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Abstract: Breast cancer is a significant public health problem globally and prevention strategies have
become of great interest as its incidence rises. Exploring the connection between dietary patterns
and the reduction of breast cancer risk is considered a promising approach. High levels of fiber,
phytochemicals, a good antioxidant profile, and a composition of advantageous fatty acids are
characteristics of healthy dietary programs such as the Mediterranean diet. This review summarized
and discussed the active compounds that are considered important in preventing breast cancer,
including dietary components from recent related reports. These include polyunsaturated fatty acids,
fiber, phytochemicals, and alcohol. Although the exact mechanism for preventing breast cancer using
these dietary factors is not well understood, the combination of all the elements in a healthy diet
plays a role in reducing breast cancer risk. Considering the elevated probability of breast cancer
relapse and mortality, it is crucial to investigate the correlation between a nutritious dietary pattern
and breast cancer, while identifying bioactive components that have the potential to mitigate the risk
of breast cancer incidence.

Keywords: breast cancer; diet; dietary pattern; Mediterranean diet; paleolithic diet; prevention;
western diet

1. Introduction

Breast cancer is a major global health issue, representing the most common type
of cancer and the leading cause of cancer deaths in women, with the highest number
of recorded cases of all cancers. In 2020, an estimated 2.26 million new cases of breast
cancer were reported worldwide [1]. An Australian study estimated that the prevalence of
metastatic breast cancer was 3 or 4 times that of breast cancer deaths [2]. Siegel et al. [3],
using data from the North American Association of Central Cancer Registries (NAACCR),
estimated that 300,590 new breast cancer cases would be diagnosed in the United States in
2023 and 43,700 deaths would occur.

Although the prevalence of breast cancer is high, the precise cause is not fully under-
stood. Researchers are still working to identify specific factors that contribute to breast
cancer development and to devise new treatments and prevention strategies. Breast cancer
is found to be associated with an array of genetic, demographic, environmental, reproduc-
tive, and lifestyle factors [4]. First, the majority of breast cancer patients are female; only
about 1 of 100 breast cancer patients are male [3,5,6]. Age and race/ethnicity are also known
risk factors. Breast cancer is found mainly in middle-aged and older women. The median
age of onset of breast cancer is 62, with a slightly lower age of onset observed among
Black women in comparison to White women [7]. Approximately 5%–10% of breast cancer
cases can be attributed to genetic factors, specifically mutations in BRCA1 and BRCA2 [8,9].
Breast cancer is correlated with various reproductive factors, such as nulliparity, early
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age at menarche, delayed age at first live birth, advanced age at menopause, extended
duration between menarche and initial pregnancy, multiple abortions, initial pregnancy
after 35 years of age, and minimal or absent breastfeeding [10,11]. Elevated risk of breast
cancer is associated with being overweight or obese, inadequate physical activity, tobacco
usage, and alcohol intake [12,13]. Long-term exposure to harmful environmental factors
may also increase the risk of breast cancer. Ionizing radiation has long been known as a
risk factor for breast cancer [14]. More recently, the deleterious effects of environmental
hormones (endocrine disruptors) have also gained attention. These substances include but
are not limited to bisphenol A, dichlorodiphenyltrichloroethane, polychlorinated biphenyls,
and phthalate plasticizers, which disrupt the hypothalamic-pituitary-gonadal axis and
potentially cause reproductive disorders or cancer [15–17].

This review presents a summary of research papers investigating the connections
between breast cancer and dietary patterns, as well as an overview of substances linked to
breast cancer prevention and an exploration of current ongoing research in this area.

2. Methods

The present study is a narrative review that aimed to investigate the relationship
between breast cancer and dietary patterns. To ensure the rigor of this review, a systematic
literature search was conducted in PubMed using the keywords “diet pattern” and “breast
cancer” to identify the prevalent dietary patterns across different regions of the world.
The inclusion criteria for the review were limited to peer-reviewed articles published in
English and published after 2017. Subsequently, a secondary search was conducted using
the keywords “breast cancer” and the specific ingredient in the identified diet patterns to
explore the relationship between breast cancer and individual dietary components. The
inclusion criteria for this secondary search were also limited to peer-reviewed articles
published in English, but not time-frame limited. The methodology employed in this
review aims to provide a comprehensive and reliable synthesis of the existing literature on
the relationship between dietary patterns and breast cancer.

