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Abstract: Forsythia fruit, edible fruit of Forsythia suspensa (Thunb.) Vahl, which has been found
to be effective in treating cholestasis. However, its key component for alleviating cholestasis has
not been determined. In this study, four representative active ingredients in forsythia fruit were
selected. Through network pharmacology and molecular docking technology, we tried to find the
key component for its treatment of cholestasis. Furthermore, the model of cholestasis in mice was
established to verify the protective effect of the key component on cholestasis. Network pharmacology
and molecular docking showed that forsythoside A (FTA) is the key component of forsythia fruit in
the treatment of cholestasis. In vivo experiments revealed that FTA treatment could alleviate liver
injury, dysfunction, and collagen deposition induced by cholestasis in mice. At the same time, FTA
treatment inhibited inflammatory factor release and fibrosis-related factor expression. In addition,
FTA treatment also reduced MMP-2, TLR4, MYD88, NF-κB p65, and p-NF-κB p65 protein expression.
In conclusion, FTA, a key component of forsythia fruit, alleviated liver damage and fibrosis caused
by cholestasis via inhibiting the TLR4/NF-κB pathway, extracellular matrix accumulation, and
inflammatory cytokine expression. The research results could provide a scientific reference for the
development of forsythia fruit as a drug or functional food to prevent and treat cholestasis.

Keywords: cholestasis; forsythia fruit; forsythoside A; network pharmacology; molecular docking;
TLR4/NF-κB pathway

1. Introduction

Cholestasis or cholestatic liver disease (CLD) is the accumulation of excess bile acid
and abnormal metabolites in the body induced by bile duct injury, leading to apoptosis and
necrosis of bile duct cells and hepatocytes. If allowed to develop without intervention, it
may eventually develop into liver fibrosis and cirrhosis, or even liver failure [1,2]. Chronic
CLD is typified by primary biliary cholangitis (PBC) and primary sclerosing cholangitis
(PSC), with pruritus as the most common complication [3,4]. Unfortunately, the pathophys-
iological processes of these diseases have not yet been scientifically resolved. Evidence
suggests that a genetic cause of CLD has been identified as the underlying cause of liver
disease in “idiopathic” children and adults [5]. Currently, although ursodeoxycholic acid
(UDCA) has been used as a clinical treatment for most CLD patients, a portion of PBC pa-
tients (approximately one-third of the total) have no obvious response to UDCA treatment.
Obechoic acid (OCA) can be used in non-responders of UDCA, but more clinical evidence
is needed to reveal the safety and efficacy of this new therapeutic drug [6,7]. In addition,
there is no clinical evidence of any drugs that can change the course of PSC. Therefore,
PSC patients will be at risk of disease progression [8]. In view of this, more effective drugs
should be mined to deal with CLD, especially for PSC.
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Herbal remedies are the first drugs used by humans due to the fact that plants can
produce a variety of secondary metabolites that have medicinal effects on humans (e.g., an-
tiviral, antioxidant, anticancer, etc.) [9–11]. According to the World Health Organization,
globally, more than 75% of the population still relies on herbal medicine resources [12].
At present, various drugs used to prevent and treat major diseases in clinical practice
should be attributed to medicinal plants. To take a few classic examples, artemisinin can
be used clinically to treat malaria by damaging the structure of the plasmodium nuclear
membrane and mitochondrial outer membrane [13]. Paclitaxel, derived from the medicinal
plant Yew, achieves its anticancer effects by inhibiting mitosis and triggering apoptosis in
cancer cells [9]. Today, scholars have been committed to exploring the active components
of plants that exert therapeutic effects to further determine the molecular basis of medic-
inal plants for treating diseases. Forsythia fruit, the fruit of Forsythia suspensa (Thunb.)
Vahl (FS), is an aromatic and edible fruit. In the 2020 edition of the Ch.P, the fruits were
identified as the medicinal part of FS. Extensive evidence shows that FS can effectively
exert hepatoprotective effects through its anti-inflammatory, antioxidant, anti-fibrosis, and
bile-promoting properties [14–16]. FS can alleviate intrahepatic cholestasis in young rats
by inhibiting bile duct proliferation and inflammatory cell infiltration and improving
liver function [17]. Clinical evidence shows that FS can effectively treat mild intrahep-
atic cholestasis of pregnancy by reducing the level of total bile acids and improving liver
function and pruritus [18]. However, at present, the molecular basis of FS in alleviating
cholestasis has not been revealed.

Due to the inclusion of multiple bioactive compounds in medicinal and edible plants,
which can exert pharmacological effects through multiple pathways and targets, it is
extremely difficult to elucidate their molecular basis and mechanism of action using tra-
ditional pharmacological methods. With the development of bioinformatics and systems
biology, network pharmacology has been proposed as a new method for drug discovery [19].
Network pharmacology updates the traditional “one compound, one target” model of
drug research to a “multiple components, network targets” model, which describes the
interactions of multiple compounds with complex biological systems as networks [20,21],
thereby providing an understanding of how biological systems, drugs, and diseases are
interconnected [22]. The research paradigm and methodology of network pharmacology
are well suited for the study of botanicals with complex active ingredients and action tar-
gets [23]. However, as network pharmacology is still in an immature stage of development,
the existing databases still suffer from incomplete data and uncontrolled quality. Also,
the results of different database algorithms vary considerably, so the predicted results of
network pharmacology may not be fully convincing, thus requiring the application of
other methods for validation [24,25]. Molecular docking techniques for drug design based
on structure and in vivo or in vitro experiments in the real world are commonly used to
validate the results of network pharmacology [26,27].

