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Abstract: The prevalence of Non-alcoholic fatty liver disease (NAFLD) and associated complications,
such as hepatocellular carcinoma (HCC), is growing worldwide, due to the epidemics of metabolic
risk factors, such as obesity and type II diabetes. Among other factors, an aberrant lipid metabolism
represents a crucial step in the pathogenesis of NAFLD and the development of HCC in this popula-
tion. In this review, we summarize the evidence supporting the application of translational lipidomics
in NAFLD patients and NAFLD associated HCC in clinical practice.
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1. Introduction and Aims

Hepatocellular carcinoma (HCC) is one of the most common cancers and the third
leading cause of cancer-related mortality in the world [1,2]. Chronic viral hepatitis B
(HBV) and C (HCV), alcohol consumption, and features of metabolic syndrome (i.e., type-2
diabetes mellitus, obesity) are well known risk factors for HCC [3]. Non-alcoholic fatty
liver disease (NAFLD) represents a leading cause for liver transplantation and chronic
liver disease worldwide, with an overall prevalence of 30% [4]. NAFLD is characterized by
more than 5% fat accumulation [5], which results from the impaired lipid metabolism and
excessive accumulation of free fatty acids (FFAs) in the hepatic tissue [6]. Fat accumulation
and lipotoxicity represent a significant factor that promotes NAFLD progression to fibrosis
and up to cirrhosis and HCC (Figure 1) [7]. According to recent data, the estimated
incidence rate of NAFLD-associated HCC has been increasing over the past 20 years [8]. In
the United States only, the incidence of HCC caused by NAFLD increased by 9% per year
between 2004 and 2009 [9]. More recently, it has been estimated that the incidence rate of
HCC attributed to NAFLD among all the causes of HCC has increased from 9% in 2015 to
34% in 2020 [10,11].

The alteration of lipid metabolism represents a crucial step in the development and
progression of NAFLD, and it has been recognized as one of the hallmarks of oncogenesis
in this population [12]. It is also known that the uncontrolled lipid metabolism pro-
vides energy for the rapid HCC proliferation and progression to metastatic disease [12,13].
Among other techniques, advancements in mass spectrometry techniques have introduced
lipidomics to translational medicine and research in recent years [14,15]. Lipidomics refers
to the discipline studying the lipid profile in cells, biologic fluids, and tissue [16]. Among
other metabolites, lipids are not only the most abundant in body circulation, but they also
exert several biological functions, such as storing energy, signaling, and acting as structural
components of cell membranes [15]. In recent years, the importance of the imbalance of
lipid metabolism in diseases has drawn much more attention, especially with regards
to NAFLD progression and development of HCC. In this review, we discuss potential
applications of lipidomics in clinical practice.
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Figure 1. NAFLD development and progression. NAFLD develops from a healthy liver when lipid
accumulates in the context of insulin resistance. NASH represents the most aggressive component
of the spectrum and is associated with hepatocellular injury and hepatic inflammation. In NAFLD
patients, fibrosis may develop in a variable degree up to cirrhosis, while HCC can develop in both
cirrhotic and non-cirrhotic patients. (HCC: hepatocellular carcinoma; NAFLD: non-alcoholic fatty
liver disease; NASH: non-alcoholic Steatohepatitis).

Introduction to Hepatic Lipids

Hepatic lipids cluster in different categories, each one with a specific distribution,
expression, and function, i.e., proliferation, survival, apoptosis, and drug resistance of
cells [17–19]. The main lipid categories are: fatty acyls, glycerolipids, glycerophospholipids,
sphingolipids, saccharolipids and polyketides, sterol lipids, and prenol lipids [20,21]. Over-
all, lipids typically have three components: one glycerol backbone, two fatty acid tails, and
one phosphate group [22]. According to the Lipid Maps, the position of the double bond
within the molecule determines both the structure and the function of the lipids [23,24].
Interestingly, variations in the structure of the lipids translate into different biological
functions [20]. For example, the difference of one double bond between docosahexaenoic
acid (22:6n3, DHA) and docosapentaenoic acid (22:5n6, DPA) results in a different func-
tion of these two lipids [24]. Docosahexaenoic acid (22:6n3, DHA) is an activator for the
peroxisome proliferator-activated receptor-α (PPARα) in the liver, while the function of do-
cosapentaenoic acid (22:5n6, DPA) in the liver is unclear [25]. In addition to the number of
double bonds, the previous study on lipidomics also reveals that the position of the double
bond in the lipid can also determine the level of the lipid in cancerous tissue vs. adjacent
tissue [17]. Phosphocholines, phosphatidylethanolamines, and phosphatidylinositols with
2, 4, 6 double-bond show a downregulation in HCC tissues, whereas phosphocholines,
phosphatidylethanolamines, and phosphatidylinositols with 0, 1, 3 double-bond show an
upregulation in adjacent tissues [17].