3. Results
3.1. Western Dietary Pattern and Breast Cancer

The Western dietary pattern is characterized by a high intake of certain ingredients
shown to be detrimental to health, including refined grains, excess sugar, saturated and
trans fats, and high consumption of red and processed meats [18–21].

Refined grains are grains that have had the outer bran and germ removed during pro-
cessing. This process removes much of the fiber, vitamins, and minerals that are the sources
of nutrients found in whole grains, making refined grains less nutritious. Eating a diet
high in refined grains has been linked to several health issues. One of the main concerns is
that refined grains are often low in fiber, which can lead to constipation, and can make it
more difficult to maintain a healthy weight [22–24]. They are also quickly digested, leading
to a rapid increase in blood sugar and insulin levels [25,26]. This disruption in glucose
metabolism contributes to the development of type 2 diabetes and other cardiometabolic
disorders [27–29]. Although refined grains used in manufactured food products such as ce-
reals, breads, and crackers are often fortified with synthetic vitamins and minerals, they still
lack the naturally-occurring nutrients of whole grains and are consequently less nutritious.
In a study by Mey et al. [22], a comparison was made between the effects of a diet rich in
whole grains and a micronutrient-matched refined grain diet. The findings of this study
revealed that the consumption of whole grains leads to a favorable enhancement of protein
turnover and yields better health outcomes compared with the consumption of refined
grains. While the inverse association was limited to case–control studies, Xiao et al. [30]
reported a pooled relative risk of breast cancer to be 0.84 (95% confidence interval: 0.74–0.96,
p = 0.009) among individuals with a high intake of whole grains compared to those with
low intake. Mourouti et al. [31] also reported that the adjusted odds ratio of breast cancer
in females eating whole grains more than seven times/week was 0.49 (95% confidence
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interval, 0.29–0.82) compared with those who never ate whole grains or did so with less
frequency.

Excess added sugar is another prominent characteristic of the Western diet, which can
be found in a variety of sources such as sweetened beverages and sweetened cereals, along
with cookies, cakes, and candies. These added sugars contribute a significant amount of
calories to the diet, with beverages alone accounting for 47% of added sugar intake [32]. In
addition to non-communicable chronic diseases, it has been demonstrated that excessive
sugar consumption is linked to an increased risk of breast cancer [33–37].

The Western diet is characterized by an elevated consumption of detrimental fats,
comprising excessive quantities of trans and saturated fats, abundant levels of omega-6
polyunsaturated fatty acids (PUFA), and insufficient levels of omega-3 PUFA [38–40]. Of
particular concern is the deleterious effect of a distorted omega-6/omega-3 ratio of 20:1,
which is known to trigger metabolic complications, notably inflammatory processes [41–43].
Foods derived from animals, such as red meat, butter, cheese, and cream contain satu-
rated fats. Diets with high saturated fat are linked to increased levels of very low-density
lipoprotein [44,45], a higher risk of cardiovascular diseases [46], and non-alcoholic steato-
hepatitis [47]. A high-fat diet is shown to induce obesity, chronic inflammation, gut
microbiota dysbiosis, and cancer [48,49]. The fat content of meat and dairy products from
ruminant animals may contain up to 6% of naturally occurring trans fats. However, in the
case of manufactured products such as crackers, cookies, and fried foods, the presence of
industrial trans fats may account for up to 60% of the fat content due to the utilization
of partially hydrogenated vegetable oils [50]. Unlike the protective role of unsaturated
acid toward inflammation and endoplasmic reticulum stress, industrial trans fats stimulate
these two deleterious processes [51]. The European Prospective Investigation into Can-
cer and Nutrition (EPIC) undertook a study to assess the relationship between trans fat
consumption and the risk of breast cancer [52]. The findings indicated that an increased
intake of industrial trans fats was correlated with a heightened risk of breast cancer in the
multivariable-adjusted model (hazard ratio = 1.14, 95% CI 1.06–1.23; p = 0.001).