In this study, we first analyzed the possible key component of FS in the prevention
and treatment of cholestasis via network pharmacology and molecular docking techniques.
Then, a cholestasis mouse model was established to validate the effectiveness and molecular
mechanisms of the key component to alleviate cholestasis. The aim of this study is to clarify
the molecular basis of FS for the prevention and treatment of cholestasis and to lay a
scientific foundation for the further development of functional foods and drugs for the
treatment of cholestasis.

2. Materials and Methods
2.1. Network Pharmacology Research
2.1.1. Prediction of Action Targets of FS

Four representative active ingredients (RAIs) (Phillyrin, FTA, Phillygenin, and Pinoresinol
4-O-beta-D-glucopyranoside) used for quality control under “FS” and “FS extract” in the
Ch.P (2020) were selected for follow-up study. SMILES for RAIs were downloaded from
the PubChem database (https://pubchem.ncbi.nlm.nih.gov/ (accessed on 2 June 2022)).

https://pubchem.ncbi.nlm.nih.gov/
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Then they were entered into the SwissTargetPrediction (http://www.swisstargetprediction.
ch/ (accessed on 2 June 2022)) and SuperPred (https://prediction.charite.de/index.php
(accessed on 2 June 2022)) online platforms [28,29], using “Homo sapiens” as the study
species for target prediction. Probability > 0 and probability ≥ 50% were used as the
threshold filter of the SwissTargetPrediction and SuperPred platforms, respectively.

2.1.2. Building a “Components-Targets” Network

Cholestasis targets were collected in the DisGeNET database (http://www.genecards.
org/ (accessed on 13 July 2022)) and GeneCards database (http://www.genecards.org/
(accessed on 13 July 2022)) using the keyword “Cholestasis”, then integrating the data
and de-duplicating them. Using the Venny_v2.1.0 platform (https://bioinfogp.cnb.csic.
es/tools/venny/index.html (accessed on 13 July 2022)), Venn diagrams of the RAI targets
and cholestasis targets were plotted, with the intersection being the target of the RAIs for
cholestasis treatment. Subsequently, the relationships between the four RAIs and their
targets for the treatment of cholestasis were collated and introduced into Cytoscape_v3.8.2
software to construct the “components-targets” network [30].

2.1.3. Building a PPI Network

The Gene Symbols of the targets of the RAIs for cholestasis treatment were imported
into the STRING_v11.0 data platform (https://string-db.org/ (accessed on 13 July 2022)),
and the PPI relationships between the targets were obtained using “Homo sapiens” as the
study species. The PPI network was established via Cytoscape_v3.8.2 software [30], and
network topology analysis was performed via the Network Analyzer plug-in.

2.1.4. GO and KEGG Analysis

The Gene Symbols of the targets of the RAIs for cholestasis treatment were imported
into the DAVID_v6.8 database (https://david.ncifcrf.gov/ (accessed on 13 July 2022)) [31,32],
and the species “Homo sapiens” was selected for GO and KEGG enrichment analysis.
Depending on the p-value from smallest to largest, we selected the top 25 results to draw an
advanced bubble chart on the OmicShare website (https://www.omicshare.com/ (accessed
on 13 July 2022)).

2.1.5. Screening the Key Component for the Treatment of Cholestasis

The top 25 signal pathways were selected from the outcomes of the KEGG pathway
enrichment analysis, and the relationship between pathways and targets, as well as between
targets and components, were sorted out and imported into Cytoscape_v3.8.2 software to
construct a “components-targets-paths” network [30]. Meanwhile, the NetworkAnalyzer
plug-in was used for network topology analysis. Then, based on the outcomes of the PPI
network, “components-targets-paths” network, KEGG pathway, and GO biological process
enrichment analysis, RAI key targets for the treatment of cholestasis were selected. Next,
the key targets were used as the receptor and the RAIs were used as the ligand to conduct
molecular docking studies, and the key component of FS treatment for cholestasis was
screened out by referring to the results of molecular docking and related studies.

2.1.6. Network Pharmacology Research of Key Component

Network pharmacological studies (as above) were conducted on the key component
screened out above, including the construction of the PPI network, enrichment analysis of
the KEGG pathway and GO biological process, and the main targets and pathways of key
components for the treatment of cholestasis were screened out.

2.2. Molecular Docking Research
2.2.1. Preparation of Ligands and Receptors

The 3D structure files of the RAIs and FTA downloaded from the PubChem database
were used as ligands. At the same time, the structure files of targets were downloaded

http://www.swisstargetprediction.ch/
http://www.swisstargetprediction.ch/
https://prediction.charite.de/index.php
http://www.genecards.org/
http://www.genecards.org/
http://www.genecards.org/
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://string-db.org/
https://david.ncifcrf.gov/
https://www.omicshare.com/
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from the RCSB database (https://www.rcsb.org/ (accessed on 28 September 2022)) and
were used as receptors, which were prepared using OpenBabel_v2.4.1, PyMol_v2.4 and
Autodock_v1.5.6 software and converted into qdbqt format [33].