Among others, transcriptional factors may also influence the expression and abun-
dance of hepatic lipids. Specifically, several transcriptional factors have been identified
as modulators of adipogenesis as well as of de novo fatty acid synthesis and lipogene-
sis. Some transcriptional factors are able to regulate the expression of intrahepatic lipids,
including sterol regulatory-element binding proteins (SREBPs) and carnitine palmitoyl-
transferases (CPTs) [26–28]. The sub-species sterol regulatory-element binding proteins 1
(SREBP1) promotes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN), which
activate the de novo lipogenesis [29]. Moreover, SREBP-1 shifts glutamine and glucose
metabolism towards the fatty acids synthesis, a mechanism that supplies sufficient energy
and nutrition for the rapid proliferation of cells [29,30]. Another up-stream regulator, sterol
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regulatory-element binding proteins 2 (SREBP2), is able to stimulate cholesterol production
and facilitate lipid accumulation in normal hepatocytes [31–33].

Carnitine palmitoyltransferases 1 (CPT1) also represents another important modulator
of the hepatic lipid metabolism. CPT1, which belongs to the carnitine shuttle system, is a
key rate-limiting enzyme of fatty acid oxidation in lipid metabolism, whose dysregulation
can affect energy homeostasis [28]. CPT1 transfers long-chain CoA fatty acids into the
mitochondria for β-oxidation, as the inner membrane of the mitochondria is impermeable
to fatty acids [28]. The CPT1 enzymes can be divided into three isoforms: CPT1a, CPT1b,
and CPT1c [34,35]. CPT1a is mainly liver and pancreas-specific [36]. Moreover, CPT1a
can be up-regulated by a high-fat diet to promote beta oxidation [37,38], likely via the
lipid-activated peroxisome proliferator-activated receptor-α (PPARα) [39].

To conclude, there is evidence suggesting that the composition and regulation of
hepatic lipids may impact their biological functions in the energy homeostasis of the liver.

2. Lipidomics in NAFLD
2.1. Lipid Metabolism and Lipotoxicity in the Pathogenesis of NAFLD

The accumulation of hepatic triglycerides represents the crucial step for the devel-
opment of the disease. Overall, a reduced fatty acid β-oxidation and very-low-density
lipoprotein (VLDL) export are associated with the massive accumulation of fatty acids and
triglycerides in the liver [40]. Subsequently, the mismatch between β-oxidation and the ox-
idative phosphorylation leads to oxidative stress, which, in turn, contributes to lipotoxicity,
cellular damage, and fibrosis progression [41,42]. Moreover, the resulting production of
reactive oxygen species (ROS) induces mitochondrial dysfunction, which, in turn, exacer-
bates ROS production and, ultimately, lipotoxicity [43,44]. An aberrant mitochondrial lipid
metabolism contributes to the dysfunction of the electron transport chain (ETC), and it also
induces the expression of Sirtuin (SIRT) 3 and the damage of mitochondrial DNA [43].