The typical Western diet is also characteristically low in consumption of fresh fruits and
vegetables [19,53]. These foods are rich in phytonutrients and fiber, which help to regulate
digestion/metabolism and blood sugar levels and reduce the risk of breast cancer. Fruits
and vegetables are also good sources of antioxidants, which help to reduce inflammation
and protect the body against cancer.

Overall, the Western dietary pattern may be high in calories and low in nutrients,
making it easy for individuals to consume more calories than the body needs, leading
to weight gain and increasing the risk of obesity. Being overweight or obese is a known
risk factor for breast cancer [54]. Inflammation is also stimulated by the Western diet
and is found to increase the risk of breast cancer [55]. Additionally, a case–control study
revealed that women eating a Western diet had a higher chance of developing breast cancer
(OR = 2.13, 95% CI = 1.09–4.15) [56].

3.2. Mediterranean Dietary Pattern and Breast Cancer

The conventional Mediterranean dietary pattern has attracted considerable interest
following observations dating back to the 1960s, which revealed that populations residing
in Greece and Italy had lower mortality rates associated with cardiovascular disease than
Northern European populations or the United States [57]. This divergence was ascribed
to variations in eating patterns, which prompted more research into the potential health
advantages of the Mediterranean diet.

The Mediterranean diet is distinguished by a high intake of fresh fruit, vegetables,
nuts, legumes, unrefined cereal grains, and olive oil, in addition to moderate consumption
of fish and dairy products [58]. It is characterized by a lower intake of red meats than the
Western diet, and the moderate utilization of ethanol, primarily in the form of red wine
during primary meals. This dietary pattern has been linked to numerous potential health
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benefits, such as a decreased risk of cardiovascular disease and potentially certain types of
cancer [58–60].

Breast cancer incidence has decreased as a result of the Mediterranean diet’s pre-
ventative effect against the disease’s development [61–63]. According to a recent case–
control study, adherence to a Mediterranean diet that is abundant in fruits, vegetables,
fish, and olive oil may lower the likelihood of breast cancer in pre- and post-menopausal
women [64]. This favorable outcome is ascribed to the regular consumption of food-sourced
fiber, flavonoids, and antioxidants, which are hypothesized to reduce estrogen levels, ele-
vate sex hormone levels, neutralize free radicals, protect DNA from harm, and diminish
oxidative stress [64]. Details of dietary components are shown below.

3.2.1. Fruits, Vegetables, and Plant-Based Foods

The plant-based foods in the Mediterranean diet are typically fresh and minimally pro-
cessed [65]. Evidence from several studies suggests that consuming fruits and vegetables,
particularly cruciferous vegetables, may reduce the risk of breast cancer [66–68]. Numerous
naturally occurring substances have been identified as potential cancer chemopreventive
agents, displaying properties such as anti-inflammatory, antiproliferative, anti-metastatic,
anti-angiogenic, and apoptotic effects [69–72]. Furthermore, the consumption of certain
naturally derived dietary products at high levels may decrease the likelihood of tumor
recurrence and enhance survival in breast cancer patients [73]. Many nutritional natural
products found in the Mediterranean area, including pomegranate [74,75], edible mush-
rooms [76,77], marine algae [78,79], curcumin [80,81], whole-grain cereals [82,83], citrus
fruit [84,85], grapes [86,87], and cucumber [88,89], have been shown in experimental studies
to disrupt the development and progression of cancer via the application of anticancer or
antineoplastic activity.