2.2.2. The Operation of Molecular Docking

The center coordinates of the docking pocket of the receptor proteins with the original
ligand were set with reference to the original ligand, and the receptor proteins without
the original ligand were set with reference to the center coordinates of the active amino
acid residues included in the UniProt database (https://www.uniprot.org/ (accessed on
28 September 2022)), with an exhaustiveness of 20, using Autodock Vina_v1.1.2 software
for molecular docking [34].

2.3. Experimental Study In Vivo
2.3.1. Reagents and Chemicals

The reagents and chemicals used in this study are shown in Table 1.

Table 1. The manufacturer and ID of reagents and chemicals.

Materials Manufacturer ID

FTA (purity above 98%) Chroma Biotechnology Co., Ltd.,
Chengdu, China 79916-77-1

3,5-diethoxycarbonyl-1,4-
dihydrocollidine (DDC)

Xiya Chemical Technology Co., Ltd.,
Shandong, China 632-93-9

Aspartate aminotransferase (AST)
assay kit Nanjing Jiancheng Bioengineering

Institute, Jiangsu, China
C010-2-1

Alanine aminotransferase (ALT) assay kit C009-2-1
Tumor necrosis factor-α (TNF-α) assay kit

Elabscience Biotechnology Co., Ltd.,
Wuhan, China

E-EL-M0037c
Interleukin (IL)-6 assay kit E-EL-M0044c

IL-1β assay kit E-EL-M3063
α-smooth muscle actin (α-SMA) antibody Affinity, Cincinnati, OH, USA AF1032

Matrix metalloproteinase 2 (MMP-2)
antibody

ABclonal, Wuhan, China

A19080

F4/80 antibody A18637
Toll-like receptor 4 (TLR4) antibody A21626

Myeloid differentiation primary response
88 (MYD88) antibody A21905

Nuclear factor kappa B (NF-κB) p65
antibody A18210

p-NF-κB p65 antibody AP0944
β-actin antibody Servicebio, Wuhan, China GB15001

Goat Anti-Rabbit IgG (H + L) HRP
secondary antibody Multi science, Hangzhou, China GAR0072

Total RNA isolation kit Foregene, Chengdu, China RE-03014
HiScript® IIQ RT SuperMix for qPCR Vazyme, Nanjing, China R223-01

ChamQ SYBR qPCR Master Mix Q311-02

2.3.2. Animals and Treatments

The experimental subjects of this study were 30 8-week-old, male C57BL/6J mice
(20 ± 2 g) purchased from Chengdu Dashuo Experimental Animal Co., Ltd. (Chengdu,
China). Mice were housed in an SPF environment, and irradiated and sterilized feed and
drinking water were freely available. A week later, the mice were fed adaptively and were
randomly divided into five groups (n = 6): control group, DDC group, FTA low-dose (FTA-
L), FTA medium-dose (FTA-M), and FTA high-dose (FTA-H) groups. The experimental
protocol has been approved by the Chengdu University of Traditional Chinese Medicine
(Grant No. SYXK-2020-124, Chengdu, China). Subsequently, in the DDC, FTA-L, FTA-M,
and FTA-H groups, mice were fed a diet containing 0.1% DDC for four weeks, while the
control group received a normal diet. After being fed the diet for one week, the mice in the
FTA-L, FTA-M, and FTA-H groups were administrated with FTA (dissolved in physiological
saline, 15, 30, and 60 mg/kg, 10 mL/kg), respectively, for three consecutive weeks. In the
control group and the DDC group, mice received normal saline (10 mL/kg) for three weeks.

https://www.rcsb.org/
https://www.uniprot.org/
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After the experiment, the mice were euthanized by carbon dioxide, and blood and liver
tissue were collected. The detailed experimental process is shown in Figure 1.

Nutrients 2023, 15, x FOR PEER REVIEW 5 of 20 
 

 

Goat Anti-Rabbit IgG (H + 
L) HRP secondary antibody Multi science, Hangzhou, China GAR0072 

Total RNA isolation kit Foregene, Chengdu, China RE-03014 
HiScript® ⅡQ RT SuperMix 

for qPCR Vazyme, Nanjing, China 
R223-01 

ChamQ SYBR qPCR Master 
Mix 

Q311-02 

2.3.2. Animals and Treatments 
The experimental subjects of this study were 30 8-week-old, male C57BL/6J mice (20 

± 2 g) purchased from Chengdu Dashuo Experimental Animal Co., Ltd. (Chengdu, China). 
Mice were housed in an SPF environment, and irradiated and sterilized feed and drinking 
water were freely available. A week later, the mice were fed adaptively and were ran-
domly divided into five groups (n = 6): control group, DDC group, FTA low-dose (FTA-
L), FTA medium-dose (FTA-M), and FTA high-dose (FTA-H) groups. The experimental 
protocol has been approved by the Chengdu University of Traditional Chinese Medicine 
(Grant No. SYXK-2020-124, Chengdu, China). Subsequently, in the DDC, FTA-L, FTA-M, 
and FTA-H groups, mice were fed a diet containing 0.1% DDC for four weeks, while the 
control group received a normal diet. After being fed the diet for one week, the mice in 
the FTA-L, FTA-M, and FTA-H groups were administrated with FTA (dissolved in physi-
ological saline, 15, 30, and 60 mg/kg, 10 mL/kg), respectively, for three consecutive weeks. 
In the control group and the DDC group, mice received normal saline (10 mL/kg) for three 
weeks. After the experiment, the mice were euthanized by carbon dioxide, and blood and 
liver tissue were collected. The detailed experimental process is shown in Figure 1. 

