); *—statistically significant difference (ANOVA).

Our primary research focus was on differences in gut microbiota composition in sub-
jects with four distinct dietary patterns; these are presented in Table 5. Firstly, we compared
the gut bacteria at the phylum level. Bacteroidota and Firmicutes were the predominant
phyla and represented more than 90% of the whole gut microbiota in all dietary patterns. A
significant difference in relative abundance of the phylum Actinobacteria was observed
between the four groups (χ2 (3) = 22.613, p < 0.001), with LCHF having the lowest abun-
dances (LCHF–all other diets p < 0.05). On the contrary, LCHF had the highest abundances
of Desulfobacterota (V–LCHF and VE–LCHF p < 0.05), which was significantly different
between the four groups (χ2 (3) = 10.024, p = 0.018). A significant difference in the relative
abundance of Verrucomicrobiota was also observed (χ2 (3) = 9.804, p = 0.020); O had the
highest abundances and V the lowest (O–V p = 0.016). Interestingly, although not significant,
the lowest α-diversity of gut microbiota was detected in V (Table 5).

Table 5. Gut microbial phyla (n = 89).

O (n = 24) V (n = 24) VE (n = 21) LCHF (n = 20)

Phylum M (SD) M (SD) M (SD) M (SD) p-value
Firmicutes (%) 45.41 (16.34) 42.07 (16.33) 47.13 (17.24) 42.56 (15.19) 0.702

Bacteroidota (%) 47.37 (17.64) 51.67 (18.19) 46.35 (16.61) 51.74 (14.88) 0.611
Proteobacteria (%) 4.19 (2.15) 4.06 (3.18) 4.34 (3.79) 3.61 (2.58) 0.691

Verrucomicrobiota (%) 1.02 (1.12) 0.36 (0.76) 0.69 (0.89) 0.51 (0.65) 0.020 a

Cyanobacteria (%) 1.00 (3.00) 0.45 (0.84) 0.91 (1.60) 0.84 (1.69) 0.577
Actinobacteria (%) 0.79 (1.11) 0.96 (1.64) 0.27 (0.28) 0.05 (0.06) <0.001 b,c,d

Desulfobacterota (%) 0.21 (0.23) 0.37 (0.67) 0.32 (0.54) 0.66 (0.67) 0.018 c,d

Gut microbiota α-diversity M (SD) M (SD) M (SD) M (SD) p-value
Shannon index 3.27 (0.48) 2.85 (0.73) 3.27 (0.49) 3.33 (0.46) 0.090

O—omnivorous; V—vegan; VE—vegetarian; LCHF—low-carbohydrate, high-fat; a—O–V; b—O–LCHF; c—V–
LCHF; d—VE–LCHF (post hoc tests).

Secondly, we compared the gut bacteria, present in at least 10% of the subjects, at the
genus level (Figure 3). The four most represented genera were Bacteroides, Faecalibacterium,
Prevotella 9, and Alistipes (Figure 3a). A statistically significant difference between the four
groups was found for the relative abundance of Prevotella 9 (χ2 (3) = 9.831, p = 0.020),
which was most represented in V, and Alistipes (χ2 (3) = 11.167, p = 0.011), which was most
represented in LCHF and least in V.
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Figure 3. (a) Relative abundance of most represented gut microbial genera. (b) Relative abundance
of less represented gut microbial genera. O—omnivorous; V—vegan; VE—vegetarian; LCHF—low-
carbohydrate, high-fat; a—O–V; b—O–VE; c—O–LCHF; d—V–LCHF; e—VE–LCHF; f—V–VE (post
hoc tests); *—statistically significant difference (ANOVA).

Some significant differences between the four groups were also observed for less-
represented genera (Figure 3b). Significant differences between the four groups (Kruskal–
Wallis test) and significant differences between specific diet groups compared with a post
hoc test are marked in Figure 3. The relative abundances of Bifidobacterium, Haemophilus
(p < 0.001 for both), Lachnospiraceae UCG-004 (p = 0.003), Subdoligranulum, and Anaerostipes
(p = 0.012 for both) were the highest in V and lowest in LCHF. The genera that were pre-
dominant in VE and least represented in LCHF were Ruminococcaceae CAG-352 (p < 0.001),
Lachnospiraceae UCG-001 (p = 0.013), and Oscillospiraceae UCG-003 (p = 0.030), whereas
Agathobacter, Lachnospiraceae ND3007, and Victivallis (p = 0.020 for all) were least represented
in LCHF and most in O. Some other genera that were predominant in O were Ruminococcus
(p = 0.034), Rhodospirillales uncultured (p = 0.005), Blautia (p = 0.009), and Izemoplasmatales
(p = 0.011). On the contrary, the genera that were predominant in LCHF were Ruminococcus
torques, Lachnospiraceae uncultured (p < 0.001 for all), Odoribacter (p = 0.001), Butyricimonas
(p = 0.003), Ruminococcaceae uncultured (p = 0.008), Fusicatenibacter (p = 0.034), Desulfovibrio
(p = 0.026), and Anaerosporobacter (p = 0.014).