Plant-based foods contain phytochemicals shown to have health benefits that may
include reducing the risk of breast cancer [90–93]. These plant-based chemicals can be
found in a broad range of plant-based foods, including vegetables, fruits, grains, and
nuts. Phytochemicals include a wide range of specific chemicals, including carotenoids,
flavonoids, terpenes, stanols, phytoestrogens, and phenolic acids. Carotenoids found
in red, orange, and yellow fruits, dark leafy vegetables, and seaweed are believed to
have strong cancer-fighting properties [94]. Flavonoids found in chocolate, fruits, fungi,
tea, vegetables, and wine may help prevent cancer cell growth [95]. Terpenes, a class of
organic compounds found in citrus fruits, may exhibit anticancer properties by slowing
the growth of cancer cells and have antiviral effects [95]. Stanols, a class of compounds
found in grains, legumes, and nuts have anti-cancer abilities by affecting cell metabolism,
the immune system, and cell membrane organization [96]. Phytoestrogens, including
those present in berries, garlic, grapes, plums, soybeans, and tofu, have been associated
with breast cancer prevention through the inhibition of local estrogen synthesis and the
induction of epigenetic modifications [97]. Phenolic acids, which are present in cereals,
coffee, fruits, herbs, legumes, nuts, oilseeds (peanuts, olives), and vegetables are known
to have anti-inflammatory effects and may help prevent cellular damage resulting from
oxidative reactions [98].

Numerous epidemiological studies have suggested that consuming fruits and veg-
etables, particularly cruciferous vegetables, can reduce the risk of various types of cancer,
including breast cancer [66–68]. Several natural compounds have been identified as poten-
tial cancer chemopreventive agents due to their ability to prevent, reverse, slow, or suppress
carcinogenic activities. These compounds have been shown to exhibit antiangiogenic, anti-
inflammatory, antimetastatic, antiproliferative, and apoptotic properties in various types of
cancer, such as breast cancer [66,69–72,99]. Furthermore, a high intake of certain natural
dietary products may reduce the risk of breast cancer recurrence and improve survival [73].
Extensive experimental studies have indicated that many nutritional natural products,
including citrus fruit, curcumin, grapes, edible macrofungi, marine macro- and micro-algae,
mango, pomegranate, teas, spices, and whole grain cereals as mentioned earlier, are capa-
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ble of interfering with the development and progression of cancer by exerting anticancer
activity [100].

A dietary pattern rich in fruits, soy, and vegetables was associated with a reduced
risk of postmenopausal breast cancer in Chinese women, particularly in those with ER-
subtypes [101]. This Mediterranean-style diet, observed in an Asian population, is defined
by the consumption of plentiful plant-based foods, which is a fundamental component of
the traditional Mediterranean diet known for its potential anticancer, anti-inflammatory,
and antioxidant effects [102].

3.2.2. Carotenoids

Carotenoids are natural pigments that provide an orange–red color to many fruits
and vegetables, such as carrots, cantaloupe, melons, papaya, pumpkin, squash, sweet
potatoes, tangerines, and tomatoes. Several studies suggest that carotenoids are bioactive
compounds found in various edible plants that have the potential to prevent cancer.

Carotenoids can be categorized into two principal classes, namely, carotenes and
xanthophylls [103]. Xanthophylls cannot be converted into vitamin A precursors and
are mainly used in photosynthesis [103,104]. Carotenes, on the other hand, are all vita-
min A precursors and are shown to display antioxidant activity. Over 95% of the total
carotenoids in human blood are composed of six carotenes, namely, α-carotene, β-carotene,
β-cryptoxanthin, lycopene, lutein, and zeaxanthin [105]. Peraita-Costa et al. [106] con-
ducted a review of 28 epidemiological studies to summarize the association between breast
cancer and carotenoids. The authors observed an inverse association between carotenoid
intake, particularly β-carotene, and the risk of breast cancer. Other studies have reported
that circulating carotenoids, including α-carotene, β-carotene, β-cryptoxanthin, lutein,
lycopene, and zeaxanthin, are inversely correlated with the risk of breast cancer [106–108].
Thus, these carotenes not only provide remarkable antioxidant properties [109] but also
inhibit tumor growth and invasiveness and induce apoptosis [110].

Fucoxanthin is a prominent carotenoid pigment, which accounts for over 10% of
the total estimated carotenoid production in nature, particularly in algae. [111–113]. It is
known for its anti-cancer, anti-inflammatory, and anti-oxidant properties [114]. Seaweed
is a traditional source of fucoxanthin in East Asian countries such as Japan, where it has
been used medicinally for centuries. Studies have suggested that fucoxanthin exhibits
anti-inflammatory effects in cancer prevention and treatment [111–114]. Moreover, emerg-
ing research suggests that compounds such as astaxanthin, curcumin, hydroxytyrosol,
oleuropein, resveratrol, and spermidine may provide protection by acting as antioxidants
and promoting the induction of mitophagy mediators [115].