 
Figure 1. Experimental design. 

2.3.3. Histological, Biochemical Assessments, and ELISA Analysis 
A small piece of liver was fixed in a 10 mL EP tube containing 4% paraformaldehyde 

for 24 h. Subsequently, the fixed liver was then pruned, dehydrated, embedded, and sec-
tioned for further staining. Pathological changes in the liver were evaluated using hema-
toxylin-eosin (HE) staining. Collagen deposition in liver was evaluated via Masson stain-
ing. In addition, serum AST and ALT were tested by assay kit to assess the change in liver 
function. At the same time, serum TNF-α, IL-6, and IL-1β were tested by ELISA kit to 
estimate systemic inflammation. 

2.3.4. Immunohistochemistry Analysis 
According to the previous experimental methods of our research group [35], we used 

immunohistochemical staining to analyze α-SMA, F4/80, and p-NF-κB expression. Briefly, 

Figure 1. Experimental design.

2.3.3. Histological, Biochemical Assessments, and ELISA Analysis

A small piece of liver was fixed in a 10 mL EP tube containing 4% paraformaldehyde
for 24 h. Subsequently, the fixed liver was then pruned, dehydrated, embedded, and
sectioned for further staining. Pathological changes in the liver were evaluated using
hematoxylin-eosin (HE) staining. Collagen deposition in liver was evaluated via Masson
staining. In addition, serum AST and ALT were tested by assay kit to assess the change in
liver function. At the same time, serum TNF-α, IL-6, and IL-1β were tested by ELISA kit to
estimate systemic inflammation.

2.3.4. Immunohistochemistry Analysis

According to the previous experimental methods of our research group [35], we used
immunohistochemical staining to analyze α-SMA, F4/80, and p-NF-κB expression. Briefly,
paraffin sections were made using mice liver tissue. The sections were placed in PBS
(PH 7.4) to perform antigen repair. The sections were placed in a 3% hydrogen peroxide
solution to block endogenous peroxidase. The sections were sealed at room temperature
for 30 min using 3% BSA. Subsequently, the sections were incubated with primary and
secondary antibodies and colored with DAB, respectively. Finally, dyed pictures were
observed and collected under a microscope.

2.3.5. Quantitative Real-Time PCR (qPCR) Analysis

MMP-2, TNF-α, IL-1β, IL-6, and F4/80 mRNA expression levels were detected via
qPCR. Briefly, a total RNA isolation kit was used to extract total RNA from liver tissues.
Subsequently, the total RNA was then synthesized into stable cDNA using ChamQ SYBR
qPCR Master Mix. Next, RT-qPCR was performed by adding ChamQ SYBR qPCR Master
Mix according to the instructions of the reagent manufacturer. Table 2 shows all primers
used in this study. Finally, we calculated the relative mRNA expression by 2−∆∆CT.
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2.3.6. Western Blot

According to the previous experimental methods of our research group [36], MMP-2,
α-SMA, TLR4, MYD88, NF-κB p65, and p- NF-κB p65 were tested via Western blot. Briefly,
total protein was extracted from liver tissues and inactivated at 100 ◦C. Subsequently,
electrophoresis, membrane transfer, and other operations were carried out to transfer the
protein to the stable PVDF membrane. Then, the membrane was incubated in diluted
MMP-2, α-SMA, TLR4, MYD88, NF-κB p65, and p-NF-κB p65 primary antibody (1:1000)
and diluted secondary antibody (1:5000). Finally, the developer was dripped onto the
membrane and the chemiluminescence was collected.

Table 2. Specific primers sequences used in RT-qPCR.

Gene ID Forward Primer (5′-3′) Reverse Primer (5′-3′)

MMP-2 17390 CCATGTGTCTTCCCCTTCA CCCCACTTCCGGTCATC

TNF-α 21926 GACAGTGACCTGGACTGTGG TGAGACAGAGGCAACCTGAC

IL-1β 16176 GAAGAAGAGCCCATCCTCTG TCATCTCGGAGCCTGTAGTG

IL-6 16193 CTGCAAGAGACTTCCATCCAG AGTGGTATAGACAGGTCTGTTGG

F4/80 13733 TGGGAGCTACTTCTGCACT AGGAGCCTGGTACATTGGT

2.3.7. Statistical Analysis

The data were compared among multiple groups by one-way ANOVA using SPSS
26.0 statistical software, and all results were expressed by mean ± SD. Histograms and heat
maps were drawn using GraphPad Prism 9.0 software. Results were considered statistically
significant when p < 0.05.

3. Results
3.1. The Targets of RAIs of FS in the Treatment of Cholestasis

Basic information about the RAIs can be found in Table 3. A total of 189 targets were
predicted for RAIs, and 2112 targets were predicted for cholestasis-related targets. The
Venn diagram of the two was plotted on the OmicShare platform (Figure 2), and the results
revealed that a total of 64 targets showed a critical role in cholestasis. In addition, 138 kinds
of associations existed between the RAIs and 64 common targets, and the “components-
targets” network was drawn (Figure 3a).

Table 3. Basic information of four active ingredients of FS.