In addition to the analysis of dietary intake and gut microbiota composition (at the
genus level), we focused on the relationship between the two. Some significant correlations
were observed and are presented in Figure 4. Positive correlations are marked with red
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color, whereas negative are marked with blue color. Many correlations were observed for
the intake of macronutrients, and less for micronutrients. Positive (ρ ≥ 0.4) or negative
(ρ ≤ −0.4) correlations that are at least moderate are described.
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Figure 4. Heatmap of Spearman’s correlation coefficient between dietary intake (on the right side)
and gut microbial genera (at the bottom).

The intake of carbohydrates and plant protein was positively correlated with the
relative abundance of Lachnospiraceae UCG-004, Agathobacter, Haemophilus, Bifidobacterium,
and Anaerostipes, and negatively with Lachnospiraceae uncultured and Ruminococcus torques
(p < 0.001 for all). Similarly, the intake of dietary fiber was positively correlated with Lach-
nospiraceae UCG-004 and Haemophilus, and negatively with Ruminococcus torques (p < 0.001
for all).

The intake of fats and SFA was positively correlated with the relative abundance of
Ruminococcaceae uncultured, Ruminococcus torques, Anaerosporobacter, and Odoribacter, and
negatively with Bifidobacterium (p < 0.001 for all). Likewise, the intake of animal protein
was positively correlated with the relative abundance of Butyricimonas, Lachnospiraceae
uncultured, Ruminococcus torques, Odoribacter, Ruminococcaceae uncultured, Barnesiellaceae
uncultured, Rhodospirillales uncultured, Anaerosporobacter (p < 0.001 for all), and Alistipes
(p = 0.007), and negatively with Bifidobacterium, Haemophilus, and Lachnospiraceae UCG-004
(p < 0.001 for all).

For micronutrients, a negative correlation was observed between the intake of pan-
tothenic acid and biotin, and the relative abundance of Bifidobacterium (p < 0.001). The
intake of copper and manganese was positively correlated with the relative abundance of
Lachnospiraceae UCG-004 (p < 0.001), and negatively with Ruminococcus torques (p < 0.01).
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3.5. Cluster Analysis for Gut Microbiota Composition

An essential research question of microbiome study is to determine whether the
microbiota can be stratified into subgroups, and if so, how many groups are there, and
how to interpret the strata. We were especially interested in whether gut microbiota (at
the genus level) could be a useful indicator of a long-term dietary pattern and if we could
determine an individual’s diet solely based on gut microbiota composition. As illustrated
in Figure 5a, hierarchical clustering (at the genus and at the family level) revealed an
elbow at k = 4, suggesting that the dataset can be organized into four clusters. C2 (n = 8)
was constituted only of V (100%), whereas C1, C3, and C4 included representatives of all
dietary patterns, regardless of the clustering being performed at the genus or at the family
level. As a consequence, we decided to focus on the genus level. In C1 (n = 28), the most
predominant was LCHF (32.2%), then VE (25%), O, and V (both 21.4%). In C3 (n = 33), the
predominant was O (33.3%), followed by VE (27.3%), V (21.2%), and LCHF (18.2%), and in
C4 (n = 20) it was O (35.0%), then LCHF, VE (both 25.0%), and V (15.0%).
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Figure 5. Elbow, box plot, and heatmap of gut microbiota composition in subjects (n = 89). (a) Total
within-cluster sum of squares versus number of clusters computed by k-means clustering (red color
for the family level and blue color for the genus level). (b) The relative abundance of the most
abundant gut microbial phyla (Firmicutes, Bacteriodota, Proteobacteria, and Actinobacteria) in four
clusters (C1, C2, C3, C4). (c) A heatmap of the relative abundance of different genera in the gut
microbial community in four clusters (C1, C2, C3, C4).

For phyla, C1 was most abundant in phylum Proteobacteria, C2 in Bacteroidota, C3
in Actinobacteria and Firmicutes, and C4 in Bacteriodota and Proteobacteria (Figure 5b).
Hierarchical clustering revealed that the most similar clusters were C1 and C4, whereas C3
was somewhat similar to C1 and C4. The most distinctly different cluster from others was
C2, which was constituted only of V (Figure 5c).

For genera, C1 was most abundant in genera Alistipes, Roseburia, Agathobacter, Lach-
nospiraceae uncultured, and Barnesiella; C2 in genera Prevotella 9, Lachnospira, Phascolarctobac-
terium, and Anaerostipes; C3 in genera Faecalibacterium, Lachnospiraceae NK4A136, Clostridia
vadinBB60, Bacilli RF39, Christensenellaceae R-7, and Clostridia UCG-014; and C4 in genera
Bacteroides, Parasutterella, and Monoglobus (Figure 5c). The hierarchical clustering revealed
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that gut microbiota composition at the genus level is therefore not a useful indicator of a
subject’s dietary pattern, with the exception of a high abundance of the genus Prevotella 9,
which indicates a V diet. However, an individual could be adhering to a V diet and not
have this specific type of gut microbiota composition. O were classified in C1, C3, and C4,
with C3 and C4 being more likely. Similar was the case for subjects following an LCHF diet;
however, they were more likely to be classified in C1 and C4. On the other hand, VE were
classified in all three clusters almost equally.