3.2.3. Polyphenols

Polyphenols are a class of bioactive compounds present in various plant-based foods
that are categorized into flavonoids, polyphenolic amides, phenolic acids, and other
polyphenols. Flavonoids constitute approximately 60% of the polyphenol content in nature,
while phenolic acids account for about 30% [116–118]. Flavonoids found in legumes, fruits,
vegetables, green tea, and red wine have antioxidant and anti-inflammatory properties.
They are further subdivided into six classes: anthocyanins, flavanols, flavonols, flavones,
flavanones, and isoflavones [119].

Anthocyanins are colored pigments abundant in the most colorful fruits and vegeta-
bles, including berries (such as raspberries, blueberries, elderberries, black currants, and
strawberries) as well as purple carrots, red cabbage, eggplants, red grapes, black plums,
black cherries, and blood oranges [120–122]. Due to the large presence of these foods in
the diet, anthocyanins are the most prominent dietary flavonoid in the Mediterranean diet.
Anthocyanins possess antioxidant and antimicrobial properties and have been found to
inhibit the abnormally activated ERK1/2 and Akt/mTOR signaling pathways in breast
cancer cells [123]. They also promote the motility and invasion of cancer cells. In addition,
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a separate study demonstrated that anthocyanins effectively suppress the activation of Akt
and PLCγ-1 and inhibit cell motility and invasion [58].

Flavonols are the most ubiquitous flavonoids found in fruits and leafy vegetables.
Quercetin and kaempferol are the most prominent flavonols, and other abundant food
sources include onions, curly kale, leeks, and broccoli. Quercetin induces G2/M arrest
and apoptosis, and inhibits cell proliferation in breast cancer T47D cells [124]. A different
investigation revealed that the compounds quercetin and thymoquinone were able to
upregulate P53 genes and DNA damage markers, resulting in significant cytotoxicity in
breast cancer cells [125]. Those investigators also found that the expression of DNA repair
genes was suppressed in several studied cancer cell lines.

Flavones consist chiefly of the glycosides of luteolin and apigenin. They are rich in
tomatoes, eggplant, olives, thyme, peppermint, dill weed, oregano, parsley, and rosemary.
Luteolin was found to suppress the expression of key transcription factors associated with
stemness, as well as the expression of ABCG2, aldehyde dehydrogenase 1, CD44, Cripto-
1, heme oxygenase 1, and Nrf2, all of which play crucial roles in sustaining the cancer
stem-cell phenotype of breast cancer [126]. In another study, it was demonstrated in both
in-vitro and xenograft animal models that the combination of luteolin and indole-3-carbinol
had a synergistic effect in restricting ERα-positive breast cancer by inhibiting the estrogen
receptor alpha and the cyclin-dependent kinase 4/6 pathway [127].

Romanos-Nanclares et al. [128] investigated the association between breast cancer and
phenolic acid-derived compounds in a Mediterranean cohort and noticed that 40% of the
total amount of polyphenols consumed by the study population was made up of phenolic
acids, with a median daily consumption of 260 mg (interquartile range: 70 to 376 mg).
They also reported a decreased incidence of breast cancer was seen in postmenopausal
women who consumed more hydroxycinnamic acids, notably the chlorogenic acids present
in coffee, fruits, and vegetables.

Chlorogenic acid, which can be found in apples and coffee, showed the ability to inhibit
oxidative damage, mitochondrial dysfunction, and epithelial–mesenchymal transition
and invasion in breast cancer [129–131]. These inhibitory properties of chlorogenic acid
were achieved by inducing apoptosis through Bax, Bcl-2, caspase-3, and p53 signaling
pathways [132,133].

Although these phytochemicals have demonstrated significant effects in cancer pre-
vention, they are not the only players in the scenario. Several other compounds play a role
in prevention strategies.