Component Name PubChem CID Molecular
Formula Canonical SMILES

Phillyrin 101712 C27H34O11
COC1=C(C=C(C=C1)C2C3COC(C3CO2)C4=CC(=C(C=C4)

OC5C(C(C(C(O5)CO)O)O)O)OC)OC

Forsythoside A 5281773 C29H36O15
CC1C(C(C(C(O1)OCC2C(C(C(C(O2)OCCC3=CC(=C(C=C3)

O)O)O)O)OC(=O)C=CC4=CC(=C(C=C4)O)O)O)O)O

Phillygenin 3083590 C21H24O6
COC1=C(C=C(C=C1)C2C3COC(C3CO2)C4=CC(=C(C=C4)

O)OC)OC
Pinoresinol

4-O-beta-D-glucopyranoside 486614 C26H32O11
COC1=C(C=CC(=C1)C2C3COC(C3CO2)C4=CC(=C(C=C4)

OC5C(C(C(C(O5)CO)O)O)O)OC)O
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enrichment analysis; (e) Top 25 results of GO biological process enrichment analysis.
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3.2. The Results of the PPI Network

A total of 63 proteins were collected through the STRING_v11.0 database with 221 com-
plex interactions between them (Figure 3b). Cyto-scape_v3.8.2 software was used to con-
struct a PPI network of targets of the RAIs for cholestasis, as shown in Figure 3c. The
median value of the PPI network degree was 5, and the median of median centrality was
0.0047219. Thirteen key targets were selected, namely HSP90AA1, HIF1A, TLR4, GSK3B,
MMP2, APP, SERPINE1, NFKB1, PIK3R1, ITGB1, PRKCA, STAT1, and MCL1.

3.3. The Results of GO and KEGG Analysis

Based on the KEGG enrichment analysis, 81 signaling pathways (p ≤ 0.05) were ob-
tained, involving the pathway in cancer, HIF-1, PI3K-Akt, Prolactin, Relaxin, and Toll-like
receptor signaling pathway, etc. Subsequently, the top 25 pathways were visualized and
analyzed with advanced bubble plots (Figure 3d). In addition, GO bioprocess enrichment
analysis yielded 131 entries (p ≤ 0.05), involving protein phosphorylation, inflammatory
response, response to hypoxia, negative regulation of the apoptotic process, signal trans-
duction, etc. The top 25 entries were visualized and analyzed with advanced bubble plots
(Figure 3e).

3.4. Results of Screening Key Component

The results of the “components-targets-paths” network showed that TLR4’s degree
value ranking was relatively high (Figure 4). At the same time, in the enrichment analysis
of GO biological processes, the entries of TLR4 participating in the inflammatory response,
positive regulation of inflammatory response, and positive regulation of gene expression
were also relatively high. These data reflected that TLR4 may play a crucial role in the
treatment of cholestasis by RAIs. TLR4 is mainly located in the Toll-like receptor signaling
pathway. Based on the effect of the RAIs on this pathway (Figure 5), it can be inferred that
the RAIs may exert their hepatoprotective effect mainly through the TLR4/NF-κB path-
way. More importantly, NFKB1 ranked first in the “components-targets-paths” network.
This result provided further evidence that the RAIs protects against liver injury via the
TLR4/NF-κB pathway.

Therefore, TLR4 and NFKB1 were selected as receptors and the RAIs as ligands in
this study. Molecular docking data revealed a relatively higher binding ability of FTA with
TLR4 and NFKB1 (Table 4), suggesting that FTA was a key component in the treatment of
cholestasis by RAIs.

Table 4. Molecular docking results of four active components of FS in the treatment of cholestasis.

Gene
Symbol Protein PDB ID Resolution

Minimum Binding Free Energy (kcal/mol)

Forsythoside A Phillygenin Phillyrin
Pinoresinol
4-O-Beta-D-

Glucopyranoside

TLR4 Toll-like receptor 4 4G8A 2.40 Å −7.3 −6.5 −6.9 −6.8

NFKB1
Nuclear factor

NF-kappa-B p105
subunit

1SVC 2.60 Å −7.3 −6.5 −7.1 −7.3
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3.5. Network Pharmacology Study of Key Component FTA

Our results showed that FTA had a total of 35 targets for cholestasis treatment, among
which 33 proteins had interactions (Figure 6a). The constructed PPI network is shown in
Figure 6b. Among them, HSP90AA1, TLR4, MMP2, APP, and NFKB1 were the crucial
targets of FTA in the treatment of cholestasis. Based on KEGG enrichment analysis, 67 sig-
naling pathways (p≤ 0.05) were obtained, involving the HIF-1 signaling pathway, PI3K-Akt
signaling pathway, Toll-like receptor signaling pathway, relaxin signaling pathway, etc.
Subsequently, the top 20 pathways were visualized and analyzed with advanced bubble
plots (Figure 6c). GO bioprocess enrichment analysis yielded 85 entries (p ≤ 0.05), involv-
ing positive regulation of cell migration, positive regulation of polymerase II promoter
transcription, positive regulation of tumor necrosis factor production, positive regulation
of inflammatory response, and positive regulation of ERK1 and ERK2 cascades. The top
20 entries were visualized and analyzed with advanced bubble plots (Figure 6d). It can
be seen from these results that the network pharmacological results of FTA are similar to
the network pharmacological results of an RAI, further supporting that FTA may be a key
component in the treatment of cholestasis among the RAIs of FS.
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3.6. Molecular Docking Study of FTA