3.6. Variable Selection

With the exception of C2 with the predominance of Prevotella 9 that was constituted
only of V, we could not determine an individual’s dietary pattern solely based on gut
microbiota composition. Thus, we further investigated which specific nutrients or other
lifestyle factors, not related to dietary intake, predict specific clusters. First, we started
feature selection with all 199 variables (supplementary document) using sequential feature
selection—sequentialfs. The MATLAB sequentialfs function excluded 131 variables. Using
68 remaining variables as input to the k-nearest neighbor classifier model resulted in
82% accuracy (Figure 6a). Interpretation of 68 predictors is quite difficult, so we took
further steps to reduce the number of variables and maintain predictive power. Since an
exhaustive comparison of criterion value is usually not feasible for all subsets of all possible
combinations, we used a random selection algorithm to reduce the number of predictive
variables. From 68 predictors, we randomly selected 20 predictors that we used to build
a model and calculate its accuracy. We repeated this process 100,000 times. At each step,
a different random set of 20 variables was selected. Figure 6b shows the accuracy for all
100,000 random sets. Note that the accuracy is sorted from highest to lowest. We can see
that a few sets give very high (>70%) and a few give very low (<40%) accuracy. Further, we
selected only the sets that provide accuracy above 60%. The frequency of predictors from
the sets that provide an accuracy of 60% or more is shown in Figure 6c. It is clear that some
features, such as family history of dementia and serum TAG levels, have higher frequencies
than employment and alcohol intake, for example. Further, we selected predictors whose
frequency corresponded to the 50th percentile. Thus, the new smaller subset contained
only 34 variables (Figure 6c, red and orange bars). Finally, we performed sequential feature
selection again for the subset that contained 34 variables. The sequentialfs function excluded
an additional eight features. The final set contained 26 variables and achieved 91% accuracy
(Figure 6d, confusion matrix). The final set of variables was, thus, about 2.5 times smaller
than the first subset (68), but the accuracy actually increased slightly, from 82 to 91%.

3.7. Predictors

Significant gut microbiota composition cluster predictors (26) are presented in Table 6.
With these model predictors we can very accurately predict subjects’ classification in C1
and C3 (96.4% and 97%), whereas we can somewhat less, but still very accurately, predict
classification in C2 (75%). The most important gut microbiota composition predictors were
from the following categories: anthropometric measurements, serum biomarkers, lifestyle
factors, GI symptoms, psychological factors, and specific nutrients intake. We further
analyzed if any significant relationship exists between clusters and model predictors. A
statistically significant relationship between clusters and predictors was observed for hip
circumference (χ2 (3) = 11.842, p = 0.008), phase angle (χ2 (3) = 8.758, p = 0.033), work
schedule (χ2 (3) = 20.912, p = 0.013), having alive parents (χ2 (3) = 14.553, p = 0.024), growing
up with pets (χ2 (3) = 10.655, p = 0.014), and the intake of SFA (χ2 (3) = 11.809, p = 0.008)
and iodine (χ2 (3) = 12.612, p = 0.006). Subjects in C1 had the highest hip circumference
(C1–C4 p = 0.004), and C4 the lowest. C2 was the most distinct group, with the highest
phase angle (C2–C3 p = 0.038), the most flexible work schedule, and was the only group
where all subjects grew up with pets and had both parents alive. The intake of SFA (C2–all
other clusters p < 0.05) and iodine (C2–C3 and C2–C4 p < 0.05) was also the lowest in C2.
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Table 6. Significant gut microbiota composition cluster predictors (n = 89).

Predictor C1 (n = 28) C2 (n = 8) C3 (n = 33) C4 (n = 20)

Anthropometric measurements M (SD) M (SD) M (SD) M (SD) p-value
Hip circumference (cm) 98.3 (5.9) 94.3 (4.9) 95.7 (5.6) 92.8 (5.1) 0.008 b

Phase angle (◦) 6.6 (0.9) 7.2 (0.7) 6.3 (0.8) 6.3 (0.9) 0.033 c

Diastolic blood pressure (mm Hg) 77.1 (8.9) 73.9 (5.8) 78.8 (11.3) 75.6 (9.8) 0.747

Serum biomarkers M (SD) M (SD) M (SD) M (SD) p-value
Serum TAG (mmol/L) 1.10 (0.80) 0.79 (0.24) 0.72 (0.26) 0.93 (0.36) 0.092
Serum LBP (µg/mL) 4.24 (1.61) 3.97 (1.46) 3.58 (1.76) 3.68 (1.29) 0.500

Subject’s lifestyle factors % % % % p-value
Growing up with pets 78.6 100.0 48.5 65.0 0.014 *
Currently having pets 53.6 37.5 60.6 55.0 0.698

Regular bowel movement 89.3 87.5 69.7 75.0 0.262
Smoking 17.9 25.0 9.1 20.0 0.575

Family history of dementia 14.3 37.5 9.1 35.1 0.055
Sleeping more on weekends 57.1 37.5 63.6 55.0 0.600