3.2.4. Digestive Fiber

A class of polysaccharides called digestible fiber is present in the intermediate lamella
and cell walls of terrestrial plants. Consuming fruits and vegetables provide fiber. Short-
chain fatty acids (SCFAs), which are tiny organic carboxylic acids with 1 to 6 carbon atoms,
are created during their fermentation by bacteria in the colon. The most prevalent types
produced in the human gut are acetate, propionate, and butyrate, in an approximated
3:1:1 ratio [134]. Other SCFAs produced in smaller amounts include formate, isobutyrate,
2-methylbutanoate, valerate, and isovalerate. The relative amounts of different SCFAs vary
depending on the type of fiber consumed, the individual’s gut microbiota, and their overall
health status.

To create energy sources for survival, anaerobic microorganisms ferment digestive
fiber to generate SCFAs. However, the released SCFAs can also be used as fuel for colonic
mucosal epithelial cells and help to maintain physiological functions in various host tissues
as they are transported through the bloodstream [135]. The systemic availability of SCFAs
varies. A healthy human study utilizing stable isotopes found that acetate, propionate,
and butyrate had systemic availabilities of 36%, 9%, and 2%, respectively [136], indicating
that these SCFAs enter the bloodstream in varying amounts and affect different parts of
the body. Except for serving as fuel, SCFAs were shown to modulate cell function through
binding to G-protein coupled receptors and modulating histone deacetylation [137].
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Newer research suggests that the effectiveness of cancer-treating chemotherapy, im-
munotherapy, and radiotherapy may be affected by SCFAs [138]. The immunomodulatory
properties of SCFA may be the key factor in altering the amount of immune-suppressing
Tregs and tumor-killing CD4+ and CD8+ T cells [139–141]. Furthermore, histone deacety-
lase inhibitors (HDACs), including butyrate, have been associated with regulating cell cycle
and proliferation and tested as anti-cancer agents as the other HDACs inhibitors [142–144].
Various treatment modalities have distinct effects on the gut microbiota, which may affect
the interaction with SCFAs in diverse ways.

Pectin derived from fruits and olives is a widely studied digestive fiber. In addi-
tion to being fermented into SCFAs, pectin also lowers levels of low-density lipoprotein
(LDL) cholesterol [145,146]. Pectin may also help prevent the reabsorption of bile salt
micelles, although the exact mechanism is not fully understood [146,147]. Studies have
found that pectin and its derivatives may suppress cancer cell growth and stimulate apop-
tosis [148,149]. When combined with other plant compounds, pectin has demonstrated the
ability to decrease the invasive potential of human breast cancer cells. Additionally, pectin
may prevent the development of breast cancer in mice by decreasing angiogenesis. [148,150].
Pectin may also inhibit the synthesis of urokinase-type plasminogen activator and the uroki-
nase receptor, which are involved in the migration and invasion of cancer cells [148,151].
Pectin has also been shown to activate macrophages and affect signaling pathways involved
in inflammation [152]. In addition, pectin and, in particular, apple pectin has been shown
to inhibit the growth of breast cancer cells and reduce the expression of a lectin called Gal-3,
which is involved in cell adhesion, cell cycles, and cell death [148,153]. Pectin has also been
shown to cause oxidative and strand-breaking DNA damage in breast cancer cells, slowing
their proliferation [148,154,155].

3.2.5. Olive Oil

The primary source of calories and fat in the traditional Mediterranean diet is olive
oil, limited to extra virgin olive oil. [156]. Olive oil’s major fatty acid, oleic acid, an n-9
monounsaturated fatty acid (MUFA), accounts for 55–83% of the oil’s total fatty acid con-
centration [157]. Other substances in olive oil include saturated fatty acid, polyunsaturated
fatty acids (PUFA), vitamins, and polyphenols.

The most prevalent fatty acid in healthy persons is oleic acid. It is present in plasma,
adipocytes, and cell membranes [158]. It has been demonstrated that eating a diet high in
oleic acid helps those with inflammatory conditions by activating numerous immunological-
competent cell pathways [159]. The effects of oleic acid in breast cancer are still controversial.
It had been shown that oleic acid had inhibitory effects on low metastatic cancer cells
while selectively promoting cell proliferation and migration in highly metastatic cancer
cells [160]. In a coculture system with triple-negative breast cancer cells, lipid peroxidation
and ferroptosis, a non-apoptosis cell death, was inhibited by oleic acid secreted from
adipocytes [161]. Oleic acid also increases cancer cell apoptosis, intracellular caspase 3
activity, and the development of reactive oxygen species [162].