On the one hand, we have proved that FS could ameliorate carbon tetrachloride-
induced hepatic fibrosis in rats through the TRL4/NF-κB signaling [15]. On the other hand,
when cholestasis occurs, it causes infiltration of inflammatory cells, thus causing the liver
to suffer from inflammatory damage. Substantial evidence showed that inhibition of the
TLR4/MYD88/NF-κB inflammatory pathway played a crucial role in the prevention and
treatment of cholestasis [37–39]. In addition, MMP-2 has been proven to be highly expressed
in cholestasis [40–42], suggesting that MMP-2 also played an important role in cholestasis.
More importantly, by combining the outcomes of the PPI network, GO and KEGG analysis,
we speculated that FTA could ameliorate cholestasis by acting on important targets such as
TRL4, MYD88, NF-KB1, and MMP-2. Therefore, in this study, MMP2, TLR4, MYD88, and
NFKB1 were selected for molecular docking with FTA. Table 5 shows the molecular docking
results, and Figure 7 shows the conformation of ligands and receptors bounding. Referring
to the relevant literature, it can be considered that the binding of ligands and receptors is
better when the binding free energy is less than−5.0 kcal/mol [43]. Our outcomes revealed
that the binding free energy of FTA and receptors was less than −5.0 kcal/mol, indicating
that FTA may bind these receptors and regulate TLR4/Myd88/NF-κB signaling, thereby
improving liver damage caused by cholestasis.

Table 5. Molecular docking results of forsythoside A with MMP2, TLR4, MYD88, and IKBKB.

Gene Symbol Protein PDB ID Resolution Minimum Binding
Free Energy (kcal/mol)

MMP2 72 kDa type IV collagenase 1CK7 2.80 Å −8.7

TLR4 Toll-like receptor 4 4G8A 2.40 Å −7.3

MYD88 Myeloid differentiation primary response
protein MyD88 7BER 2.30 Å −7.4

NFKB1 Nuclear factor NF-kappa-B p105 subunit 1SVC 2.60 Å −7.3
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3.7. Validation of in Vivo Experiment
3.7.1. FTA Improved DDC-Induced Liver Injury and Fibrosis

Four weeks after treatment with DDC, normal mice’s livers showed no pathological
changes based on HE results. However, DDC induced the proliferation of connective
tissue around the portal area of liver tissue, accompanied by a large amount of neutrophil
infiltration, bile duct proliferation, pigment deposition, and hepatocyte necrosis (Figure 8a).
In addition, DDC induced obvious abnormal changes in liver function, manifested by a sig-
nificant increase in serum AST and ALT (Figure 8b,c). Fortunately, all the above abnormal
changes caused by DDC were reversed by FTA. Next, in order to evaluate DDC-induced
hepatic fibrosis in mice, a collagen deposition examination was performed using Masson
staining. Our data showed that DDC caused obvious collagen deposition. However, hep-
atic collagen deposition of mice was effectively prevented by FTA intervention (Figure 8d).
Subsequently, MMP-2 mRNA and protein levels were measured by RT-qPCR and WB,
respectively. The results revealed that DDC induced a high expression of MMP-2 mRNA
and protein (Figure 8e–g). This situation was significantly reversed through FTA interven-
tion. Finally, Western blot and immunohistochemical staining were used to detect α-SMA
expression. Similar to the above results, the high expression of α-SMA caused by DDC
was reversed by FTA intervention (Figure 8h–j). In conclusion, our data revealed that FTA
could effectively prevent DDC-induced liver injury and fibrosis.

Nutrients 2023, 15, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 8. FTA alleviated DDC-induced liver injury and fibrosis. (a) HE staining. Black arrow: neu-
trophil infiltration; Blue arrow: pigment deposition; Green arrow: duct proliferation. (b,c) Serum 
AST and ALT levels measured by biochemical kits. (d) Masson staining. (e,f) Protein expression and 
quantitative analysis of MMP-2. (g) Liver MMP-2 mRNA expression was detected by RT-qPCR. (h,i) 
Protein expression and quantitative analysis of α-SMA. (j) α-SMA was detected by immunohisto-
chemistry. ## p < 0.01 vs. Control group, * p < 0.05 vs. 0.1% DDC group, ** p < 0.01 vs. 0.1% DDC 
group. 

3.7.2. FTA Improved DDC-Induced Cholestatic Liver Injury by Blocking 
TLR4/MYD88/NF-κB Pathway 

To explore the inflammatory state of mice induced by DDC, firstly, the inflammatory 
state of the mouse system and liver was reflected by testing serum TNF-α, IL-6, and IL-1β 
levels and liver TNF-α, IL-6, and IL-1β mRNA expression. The data showed that DDC 
markedly increased serum TNF-α, IL-6, and IL-1β levels (Figure 9a–c). Meanwhile, TNF-
α, IL-6, and IL-1β mRNA of the liver were highly expressed after DDC feeding (Figure 
9d–f). More importantly, FTA intervention markedly decreased TNF-α, IL-6, and IL-1β 
expression in serum and liver. In addition, it has been reported that the F4/80 molecule 
was mainly expressed on macrophage surfaces and used as a marker of mature macro-
phages [44]. F4/80 was highly expressed in the body in the state of cholestasis [45]. In this 
research, F4/80 expression was determined by immunohistochemical staining and qPCR. 
Our data revealed that DDC could induce the high expression of F4/80. Conversely, FTA 
intervention could significantly inhibit the expression of F4/80 (Figure 9g–h). Next, in or-
der to further verify the molecular mechanism of FTA preventing mice from inflamma-
tion. We tested TRL4, MYD88, NF-κB p65, and p-NF-κB p65 proteins expression. The data 
showed that DDC significantly increased TRL4, MYD88, NF-κB p65, and p-NF-κB p65 
proteins (Figure 9j–o). This situation was reversed through FTA intervention. Finally, the 
p-NF-B p65 expression was detected by immunohistochemistry staining. Similar to the 
above outcomes, the high expression of p-NF-κB p65 caused by DDC was reversed by FTA 
intervention (Figure 9p). In conclusion, a cholestatic liver injury could be prevented by 