Work schedule (not working/one
shift/two shifts/flexible) 10.7/50.0/32.1/7.1 25.0/12.5/15.5/50.0 3.0/69.7/18.2/9.1 20.0/50.0/20.0/10.0 0.013 *

Last use of antibiotics (>1 year
ago or never/6–12 months

ago/3–5 months ago)
92.9/0.0/7.1 62.5/37.5/0.0 87.9/9.1/3.0 85.0/10.0/5.0 0.076

Parents alive (both/one/no one) 78.6/7.1/14.3 100.0/0.0/0.0 72.7/27.3/0.0 90.0/5.0/5.0 0.024 *

GI symptoms M (SD) M (SD) M (SD) M (SD) p-value
Borborygmi (intensity) 0.6 (0.7) 0.9 (0.6) 0.9 (0.8) 1.0 (0.8) 0.281
Flatulence (intensity) 1.2 (0.8) 1.0 (0.8) 1.2 (0.8) 1.4 (0.8) 0.694
Heartburn (intensity) 0.3 (0.5) 0.6 (1.1) 0.5 (0.7) 0.6 (0.8) 0.503
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Table 6. Cont.

Predictor C1 (n = 28) C2 (n = 8) C3 (n = 33) C4 (n = 20)

Psychological factors M (SD) M (SD) M (SD) M (SD) p-value
Subjective general health (score) 4.6 (0.6) 4.1 (0.4) 4.3 (0.6) 4.4 (0.7) 0.172

Subjective mood (score) 4.2 (0.9) 3.8 (0.7) 4.0 (0.9) 3.7 (0.8) 0.062
Symptoms of depression (score) 8.5 (9.4) 9.9 (8.0) 7.7 (5.3) 10.3 (5.6) 0.206

Specific nutrients intake M (SD) M (SD) M (SD) M (SD) p-value
SFA (%) 13.5 (9.0) 5.2 (2.3) 12.1 (6.5) 14.2 (9.5) 0.008 a,c,d

Sugars (%) 14.1 (9.6) 12.6 (4.1) 14.1 (6.7) 16.2 (8.2) 0.421
Free sugars (%) 4.3 (3.6) 3.4 (2.1) 4.9 (3.5) 6.3 (5.1) 0.429

Magnesium (mg) 708.8 (673.3) 695.6 (425.2) 515.4 (479.2) 415.7 (217.6) 0.101
Iodine (µg) 78.5 (42.9) 43.4 (27.2) 113.3 (68.9) 96.2 (47.5) 0.006 c,d

Manganese (mg) 14.5 (35.5) 9.4 (6.6) 8.3 (12.3) 5.1 (3.4) 0.144

a—C1–C2; b—C1–C4; c—C2–C3; d—C2–C4 (post hoc tests); *—statistically significant difference (chi-squared test);
TAG—triacylglycerol; LBP—lipopolysaccharide binding protein; SFA—saturated fatty acids.

4. Discussion

To investigate the relationship between distinct dietary patterns and gut microbiota
composition, a cross-sectional study in subjects adhering to omnivorous (O), vegetarian
(VE), vegan (V), and low-carbohydrate, high-fat (LCHF) diet was performed. The subjects
were equally distributed between groups, were from the same geographical location, and
did not differ in age, gender, anthropometric measurements, education, or socioeconomic
status, which are factors that can significantly influence gut microbiota composition [28]. A
statistically significant relationship was observed between dietary pattern and the type of
environment growing up and growing up with pets, as the majority of V and the minority
of O grew up in a rural environment with pets. Similarly, a recent study showed that
individuals who grew up around a variety of pets were more likely to engage in greater
levels of veganism [29]. Living in a rural environment could influence environmental
consciousness, and it has been observed that the progression from O diet to VE and V diets
is associated with increased environmental sustainability [30].

Despite no major differences in lifestyle factors, we looked for any differences in
serum biomarkers between the four groups. We were especially interested in lipid profile
and inflammatory status, factors that have been favorably associated with plant-based
diets [31]. Statistically significant differences between the groups were observed for serum
cholesterol, LDL, and HDL levels that were the highest in LCHF and lowest in V. The
same increase in LDL after adhering to an LCHF diet was observed in other studies, at
least in short-term studies [32–34], whereas long-term studies are lacking. However, a
meta-analysis showed no significant differences in LDL after 6, 12, and 24 months of an
LCHF diet [35]. Nevertheless, it is important to interpret these results with caution, as the
majority of studies use LCHF diets as a weight-loss tool in subjects with obesity, whereas
the subjects in our study had a normal body mass which was stable and were not pursuing
weight loss.