Lipotoxicity represents a crucial step in the pathogenesis of NAFLD and the progres-
sion to NASH, as it may lead to the accumulation of toxic lipids in the hepatocyte. It is
also the hallmark of the diagnosis of NASH [45]. Lipotoxicity translates into organellar
dysfunction, abnormal activation of signaling intracellular signaling pathways, chronic
inflammation, and, ultimately, apoptosis [46,47]. The underlying mechanism involves
several cellular components, such as endoplasmic reticulum (ER) stress, lysosomal per-
meabilization, and mitochondrial dysfunction. Specifically, histology from patients with
NASH showed defective electron transport chain (ETC) function together with specific
morphological alterations, such as enlarged mitochondria, rounded cristae, and alterations
of the mitochondrial DNA [48]. An incomplete β-oxidation of fatty acids, such as palmitic
acid, has been shown to impair mitochondrial function, as it may disrupt the ETC directly
via the activation of phosphatases [45,49]. Such changes may lead to the accumulation of
ROS and other toxic metabolites, such as superoxide, palmitic acid, and ceramides [50–52].
An increased amount of superoxide may, in turn, generate further oxidative damage and
sustain both lipotoxicity and cellular membrane damage [45]. In addition to mitochondrial
dysfunction, lipotoxicity may cause ER stress. For instance, a previous lipidomic study
carried out on liver tissue reported that the high level of diglycerides, ceramides, phospho-
lipids, and saturated fatty acid can directly induce the ER stress by the activation of the
Unfolded protein Response (UPR) and the expression of pro-apoptotic molecules, such as
B-cell lymphoma 2 (BLC2) [50,52]. Furthermore, apoptosis may be induced directly by sat-
urated free fatty acids via both intrinsic and extrinsic pathways. The ER and the oxidative
stress caused by accumulated FFAs stimulate the activation of C/EBP Homologous Protein
(CHOP) and the cJUN NH2-terminal kinase (JNK) pathway. The activation of CHOP and
JNK is then followed by the upregulation of more pro-apoptotic factors and the release of
cytochrome C and caspase 9 [45]. Lipotoxicity has also been associated with greater intra-
hepatic inflammation. For instance, toxic lipid metabolites, such as palmitate, can induce
the production of pro-inflammatory factors by activated macrophages via TNF-related
apoptotic factors [53]. Furthermore, it has been demonstrated that hepatocytes, under the
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stimulation of saturated fatty acid, may release pro-inflammatory cytokines (i.e., CXC-
chemokine ligand 10 (CXCL10)), which further sustain inflammatory response and cellular
damage. Finally, in patients with NASH, lipotoxicity has been associated with impaired
autophagy in the form of defective phagosome formation and lysosomal acidification [54].
Specifically, a mixture of palmitic and oleic acid has been shown to inhibit autophagic flux
and reduce lipophagy, contributing to the vicious circle of lipotoxicity-induced damage [55].

After being exposed to toxic lipids, injured hepatocytes release a large group of
extracellular vesicles, such as exosomes, microparticles, and apoptotic bodies. These
byproducts may not only perpetuate inflammation but may also elicit fibrosis by activating
non-parenchymal cells [56]. Moreover, apoptotic bodies will be included by stellate cells
and then active them into HSC activation, with the production of α–smooth muscle actin
and collagen [57]. Some recent evidence also suggests that toxic fatty acids may be able
to stimulate Kupffer cells and HSCs directly. For instance, palmitic acids induce toll-like
receptor (TLR) 2 and TLR4 in macrophages and activate a pro-inflammatory response in
KCs [58]. Palmitate can also elicit actin production from activated HSCs [58].

In terms of specific lipid species, phosphocholine is one of the main components
of cell membranes and of lipid droplets and plays a crucial role in maintaining physio-
logical cellular activities. Imbalances in the phosphocholine expression may result into
hepatocyte dysfunction and have been associated with NAFLD development and progres-
sion [6,43,44,59]. Interestingly, there has been evidence suggesting that even changes in the
structure of lipids may translate into different biological effects. For instance, an odd-chain
phosphatidylcholine was reported to have a negative correlation with the progression of
NAFLD [60]. In addition to the structure of lipids, the level of diversity lipids shows a close
correlation with the progression from the normal liver to NAFLD. Specifically, a lower level
of ceramides, a lipid species that modulates cell proliferation, and a lower level of polyun-
saturated triglycerides were both previously associated with an impaired metabolism of the
hepatocytes [17,61,62]. Conversely, supplementation with ceramides and polyunsaturated
triglycerides was shown to have a hepato-protective effect via promoting the apoptosis of
aberrant hepatocytes [63]. There has also been recent evidence suggesting that the regula-
tion of the expression of lipids may influence the development and progression of NAFLD.
For instance, PPARα knock-out mice, when starved, rapidly develop fatty liver disease, as
the inhibition of CPT1a accumulates fatty acids in hepatocytes [64,65]. Moreover, SREBPs
have been identified as possible oncogenes in the pathogenesis of hepatocarcinoma [26,66].