Polyunsaturated fatty acids (PUFAs) are fatty acids with long carbon chains that
contain more than one double bond in their backbone. They are categorized into n-3 PUFAs
and n-6 PUFAs, based on the location of the first double bond in the carbon chain [163].
In contrast to saturated or trans fatty acids, PUFAs have been regarded as advantageous
for human health due to their anti-inflammatory properties [164]. In olive oil, n-6 PUFA
linoleic acid contributes to about 3.5–21% of anti-atherosclerotic effects, and n-3 PUFA
linolenic acid accounts for another 0–1% [165,166]. The risk of breast cancer was found to
be inversely related to dietary n-3 polyunsaturated fatty acids [167]. Additionally, a higher
ratio of n-3/n-6 PUFAs was linked to a lower risk of breast cancer [168,169]. The Western
diet generally is rich in n-6 PUFA. Prospective studies have suggested that the consumption
of n-6 PUFAs is not significantly linked to the risk of cancer, whereas the levels of n-6
PUFAs in blood have an inverse association with cancer risk. Western populations, with a
greater intake of n-6 PUFAs, specifically linoleic acid (LA, 18:2n-6), and lower n-3 PUFA
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intake compared to Asian populations, have a higher incidence of breast cancer [170]. Due
to the high intake of n-6 PUFA in the Western diet, Asian-American women have a 60%
higher chance of developing breast cancer than white women [171,172].

Although the benefits of olive oil are still not clear, besides n-3 PUFA and n-9 MUFA,
olive oil contains an abundance of polyphenols. The phenolic composition of extra-virgin
olive oil (EVOO) is highly intricate and comprises several phenolic alcohols, such as hy-
droxytyrosol and tyrosol, as well as secoiridoids, oleacein, and oleocanthal esters [173–175].
Oleacein is known to be the principal antioxidant polyphenolic compound present in
EVOO and has been attributed, at least in part, to its strong anti-inflammatory activ-
ity [176,177]. EVOO is a rich source of bioactive compounds, mainly monounsaturated
fatty acids, triterpenes, and polyphenols, including phenolic alcohols (e.g., hydroxytyrosol),
flavonoids (e.g., luteolin), lignans (e.g., pinoresinol), and secoiridoids (e.g., oleuropein and
oleocanthal) [178].

3.2.6. Fish

Breast cancer appears to be one of the cancer types where fish consumption appears
to have a favorable impact [179]. According to a study done in the Makkah area of Saudi
Arabia, those who eat a Mediterranean-style diet can reduce their risk of breast cancer by
78.9% to 92.8% by eating up to five servings of fish and shellfish per week [180]. However,
Engeset et al. [181] found no proof that a person’s overall fish consumption and risk of
breast cancer were inversely related. But their research demonstrated that PUFAs inhibited
the epidermal growth factor receptor, which in turn decreased the growth of breast cancer.

Omega-3 fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA), which had been demonstrated to lower the risk of breast cancer, were known
to be found in fish [182,183]. Monk et al. [184] reported that partial substitution of corn
oil for fish oil in a high-fat diet increased the expression of a pro-apoptotic marker, Bad,
and decreased anti-apoptotic Bcl-xL mediator expression. In addition, the mRNA levels of
inflammatory mediators, such as IL-6, leptin, and TNFα were reduced. On the contrary,
IL-10 expression was increased in subjects in a low-fat group who consumed a fish oil
substitute. Another study found that n-3 PUFAs from marine sources, such as EPA and
DHA, are 8 times more effective than those from plants in preventing breast cancer [185].
Thus, fish consumption that provides marine-derived n-3 PUFAs appears to reduce the risk
of breast cancer.