In addition to serum biomarkers, many differences in dietary intake between the
groups were observed. The consolidation of dietary intake into principle components re-
vealed clear separation between the groups. VE was a more heterogenous group compared
to others, as some only exclude meat from the diet, whereas others also exclude fish, dairy,
or eggs [36]. As expected, the four diet groups differed significantly in the intake of all
macronutrients. Total and animal protein intake was the highest in LCHF, which is typical
for an LCHF diet [37], and lowest in V, and similar observations were made in studies
that compared V with VE and O [38,39]. As expected, the intake of fats, SFA, MUFA, and
cholesterol was the highest in LCHF and lowest in V, and the contrary occurred for the
intake of plant protein, carbohydrates, and dietary fiber. Only V and VE reached the RDI
for dietary fiber, similarly to a recent systematic review [40]. The intake of free sugars
was the lowest in LCHF, which is typical for an LCHF diet [41]. Many differences in the
intake of micronutrients were observed between groups (summed from diet and dietary
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supplements). V had the highest intakes of α- and β-carotene, vitamin K, copper, vitamin
E, vitamin C, folate, and also vitamin B12, due to dietary supplements. Similarly, a higher
intake of folate and vitamins C and E was observed in plant-based diets compared to
meat-eaters [40]. On the other hand, LCHF had the highest intake of biotin, pantothenic
acid, manganese, selenium, and riboflavin. Additionally, we observed a higher adherence
to Mediterranean diet in V and VE, and the same was reported in other research [39,42].

Our primary research focus was gut microbiota composition, and we were also in-
terested in differences in stool consistency and GI symptoms between the groups. LCHF
reported having fewer GI symptoms, especially flatulence, which was the highest in V. V
also had the loosest stools, which was already shown in previous research that observed
that consuming more dietary fiber was associated with softer stools [43]. It has been
known for a long time that Bacteroidota and Firmicutes are the predominant phyla and
represent more than 90% of the whole gut microbiota [7], and we observed the same in
all four diet groups. Significant differences in the relative abundance of Actinobacteria,
Desulfobacterota, and Verrucomicrobiota were observed between groups. LCHF had
the lowest abundance of Actinobacteria and the highest abundance of Desulfobacterota.
Similarly, a lower abundance of Actinobacteria was observed in children after a 6-month
ketogenic diet [44]; however, long-term studies are lacking. O had the highest abundance
of Verrucomicrobiota, whereas V had the lowest. The four predominant genera in all diet
groups were Bacteroides, Faecalibacterium, Prevotella 9, and Alistipes, and many significant
differences were observed between groups. In V, the predominant genera were Prevotella 9,
Bifidobacterium, Haemophilus, Lachnospiraceae UCG-004, Subdoligranulum, and Anaerostipes.
Similar observations about the association of the genus Prevotella with a high intake of
carbohydrates, which is typical for a V diet, were already made in previous research [45].
Plant foods high in polyphenols, frequently consumed in V, have been associated with a
higher abundance of Bifidobacterium [46], and a higher abundance of Subdoligranulum in
V and VE compared to O was observed previously in the Slovenian population [47]. In
VE, the predominant genera were Ruminococcaceae CAG-352, Lachnospiraceae UCG-001, and
Oscillospiraceae UCG-003. In O, the predominant genera were Agathobacter, Lachnospiraceae
ND3007, Victivallis, Ruminococcus, Rhodospirillales uncultured, Blautia, and Izemoplasmatales.
One study observed a higher abundance of Blautia in O compared to V [48]. In LCHF,
the predominant genera were Alistipes, Ruminococcus torques, Lachnospiraceae uncultured,
Odoribacter, Butyricimonas, Ruminococcaceae uncultured, Fusicatenibacter, Desulfovibrio, and
Anaerosporobacter. Similarly, an increase in the abundance of Alistipes, Odoribacter, Butyrici-
monas, and Desulfovibrio and a decrease in the abundance of Bifidobacterium was observed
in overweight adults after a 4-week LCHF diet designed for weight loss [49]; however,
long-term studies in adults with a normal BMI are lacking.

Additionally, we focused on the relationship between dietary intake and gut mi-
crobiota composition. The intake of dietary fiber, carbohydrates, and plant protein was
positively correlated with Lachnospiraceae UCG-004 and Haemophilus, and the intake of
carbohydrates and plant protein was also positively correlated with Agathobacter, Bifidobac-
terium, and Anaerostipes. Similar to our study, a study in adult men observed an association
between dietary fiber intake and Haemophilus and Bifidobacterium [50], and it is clear that
Bifidobacterium are able to utilize a diverse range of dietary carbohydrates [51]. Several
species of Lachnospiraceae were also associated with dietary fiber and plant protein in-
take in previous research [52]. In the present study, the intake of fats, SFA, and animal
protein was positively correlated with Ruminococcaceae uncultured, Ruminococcus torques,
Anaerosporobacter, and Odoribacter, and the intake of animal protein was also positively
correlated with Butyricimonas, Lachnospiraceae uncultured, Barnesiellaceae uncultured, Rho-
dospirillales uncultured, and Alistipes. Similarly, a higher abundance of Ruminococcaceae
uncultured was observed in subjects with high SFA intake [53]. A higher abundance of
Odoribacter was observed in mice fed a diet rich in animal protein [54], and Alistipes in
humans consuming an animal-based diet [55].
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After determining the differences between the four diet groups, we were interested in
whether gut microbiota at the genus level could be a useful indicator of a long-term dietary
pattern. Hierarchical clustering revealed that subjects can be classified in four clusters
depending on gut microbiota composition; C1 was most abundant in Alistipes, Roseburia,
Agathobacter, Lachnospiraceae uncultured, and Barnesiella; C2 in Prevotella 9, Lachnospira,
Phascolarctobacterium, and Anaerostipes; C3 in Faecalibacterium, Lachnospiraceae NK4A136,
Clostridia vadinBB60, Bacilli RF39, Christensenellaceae R-7, and Clostridia UCG-014; and C4 in
Bacteroides, Parasutterella, and Monoglobus. C2 constituted only of V, whereas other clusters
were mixed depending on the dietary pattern. Thus, we can conclude that gut microbiota
composition at the genus level is not a useful indicator of a subject’s dietary pattern, with
the exception of a high abundance of the genus Prevotella 9, which indicates a V diet.
However, it is important to note that an individual could be following a V diet and not
have this specific gut microbiota composition, as V were also classified in C1, C3, and C4.
Most subjects following an LCHF diet were classified in C1, which is characterized by a
high abundance of Proteobacteria and Alistipes. Indeed, diets with a low intake of fiber and
a high intake of fats have been shown to increase the abundance of Alistipes [55,56], and
intake of dietary cholesterol was shown to correlate with Proteobacteria [57]. Most O were
classified in C3 and C4, whereas VE was the most heterogenous group and was almost
equally classified in C1, C3, and C4.