Finally, bile acids (BAs) have also been involved in the pathogenesis and progression
of NAFLD. BAs are synthesized from cholesterol in hepatic tissue; thus BAs are charac-
terized by amphipathic molecules. This unique character leads BAs to solubilize the lipid
bilayer [67], which can result in the disruption of cellular structure. Therefore, the high
level of intracellular BAs can increase the high risk of apoptosis and promote the infiltration
of inflammatory factors [68]. Furthermore, BAs can directly interact with the gut microbiota
in the intestinal compartment. Growing evidence suggests that BAs have a significant
influence on the progression of NAFLD and NASH via affecting the gut microbiota to regu-
late the hepatic lipids [68,69]. However, the precise mechanism of the apoptosis signaling
pathway induced by the BAs’ metabolism in cellular activities is unclear.

To conclude, there is evidence suggesting that both composition and regulation of
hepatic lipids may impact the development and progression of NAFLD.

2.2. Translational Lipidomics for Diagnosing NAFLD

Overall, hundreds of lipids species in serum and hepatic tissue, triglycerides, diglyc-
erides, sphingolipids and cholesteryl esters have shown a significant difference of species
in patients with NAFLD compared to healthy controls [60,70–76]. The main results from
lipidomic studies published in the field have been summarized in Tables 1 and 2. A previ-
ous study using liquid chromatography mass spectrometry (LC-MS) suggested that serum
levels of phosphatidylethanolamines (PE), phosphocholine (PC), and sphingomyelin (SM)
were able to distinguish the patients with NAFLD from healthy controls [71]. Peng et al.
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identified that saturated triglycerides were increased whereas polyunsaturated triglyc-
erides were reduced in NAFLD compared to healthy controls [60]. Consistent with Peng’s
results, Gorden et al. also found that up to 15 triglycerides and 7 cholesteryl esters were
up-regulated in the hepatic tissue of NAFLD patients (Table 2) [70]. Across different
studies, nine lipids were consistently increased in patients with NAFLD: phosphocholine
(PI)(40:5), triglyceride (TG) (52:4), diacylglycerol (DG) (34:2), and diacylglycerol(DG)(36:2)
(Table 1) [60,70–72,75]. Along with quantitative changes of circulatory lipids, there seems
to be a difference in the distribution of lipids in the liver of NAFLD patients, too. Three-
dimensional studies have shown that low-density lipoprotein and very low-density lipopro-
teins are more abundant in the steatotic regions, whereas phosphatidylinositol and arachi-
donic acid prevail in the fat-sparing areas of the same livers [77].

From a clinical perspective, the lipid profile appears to be different in patients with
NAFLD depending on the presence of different risk factors and genetic predisposition.
Of note, in a study using LC-MS, diacylglycerol, triglyceride, and sphingomyelin were
found to be significantly increased in the sera of obese patients with NAFLD compared
to lean NAFLD, suggesting a direct influence of visceral adiposity [78]. Moreover, in
a study using direct flow injection electrospray ionization tandem mass spectrometry
(ESI–MS/MS), saturated ceramide-enriched liver lipidome was observed in those with
NASH in the context of metabolic syndrome and insulin resistance, but not in those with
“genetic-driven”, PNPLA3-associated NASH, i.e., those carrying I148M variant of the
gene [79]. Furthermore, another recent study demonstrated that carriers of the HSD17B13
variant have increased phospholipids in their liver but have minimal fibrosis [80]. Inter-
estingly, in this group, the presence of phospholipids was independent of hepatic insulin
sensitivity. Ethnicity may also influence the lipid profile in these patients, as Hispanics were
found to have higher FFA and lysophospholipids than Caucasians, indicating ethnic-related
lipidomic signatures [81].

Table 1. Results from published studies on circulatory lipids in patients with NAFLD.

References
Plasma Serum

Increased Reduced Increased Reduced

Peng et al., (2018) and
Gorden et al., (2015) [60,70] PI(40:5) [60,70]

Peng et al., (2018) and
Perakakis et al., (2019) [60,71]

PC(40:8) [60,71]
LPE(16:0) [60,71]

Gorden et al., (2015) and
Perakakis et al., (2019) [70,71]

TG(52:4) [70,71]
DG(34:2) [70,71]
DG(36:2) [70,71]
DG(36:3) [70,71]

PC(36:4) [70]
PI(36:1) [70]

PC(36:4) [71]
PI(36:1) [71]

Gorden et al., (2015) and
Mayo et al., (2018) [70,72]

TG(50:2) [70]
TG(52:1) [70]
TG(54:5) [70]