Figure 8. FTA alleviated DDC-induced liver injury and fibrosis. (a) HE staining. Black arrow:
neutrophil infiltration; Blue arrow: pigment deposition; Green arrow: duct proliferation. (b,c) Serum
AST and ALT levels measured by biochemical kits. (d) Masson staining. (e,f) Protein expression
and quantitative analysis of MMP-2. (g) Liver MMP-2 mRNA expression was detected by RT-
qPCR. (h,i) Protein expression and quantitative analysis of α-SMA. (j) α-SMA was detected by
immunohistochemistry. ## p < 0.01 vs. Control group, * p < 0.05 vs. 0.1% DDC group, ** p < 0.01 vs.
0.1% DDC group.
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3.7.2. FTA Improved DDC-Induced Cholestatic Liver Injury by Blocking
TLR4/MYD88/NF-κB Pathway

To explore the inflammatory state of mice induced by DDC, firstly, the inflammatory
state of the mouse system and liver was reflected by testing serum TNF-α, IL-6, and IL-1β
levels and liver TNF-α, IL-6, and IL-1β mRNA expression. The data showed that DDC
markedly increased serum TNF-α, IL-6, and IL-1β levels (Figure 9a–c). Meanwhile, TNF-α,
IL-6, and IL-1β mRNA of the liver were highly expressed after DDC feeding (Figure 9d–f).
More importantly, FTA intervention markedly decreased TNF-α, IL-6, and IL-1β expression
in serum and liver. In addition, it has been reported that the F4/80 molecule was mainly
expressed on macrophage surfaces and used as a marker of mature macrophages [44]. F4/80
was highly expressed in the body in the state of cholestasis [45]. In this research, F4/80
expression was determined by immunohistochemical staining and qPCR. Our data revealed
that DDC could induce the high expression of F4/80. Conversely, FTA intervention could
significantly inhibit the expression of F4/80 (Figure 9g–h). Next, in order to further verify
the molecular mechanism of FTA preventing mice from inflammation. We tested TRL4,
MYD88, NF-κB p65, and p-NF-κB p65 proteins expression. The data showed that DDC
significantly increased TRL4, MYD88, NF-κB p65, and p-NF-κB p65 proteins (Figure 9j–o).
This situation was reversed through FTA intervention. Finally, the p-NF-B p65 expression
was detected by immunohistochemistry staining. Similar to the above outcomes, the high
expression of p-NF-κB p65 caused by DDC was reversed by FTA intervention (Figure 9p). In
conclusion, a cholestatic liver injury could be prevented by markedly blocking inflammatory
factors expression and TRL4/MYD88/NF-B pathway activation with FTA intervention.
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tory factors and the TLR4/MYD88/NF-κB signaling pathway. (a–c) Serum TNF-α, IL-6, and IL-1β
levels measured by ELISA kits. (d–f) Liver TNF-α, IL-6, and IL-1β mRNAs expression detected by
RT-qPCR. (g) F4/80 detected by immunohistochemistry. (h) Quantitative analysis of F4/80. (i) Liver
F4/80 mRNA expression detected by RT-qPCR. (j–o) Proteins expression and quantitative analysis
of TLR4, MYD88, and ratio of p-NF-κB p65/NF-κB p65. (p) p-NF-κB p65 detected by immunohisto-
chemistry. # p < 0.05 vs. Control group, ## p < 0.01 vs. Control group, * p < 0.05 vs. 0.1% DDC group,
** p < 0.01 vs. 0.1% DDC group.
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4. Discussion

In this study, by using a network pharmacology approach and a molecular dock-
ing technique, we explored the roles of FS and its key components in the prevention
and treatment of cholestasis. First, the KEGG pathway enrichment analysis results sug-
gested that FS may have strong impacts on the HIF-1, PI3K-Akt, relaxin, toll-like receptor,
and other signaling pathways. Meanwhile, the network topology analysis results of the
“component-target-pathway” network showed that NF-κB was closely related to these
signaling pathways and the main active components of FS. In addition, we found that TLR4
played a central role in the PPI network and the “component-target-pathway” network.
More importantly, the TLR4/NF-κB pathway is widely involved in the HIF-1, PI3K-Akt,
and Toll-like receptor signaling pathways. These results suggested that the TLR4/NF-κB
pathway may play a central role in the prevention and treatment of cholestasis in FS. On
this basis, molecular docking outcomes further illustrated that the binding activity of the
key components in FTA and the TLR4/NF-κB pathway was stronger than that of other
components. All the results suggested that FTA, as a key component of FS, played an
important role in alleviating cholestatic liver injury.