After this observation, we built a model to explain which lifestyle factors can predict
specific gut microbiota composition regardless of dietary pattern. The limitation of the
present study is a relatively small sample size. In order to have the groups of subjects
adhering to four different dietary patterns homogenous by age, gender, and BMI, we
included a sample size of 89 subjects. Subjects adhering to LCHF were particularly hard
to recruit, as they needed to be adhering to an LCHF diet for a minimum of 6 months
while also having a suitable BMI and keeping a stable body mass for at least 3 months.
All of these criteria substantially limited our sample size. Because of the small sample
size, the hold-out method and also 10-fold cross-validation were not the right choice to
validate our model. Instead, we used the leave-one-out method, which is appropriate for
small datasets. A larger dataset would also allow us to perform nested cross-validation
and thus optimize the hyperparameters independently, e.g., the similarity distance and the
number of nearest neighbors in the case of the k-nearest neighbor classifier and the final set
of variables. The choice of these parameters is biased to some extent, since they were not
optimized by nested cross-validation, which could lead to an overly optimistic result.

Among anthropometric measurements, significant predictors of gut microbiota com-
position were hip circumference, phase angle, and diastolic blood pressure. Subjects in C1
had the highest hip circumference, and C4 the lowest, whereas phase angle was the highest
in C2. Similarly, it has been observed that anthropometric measurements such as BMI, mid-
upper arm, and waist circumference, and waist-to-hip ratio were significantly associated
with lower α-diversity and changes in gut microbiota composition [58]. Additionally, one
study identified measures of obesity (waist-to-hip ratio, BMI, visceral fat index) as signif-
icant gut microbiota composition predictors in healthy adults [59]. It seems that the gut
microbiota also plays an important role in the development and pathogenesis of hyperten-
sion [60], as hypertension and systolic blood pressure have been inversely associated with
α-diversity of gut microbiota [61]. In the present study, subjects in C2, where Prevotella 9
was a predominant genus, had the most favorable anthropometric measurements.

Significant gut microbiota composition predictors from the group of serum biomarkers
were serum levels of TAG and LBP. Similarly, it has been observed that gut microbiota is
associated with blood lipids metabolism in healthy adults, independent of age, gender,
and genetics [62]. LBP, which is highly correlated with lipopolysaccharide (LPS) levels,
has been recognized as a reliable systemic biomarker of intestinal permeability, especially
in healthy adults who generally have low concentrations of LPS [63]. Only one study in
healthy premenopausal women observed an association between LBP levels and changes
in diversity and gut microbiota composition, especially with bacteria that were previously



Nutrients 2023, 15, 2196 20 of 26

associated with obesity and inflammation, such as Bacteroides [64]. In our study, subjects in
C1, with a high abundance of Proteobacteria and Alistipes, had a worse metabolic profile
compared to other clusters, with higher levels of TAG and LBP. Similarly, Alistipes has been
implicated to play a critical role in inflammation and disease [65], and the same is true for
Proteobacteria [66]. Higher abundances of Alistipes have also been associated with TAG in
children [67].