TG(50:2) [72]
TG(52:1) [72]
TG(54:5) [72]

Gorden et al., (2015) and
Loomba et al., (2015) [70,75]

20-COOH AA [75]
5-HETE [75]

15-HETE [75]
11,12 diHETrE [70,75]
14,15 diHETrE [70,75]

19,20 DiHDPA [75]

20-COOH AA [70]
5-HETE [70]

15-HETE [70]
12,13 diHOME [70,75]

9,20DiHDPA [70]

PC: phosphocholine; PI: phosphatidylinositol; LPE: lysophosphatidylethanolamine; TG: triglyceride; DG: di-
acylglycerol; 20-COOH AA: 20-carboxy arachidonic acid; 5-HETE: 5-hydroxyeicosatetraenoic acid; diHETrE:
dihydroxyeicosatrienoic; DiHDPA: dihydroxydocosapentaenoic.
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Table 2. Results from published studies on intrahepatic lipids in patients with NAFLD.

References
Tissue

Increased Reduced

Peng et al., (2018) and
Gorden et al., (2015) [60,70]

TG(48:1) [60,70]
TG(48:2) [60,70]
TG(48:3) [60,70]
TG(49:1) [60,70]
TG(50:1) [60,70]
TG(50:4) [60,70]
TG(50:3) [60,70]
TG(51:2) [60,70]
TG(48:0) [60,70]
TG(50:0) [60,70]
TG(50:2) [60,70]
TG(51:1) [60,70]
TG(52:1) [60,70]
TG(52:2) [60,70]
TG(52:4) [60,70]
CE(16:0) [60,70]

CE(16:1) [60]
CE(18:1) [60,70]
CE(18:2) [60,70]
CE(18:3) [60,70]
CE(20:3) [60,70]
CE(20:4) [60,70]
CE(22:5) [60,70]

CE(22:6) [60]
LPC(18:0) [60]

CE(16:1) [70]
CE(22:6) [70]

LPC(18:0) [70]

Peng et al., (2018) and
Gorden et al., (2011) [60,73]

DG(30:0) [60,73]
DG(32:1) [60,73]
DG(32:2) [60,73]
DG(38:5) [60,73]

PE(38:4) [60]

PE(38:4) [73]

Peng et al., (2018) and
Chiappini et al., (2017) [60,76] Cer(42:1) [60]

Gorden et al., (2011) and
Gorden et al., (2015) [70,73]

DG(34:3) [73] DG(34:3) [70]
DG(36:0) [73] DG(36:0) [70]
DG(36:5) [73] DG(36:5) [70]
DG(38:0) [73] DG(38:0) [70]

Gorden et al., (2015) and
Chiappini et al., (2017) [70,76] PC(38:4) [70,76]

Gorden et al., (2011) and
Chiappini et al., (2017) [73,76]

PC(36:1) [73] PC(34:1) [73,76]
PI(38:5) [73] PC(36:1) [76]

PS(36:1) [73,76] PI(38:5) [76]

Peng et al., (2018) and
Gorden et al., (2015) and

Gorden et al., (2011) [60,70,73]

DG(32:0) [60,70,73]
DG(34:0) [60,70,73]
DG(34:1) [60,70,73]
DG(34:2) [60,70,73]
DG(38:6) [60,70,73]
DG(36:1) [60,70,73]
DG(36:2) [60,70,73]
DG(36:3) [60,70,73]
DG(36:4) [60,70,73]

Gorden et al., (2011) and
Gorden et al., (2015) and

Chiappini et al., (2017) [70,73,76]
PS(34:1) [70,73,76] PC(36:4) [70,73,76]

PC: phosphocholine; PI: phosphatidylinositol; PS: phosphatidylserine; PE: phosphatidylethanolamine; Cer:
ceramide; TG: triglyceride; DG: diacylglycerol; CE: cholesteryl ester; LPC: lysophosphatidylcholine.

Overall, these results suggest that a distinct lipid profile reflects different combinations
of metabolic risk factors and the clinical phenotype of the patient, suggesting the role of
lipidomics in precision medicine.