TLRs, a family of transmembrane receptors, play a crucial role in the innate immune
system mainly because they can initiate innate immune responses by recognizing cell walls
or specific nucleic acids of microbial pathogens. Once the molecular patterns related to
pathogens and endogenous damage are recognized by TLRs, the signals are transmitted to
the adapter molecule MyD88 to trigger the classic inflammatory cascade reaction, leading
to excessive NF-κB activation [46]. This in turn leads to a series of cascade reactions
inducing inflammation (including cytokines, chemokines, and adhesion molecules) and
transcription of genes related to antimicrobial defense [47]. The liver is a crucial organ
involved in bile synthesis and metabolism. When cholestasis occurs, a large amount of
toxic bile acids will accumulate in the liver because the bile cannot be excreted from the
liver. Eventually, these toxic bile acids lead to hepatic inflammation, which may further
damage the liver. The entries for positive regulation of cell migration, tumor necrosis factor
production, inflammatory response, cellular response to lipopolysaccharide, and interferon
alpha production analyzed by GO bioprocess enrichment suggested that FTA may be more
specific for inflammatory conditions.

Molecular docking outcomes revealed that FTA affected the structural foundation of
TLR4 and NF-κB. While the Asn526 and Asn575 residues of TLR4 were mutated, TLR4
would eliminate the response to LPS and prevent cell surface expression [48]. FTA formed
hydrogen bonds with the two residues and combined nearby residues, which may have
similar effects. Variation in the Val61 residue of NF-κB can affect its binding activity to
DNA [49,50]. The hydrophobic force between FTA and Val61 and other forces with nearby
residues indicated that FTA may combine with the structural domain where NF-κB binds
to DNA, and then competitively inhibit the binding activity of NF-κB to DNA.

Next, we established a mouse model of cholestasis induced by DDC and conducted
in vivo validation experiments. The in vivo experimental results verified that FTA could
not only effectively reduce liver inflammation in mice (mainly manifested by decreased
mRNA expression of the liver inflammatory cytokines TNF-α, IL-1β, IL-6, and F4/80), but
also alleviate systemic inflammation (mainly manifested by decreased levels of the serum
inflammatory cytokines TNF–α, IL-1-β, and IL-6). More importantly, FTA intervention
could also block the conduction of the TLR4/MYD88/NF-κB pathway, thus effectively
preventing the liver from suffering from inflammatory damage.

In addition, cholestasis often accompanies the development of liver fibrosis, mainly
due to impaired or interrupted bile production resulting in intracellular retention of toxic
bile components, an excess of which will cause liver damage and fibrosis [51–53]. Liver
fibrosis is usually accompanied by hepatic stellate cell (HSC) activation and promotes a
phenotypic shift from a quiescent phenotype to an activated phenotype. The activated
HSCs participate in the formation of liver fibrosis and the reconstruction of intrahepatic
structures through the proliferation and secretion of extracellular matrix (ECM), while
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α-SMA is the sign of HSC activation [54,55]. Furthermore, there is evidence that MMP-2
plays a crucial role in modulating the synthesis and degradation of ECM [56,57]. The
results of this study proved that FTA treatment could improve the liver pathology, func-
tion, and collagen deposition of mice. At the same time, WB and immunohistochemistry
experiments confirmed that FTA could repress α-SMA protein expression, thus repressing
HSC activation. In addition, FTA can also repress the MMP-2 gene and protein expression,
thereby reducing the accumulation of ECM components. In a word, these results jointly
confirmed that FTA significantly ameliorated liver fibrosis caused by cholestasis.

Even though the TLR4/NF-κB pathway may be more important, network pharma-
cology results suggested that the role of other signaling pathways in the prevention and
treatment of CLD by FS was also worth investigating. For example, as reported, the modu-
lation of the PI3K-Akt signaling pathway has been shown to have a positive effect on the
treatment of cholestasis [58–62]. Our previous studies have demonstrated that FTA may ex-
ert hepatoprotective effects by regulating the apoptosis pathway mediated by the PI3K-Akt
signaling pathway [63]. Chronic liver injury caused by cholestasis may lead to anoxic areas
in the liver that may induce HIF-1α activation, which further regulates a variety of fibrotic
mediators, and stimulates the overproduction of collagen and liver fibrosis [64–66]. In the
cholestasis of pregnancy, prolactin and its receptors are involved in water-salt metabolism
and in turn, affect liver bile excretion [67–69]. Relaxin has natural anti-fibrosis activity in
many organs, which can weaken the fibrosis characteristics of activated HSCs and reverse
the formation of liver fibrosis [70–72]. Thereupon, the effects of FS on HIF-1, prolactin, and
relaxin, and the relationships between these effects and cholestasis need to be validated
and explored in more depth in the future.

5. Conclusions

We revealed the potential molecular mechanisms of FS and its key components to
prevent and treat cholestasis through network pharmacological methods and molecular
docking techniques. Meanwhile, in vivo experiments showed that the key ingredient FTA
could play an anti-inflammatory, hepatoprotective, and anti-fibrosis role by modulating the
TLR4/NF-κB pathway, repressing HSC activation, ECM accumulation, and inflammatory
factor release (Figure 10). All in all, these results could provide a scientific reference for
the development of natural plant resources as drugs or functional foods to prevent and
treat cholestasis.
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