Many lifestyle factors were identified as significant gut microbiota composition pre-
dictors, such as growing up with pets, currently having pets, smoking, sleeping more on
weekends, work schedule, last use of antibiotics, family history of dementia, and having
alive parents. C2 was the most distinct group, and was the only group where all subjects
grew up with pets and had both parents alive, and was also the group where family history
of dementia was the most prevalent. On the other hand, in C3, current pet ownership
was the most prevalent and the family history of dementia the least prevalent among all
clusters. The gut microbiota has been proposed as a determinant of healthy aging, as a
higher prevalence of health-associated bacteria, such as Bifidobacterium and Christensenel-
laceae, has been associated with longevity [68]. The association between a family history
of dementia, which is commonly associated with aging, and gut microbiota has not been
described in studies, whereas patients with Alzheimer’s disease spectrum, including mild
cognitive impairment, have reduced gut microbiota diversity and altered gut microbiota
composition [69]. Regarding pets, numerous studies have already observed that early-life
exposure to household pets [70] and current pet ownership are associated with changes
in the human gut microbiota [71–73]. C2 had the most flexible work schedule, and only
the minority of them were sleeping more on weekends, whereas in C3, the vast majority of
subjects were working one shift, which is the most common work schedule in our society. A
few studies highlighted the importance of circadian clocks for gut microbiota composition
and function [74], and observed that night work alters gut microbiota composition [75].
For smoking, a systematic review observed a reduction in bacterial species diversity in
smokers. Interestingly, the abundance of Prevotella was significantly increased in smokers,
and the same was observed in the phylum Proteobacteria [76], while the abundance of
Faecalibacterium was significantly lower in smokers [77]. Similarly, in our study, we ob-
served that smoking was the most prevalent in C2, which had the highest abundance of
Prevotella 9, and least present in C3, which had the highest abundance of Faecalibacterium.
Regarding the use of antibiotics, which has been identified as a significant predictor, none
of the subjects in C2 used antibiotics 3 to 5 months prior to their participation in the study.
It has been clear for a long time that antibiotics induce changes in the composition and
diversity of gut microbiota; however, after stopping their use, the gut microbiota returns to
baseline within a few weeks [78].

The intensity of GI symptoms and the regularity of bowel movements were also
identified as significant gut microbiota composition predictors. It has been observed
that gut microbiota dysbiosis may contribute to irregular bowel movement and functional
constipation [79]. The gut bacteria ferment nondigestible carbohydrates, produce flatulence,
and can aggravate some GI symptoms [80]. Additionally, patients with flatulence and
borborygmi have a poor tolerance of intestinal gas, which has been associated with gut
microbiota instability [81].

Among psychological factors, significant gut microbiota composition predictors were
subjective general health and mood, and symptoms of depression. Similar to our study, one
of the most important factors that have been associated with gut microbiota is subjective
mood, even in adults without mood disorders [82]. Numerous studies have observed
an association between depression and gut microbiota composition, such as a higher
abundance of proinflammatory species and a lower abundance of bacteria that produce
SCFA [83–85]. In the present study, symptoms of depression were the least prevalent in
C3, which has been characterized by a high abundance of Faecalibacterium that has been
reported to improve depressive behavior. Lower abundances of Faecalibacterium have been
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observed in patients with depression [86], and its abundance has been positively associated
with quality of life [87].

Significant gut microbiota composition predictors from the category of specific nutri-
ents intake were the intake of SFA, sugars, free sugars, magnesium, iodine, and manganese.
In mice, it has been observed that manganese is vital for proper maintenance of the intesti-
nal barrier [88], but human studies are lacking. Most studies about the relationship between
magnesium and gut microbiota have also been performed on animals; however, one study
observed that magnesium supplements can modulate gut microbiota composition and the
gut–brain axis in adults with GI functional disorders [89]. Subjects in C2, which was the
group that most differed from all others, had the lowest intake of SFA and iodine. Similarly,
it has been suggested that gut microbiota may play a role in the absorption of iodine, and
the intake of iodine could have an important impact on gut microbiota [90]. Subjects in
C4 had the highest intake of SFA and free sugars and the lowest intake of manganese. A
systematic review observed that a high intake of SFA may negatively affect gut microbiota
richness and diversity [91], whereas a high sugar intake can disrupt gut microbiota stability
with a higher abundance of Proteobacteria, increased proinflammatory properties, and a
decreased capacity to regulate epithelial integrity [92].

Overall, our findings suggest that lifestyle factors in combination with the intake of
specific nutrients are more important predictors than just dietary pattern alone. Based on
our model, 26 variables were crucial to very accurately (in 91%) predict in which cluster an
individual’s microbiota was classified. Subjects’ microbiota composition can be classified
in specific clusters not only depending on their nutrient intake, but also depending on their
anthropometric measurements, the environment in which they live, living with pets, work
schedule, family history, and psychological and other lifestyle factors. These factors can be
causally, consequentially, or bidirectionally linked to gut microbiota composition. Some
of the factors can be modified with changes in lifestyle, such as changes in the intake of
specific nutrients or anthropometric measurements, while some, such as family history of
dementia or the living environment, are nonmodifiable factors. This should be taken into
account when developing strategies aiming to modulate gut microbiota composition.