Nutrients 2023, 15, 1992 7 of 13

2.3. Translational Lipidomics for Staging NAFLD

Despite being the gold standard for the diagnosis and staging of NAFLD, liver biopsies
carry several risks, such as cost, bleeding risk, and pain for the patient [71,82]. For this
reason, the research on biomarkers for NAFLD has been flourishing over the past few
years. Interestingly, it has been demonstrated that alterations in the liver tissue lipidome
reflect the lipid profile measurement in the plasma, opening the field for the use of a
lipid profile as a biomarker for the histological features of NASH [83]. A combination
of circulating lipids may improve the diagnosis and risk-stratification in patients with
NAFLD and may identify those with NASH accurately [71,72]. In a group of NAFLD
patients, a score combining serum lipids, assessed by nanoparticle-tracking techniques, and
genetic variants was able to predict fat fraction, as measured by MRI-PDFF [84]. Moreover,
in a cohort of patients with biopsy-proven NASH, phosphatidylcholine levels, assessed
by LC-MS, were strongly associated with severity of ballooning [85]. In a similar study,
phosphocholine (14:0/18:2) and phosphatidic acid (18:2/24:4) were positively correlated
with NAS score, whereas phosphocholine (18:0/0:0) was correlated positively with the
fibrosis stage [86]. Lipidomics may also be a useful tool to predict disease progression.
Using the same lipidomic technique, our group has previously demonstrated that a score
combining metabolic profile and lipoproteins was able to identify fast fibrosis progressors
and performed better than noninvasive markers [87].

From a clinician’s perspective, cardiovascular events are the main cause of morbidity
and mortality in patients with NAFLD [88]. Nevertheless, identifying those at higher risk
for cardiovascular events in this population remains a challenge [89]. Interestingly, ectopic
fat deposits, such as myocardial and epicardial fat, show a specific lipid composition, which
is different from the hepatic one [90]. Moreover, a higher abundance of diacylglycerol and
ceramide (Cer) in the ectopic fat deposits, measured by LC-MS, seems to be associated with
an overall stronger lipotoxicity effect [91]. Overall, these results suggest that lipidomics
may be employed to identify those at risk of MACE in this population.

Finally, lipidomic approaches may also provide more insight into metabolic changes
with different treatments in patients with NAFLD. A 6-month treatment with polyunsatu-
rated fatty acids was able to change the lipid profile of patients with NASH, resulting in
an underlying lower lipogenesis, endoplasmic reticulum stress, and mitochondrial dys-
function [92]. Similarly, in patients who underwent weight loss, there was a significant
decrease in circulating lysophospholipids [93]. More studies are required to evaluate how
the changes in lipidomic profile may be translated into clinical events.

3. Lipidomics in NAFLD-Related HCC
3.1. Lipid Alterations in the Pathogenesis of NAFLD-Associated HCC

Lipids play a crucial role in cancer cellular activities as they are a significant part of
cell membranes, signaling molecules, and pools of metabolic energy [94]. As such, the
lipidomics have been regarded as a potential direction for elucidating pathogenesis and
for discovering new biomarkers in patients with HCC. Specifically, the reprogramming of
the lipid metabolism comes as an essential requirement in the rapidly proliferating cells,
through the Warburg effect and the activation of the de novo fatty acid synthesis [95,96].
Briefly, the Warburg effect is a well-known reprogramming of the lipid metabolism in order
to supply energy for the cancer cells in the form of increased glycolysis and oxidative
phosphorylation [97]. Under physiological conditions, glycolysis supplies energy for
nucleotide and amino acid synthesis by producing Nicotinamide adenine dinucleotide
phosphate (NADPH). Under the Warburg effect, an enhanced glycolysis produces higher
concentration of NADPH, which is used for the synthesis of both nucleotides and lipids for
the cellular membrane [98]. Therefore, the high glycolytic rate fulfils the energy demand for
the production of nucleotides and amino acids for the highly-proliferating HCC cells [98,99].
In addition to the Warburg effect, de novo fatty acid synthesis is also an important marker
of lipid reprogramming in the development of HCC. Compared to normal hepatocytes, the
HCC cells favor de novo fatty acid synthesis over the exogenous fatty acid sources [100].
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A recent study demonstrated that ceramides were down-regulated, whereas cholesteryl
ester were upregulated in the hepatic tissue of patients with NAFLD-related HCC com-
pared to those with NAFLD without HCC [62]. Interestingly, Oskouian et al. have shown
that ceramide is able to induce apoptosis in cancer cells via the suppression of their cellu-
lar metabolism [19]. Specifically, the signaling pathway of apoptosis can be inhibited by
consuming ceramide or complex glycosphingolipids (GSL) [101].