3.2.7. Alcohol Consumption

The risk of breast cancer is one of the major health concerns related to alcohol con-
sumption. Studies have found that alcohol is a significant contributor to breast cancer.
Xu et al. [186] conducted a study on adolescent mice and demonstrated that alcohol expo-
sure had a significant impact on the latency period for tumor development. Specifically,
the latency period was shortened from 18.5 to 22 weeks in the control group to 9.5 and
8.4 weeks in the experimental groups. The study also revealed that alcohol exposure initi-
ated during adolescence led to notable changes in mammary epithelial cell proliferation,
ductal growth, and terminal end bud formation in the mammary glands.

Although alcohol consumption is a risk factor for breast cancer, a J-shaped curve
is often used to describe the relationship between alcohol consumption and health out-
come [187,188]. Drinking alcohol within a moderate amount shows beneficial effects, but
excessive drinking leads to increased all-cause mortality.

Traditionally, a small amount of wine from grapes was consumed during the meal
in the Mediterranean diet. Many bioactive components discussed above were detected
in the wine [189]. Another study also reported that flavonols, catechins and epicatechin,
proanthocyanidins, anthocyanins, various phenolic acids, and stilbene resveratrol are
found in wine [189–191]. These compounds are reported to have antioxidant and anti-
inflammatory properties, which may help to reduce the risk of certain diseases [192]. The
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question remains about whether or not other hard liquids have similar protective effects as
moderate wine consumption.

Numerous phenolic chemical groups, primarily flavones, flavonols, phenolic acids,
and tannins, have been found in beer [193,194]. One of the phenolic compounds, tyrosol,
can sometimes be as rich as in red wine [195]. Spirits, distilled alcoholic drinks, lose about
60% of their phenolic compounds after brewing [194]. However, storage in wood barrels
provides additional phenolic compounds during maturation [196,197]. When comparing
the health effects of wine, beer, and vodka, Krnic et al. [198] found that only red wine
offered a defense against oxygen-induced oxidative stress.

4. Dietary Pattern and Histological and Molecular Classification of Breast Cancer

Breast cancer is a heterogeneous disease with various histological subtypes, including
apocrine carcinoma, medullary carcinoma, metaplastic carcinoma, mucinous carcinoma,
classic lobular carcinoma, cribriform carcinoma, neuroendocrine carcinoma, pleomorphic
lobular carcinoma, tubular carcinoma, and the most common type, invasive ductal car-
cinoma (IDC). Breast cancer has been divided into four molecular subgroups that are
well-established in clinical practice as a result of the identification of intrinsic subtypes
using global gene expression profiles. These subgroups include HER2+, Luminal A, Lumi-
nal B, and Triple Negative. The evidence for the association between certain histological
or intrinsic breast cancer and the dietary pattern is accumulating. Foroozani et al. [199]
reported that Western dietary patterns had a higher risk of invasive ductal and lobular
breast carcinomas. Dianatinasab et al. [56] studied the association between the risk of IDC
and invasive lobular carcinoma (ILC) of the breast and Western diet or Mediterranean
diet. They also reported that the Western diet had an increased risk of IDC and ILC. On
the contrary, the Mediterranean diet was associated with a reduced risk of IDC and ILC.
Castelló et al. [200] studied the association between Western and Mediterranean dietary
patterns and breast cancer and reached a similar conclusion. In addition, they observed a
significant positive association only between estrogen/progesterone (ER/PR)+ and HER2+
breast cancer and Western dietary patterns. A significant difference was not observed
between other dietary patterns and breast cancer subtypes.

5. Conclusions

A healthy diet pattern contains various ingredients as shown in Figure 1. It is widely
accepted that a diet rich in phytochemicals and fiber can have a positive impact on overall
health. These bioactive compounds, found in fruits, vegetables, whole grains, and legumes,
have been shown to play a role in modulating various functions within the body, and in
some cases, may act in conjunction with the gut microbiome to produce health benefits.
While no single food can cure or prevent disease, incorporating a dietary pattern that
emphasizes these nutrient-dense foods, such as in the Mediterranean diet, is recommended
for optimal health. However, a balanced diet and lifestyle, including regular physical
activity and limited alcohol consumption, are also key factors in maintaining health.
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