5. Conclusions

Our aim was to investigate the relationship between four distinct dietary patterns
(O, VE, V, and LCHF diet) and gut microbiota composition, and to evaluate if gut micro-
biota composition could be a useful indicator of a long-term dietary pattern. We observed
many differences between the groups. At the phylum level, LCHF had the lowest abun-
dance of Actinobacteria and highest abundance of Desulfobacterota. O had the highest
abundance of Verrucomicrobiota, whereas V had the lowest. At the genera level, the
predominant in all diet groups were Bacteroides, Faecalibacterium, Prevotella 9, and Alis-
tipes. Prevotella 9, Bifidobacterium, Haemophilus, Lachnospiraceae UCG-004, Subdoligranulum,
and Anaerostipes were predominant in V; Ruminococcaceae CAG-352, Lachnospiraceae UCG-
001, and Oscillospiraceae UCG-003 were predominant in VE; Agathobacter, Lachnospiraceae
ND3007, Victivallis, Ruminococcus, Rhodospirillales uncultured, Blautia, and Izemoplasmatales
were predominant in O; and Alistipes, Ruminococcus torques, Lachnospiraceae uncultured,
Odoribacter, Butyricimonas, Ruminococcaceae uncultured, Fusicatenibacter, Desulfovibrio, and
Anaerosporobacter were predominant in LCHF. However, after hierarchical clustering, we
concluded that gut microbiota composition at the genus level is not a useful indicator to
determine a subject’s dietary pattern, with the exception of a V diet that is represented by a
high relative abundance of the genus Prevotella 9. Nevertheless, due to high interindividual
variability, an individual could still be adhering to a V diet and not have this specific gut
microbiota composition. The most important gut microbiota composition predictors were
from the categories anthropometric measurements, serum biomarkers, lifestyle factors, GI
symptoms, psychological factors, and specific nutrients intake. Thus, we can conclude
that a combination of different lifestyle factors is more important to determine subjects’
gut microbiota composition than their dietary intake alone. With other lifestyle factors
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taken into account, we can predict subjects’ classification in specific clusters with 91%
accuracy. There is no such thing as an “ideal” gut microbiota composition for human
health; however, some gut bacterial genera are more related to different health markers.
Our findings, which should be confirmed in a larger sample size of subjects, could serve to
develop strategies to educate individuals about changes in lifestyle and specific nutrients
intake, independent of their dietary pattern, with the aim to change some of the modifiable
factors to classify into C3, instead of C1 or C4, which has been associated with favorable
lipid and inflammatory profile.
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4. Kamiński, M.; Skonieczna-Żydecka, K.; Nowak, J.K.; Stachowska, E. Global and Local Diet Popularity Rankings, Their Secular
Trends, and Seasonal Variation in Google Trends Data. Nutrition 2020, 79–80, 110759. [CrossRef]

5. Rinninella, E.; Cintoni, M.; Raoul, P.; Lopetuso, L.R.; Scaldaferri, F.; Pulcini, G.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C.
Food Components and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. Nutrients 2019, 11, 2393. [CrossRef]

6. Ferrocino, I.; Di Cagno, R.; De Angelis, M.; Turroni, S.; Vannini, L.; Bancalari, E.; Rantsiou, K.; Cardinali, G.; Neviani, E.; Cocolin,
L. Fecal Microbiota in Healthy Subjects Following Omnivore, Vegetarian and Vegan Diets: Culturable Populations and RRNA
DGGE Profiling. PLoS ONE 2015, 10, e0128669. [CrossRef]

7. Losasso, C.; Eckert, E.M.; Mastrorilli, E.; Villiger, J.; Mancin, M.; Patuzzi, I.; Di Cesare, A.; Cibin, V.; Barrucci, F.; Pernthaler, J.; et al.
Assessing the Influence of Vegan, Vegetarian and Omnivore Oriented Westernized Dietary Styles on Human Gut Microbiota: A
Cross Sectional Study. Front. Microbiol. 2018, 9, 317. [CrossRef]

8. Franco-de-Moraes, A.C.; de Almeida-Pititto, B.; da Rocha Fernandes, G.; Gomes, E.P.; da Costa Pereira, A.; Ferreira, S.R.G. Worse
Inflammatory Profile in Omnivores than in Vegetarians Associates with the Gut Microbiota Composition. Diabetol. Metab. Syndr.
2017, 9, 62. [CrossRef]

9. Trefflich, I.; Jabakhanji, A.; Menzel, J.; Blaut, M.; Michalsen, A.; Lampen, A.; Abraham, K.; Weikert, C. Is a Vegan or a Vegetarian
Diet Associated with the Microbiota Composition in the Gut? Results of a New Cross-Sectional Study and Systematic Review.
Crit. Rev. Food Sci. Nutr. 2020, 60, 2990–3004. [CrossRef]

10. Tyakht, A.V.; Alexeev, D.G.; Popenko, A.S.; Kostryukova, E.S.; Govorun, V.M. Rural and Urban Microbiota: To Be or Not to Be?
Gut Microbes 2014, 5, 351–356. [CrossRef]

ClinicalTrials.gov
http://www.ncbi.nlm.nih.gov/bioproject/944627
https://doi.org/10.1038/s41579-020-0433-9
https://doi.org/10.3390/ijerph17207618
https://doi.org/10.3390/microorganisms7010014
https://doi.org/10.1016/j.nut.2020.110759
https://doi.org/10.3390/nu11102393
https://doi.org/10.1371/journal.pone.0128669
https://doi.org/10.3389/fmicb.2018.00317
https://doi.org/10.1186/s13098-017-0261-x
https://doi.org/10.1080/10408398.2019.1676697
https://doi.org/10.4161/gmic.28685


Nutrients 2023, 15, 2196 23 of 26

11. Šik Novak, K.; Bogataj Jontez, N.; Kenig, S.; Hladnik, M.; Baruca Arbeiter, A.; Bandelj, D.; Černelič Bizjak, M.; Petelin, A.;
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