3.2. Translational Lipidomics in the Management of Patients with NAFLD-Associated HCC

NAFLD is a growing cause of HCC worldwide, with almost one third of the diagnosis
of HCC made in the absence of cirrhosis [102]. With many cases of HCC being diagnosed
at a more advanced stage, there is an unmet need for biomarkers for an earlier diagnosis in
this population.

Comparing the lipidome from patients with NAFLD-related HCC versus NAFLD
and healthy controls may provide useful insight into improving HCC prediction in these
patients. Lipidomic profile carried out by Lu et al. in 257 patients (including 113 NAFLD
patients and 144 NAFLD-HCC patients) was able to distinguish NAFLD from NAFLD-
HCC patients [103]. A subsequent lipidomic study using LC-MS, conducted by Lewinska
et al., described a distinct lipidomic profile in patients with NAFLD-HCC compared to
those with alcohol and viral associated HCC [104].

Recent mass spectrometry studies have also suggested that with the HCC advanc-
ing, there is a progressive increase in triglyceride concentration and a decrease in the
polyunsaturated triglyceride concentration [17]. Interestingly, the progressive depletion in
polyunsaturated fatty acids has been explained by an upregulation of fatty acid transporters
in NAFLD-HCC tumors [104]. Moreover, two very long chain fatty acids, lignoceric and ner-
vonic acid, were not detected in patients with HCC compared to those with NAFLD [105].
Of note, lignoceric and nervonic acids are strictly associated with liver homeostasis and
may have a role as mediators in limiting the intrahepatic inflammation in NAFLD [105].
Interestingly, a combination of biochemical features and serum lipids was able to predict
the presence of HCC with 97% accuracy [104]. In addition, Lin et al. also showed that
a decrease in palmitic acyl-based glycerophospholipids was associated with metastatic
HCC [106]. However, more studies are required to explore the use of applied lipidomics
as predictors of metastatic disease. Finally, regarding the down-regulation of ceramide
with the progression of NAFLD to HCC [107], a vinca alkaloid drug, Vinblastine, has been
reported to increase the level of ceramide in hepatic tissue and to inhibit progression to
HCC [108]. Therefore, focusing on ceramide or ceramide-related genes might be the next
target for the therapy of NAFLD-HCC. Despite these encouraging observations, future
work will need to focus on the role of lipidomics as predictors of responses to treatment in
patients with HCC.

4. Conclusions

Increasing evidence supports the application of lipidomic techniques to precision
medicine when assessing patients with NAFLD and NAFLD-associated HCC. Nevertheless,
more studies are required to evaluate the applicability of these techniques to clinical practice.

Author Contributions: J.H., writing—original draft. G.S., writing—review and editing. B.H.M.,
writing—review and editing. D.W., writing-review and editing. R.S., writing—review and editing.
P.M., writing—review and editing. R.F., conceptualisation, supervision, writing—review and editing.
All authors have read and agreed to the published version of the manuscript.

Funding: The Division of Digestive Diseases receives financial support from the National Institute of
Health Research (NIHR) Imperial Biomedical Research Centre (BRC).

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.



Nutrients 2023, 15, 1992 9 of 13

References
1. El–Serag, H.B.; Rudolph, K.L. Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis. Gastroenterology 2007, 132,

2557–2576. [CrossRef] [PubMed]
2. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA. Cancer J. Clin. 2022, 72, 7–33. [CrossRef] [PubMed]
3. Cohen, J.C.; Horton, J.D.; Hobbs, H.H. Human fatty liver disease: Old questions and new insights. Science 2011, 332, 1519–1523.

[CrossRef]
4. Kim, J.-H.; Jung, D.Y.; Nagappan, A.; Jung, M.H. Histone H3K9 demethylase JMJD2B induces hepatic steatosis through

upregulation of PPARγ2. Sci. Rep. 2018, 8, 13734. [CrossRef]
5. Papatheodoridi, M.; Cholongitas, E. Diagnosis of non-alcoholic fatty liver disease (NAFLD): Current concepts. Curr. Pharm. Des.

2018, 24, 4574–4586. [CrossRef] [PubMed]
6. Roehlen, N.; Crouchet, E.; Baumert, T.F. Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cells 2020, 9, 875.

[CrossRef]
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