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Abstract: Background: Dietary (poly)phenol consumption is inversely associated with cardiovascular
disease (CVD) risk in epidemiological studies, but little is known about the role of the gut microbiome
in this relationship. Methods: In 200 healthy females, aged 62.0 ± 10.0 years, from the TwinsUK
cohort, 114 individual (poly)phenol metabolites were measured from spot urine using ultra-high-
performance liquid chromatography–mass spectrometry. The associations between metabolites, the
gut microbiome (alpha diversity and genera), and cardiovascular scores were investigated using
linear mixed models adjusting age, BMI, fibre, energy intake, family relatedness, and multiple testing
(FDR < 0.1). Results: Significant associations were found between phenolic acid metabolites, CVD
risk, and the gut microbiome. A total of 35 phenolic acid metabolites were associated with the
Firmicutes phylum, while 5 metabolites were associated with alpha diversity (FDR-adjusted p < 0.05).
Negative associations were observed between the atherosclerotic CVD (ASCVD) risk score and five
phenolic acid metabolites, two tyrosol metabolites, and daidzein with stdBeta (95% (CI)) ranging
from −0.05 (−0.09, −0.01) for 3-(2,4-dihydroxyphenyl)propanoic acid to −0.04 (−0.08, −0.003) for
2-hydroxycinnamic acid (FDR-adjusted p < 0.1). The genus 5-7N15 in the Bacteroidetes phylum was
positively associated with the same metabolites, including 3-(3,5-dihydroxyphenyl)propanoic acid,
3-(2,4-dihydroxyphenyl)propanoic acid, 3-(3,4-dihydroxyphenyl)propanoic acid), 3-hydroxypheny-
lethanol-4-sulfate, and 4-hydroxyphenylethanol-3-sulfate)(stdBeta (95% CI): 0.23 (0.09, 0.36) to
0.28 (0.15, 0.42), FDR-adjusted p < 0.05), and negatively associated with the ASCVD score (std-
Beta (95% CI): −0.05 (−0.09, −0.01), FDR-adjusted p = 0.02). Mediation analysis showed that genus
5-7N15 mediated 23.8% of the total effect of 3-(3,4-dihydroxyphenyl)propanoic acid on the ASCVD
score. Conclusions: Coffee, tea, red wine, and several vegetables and fruits, especially berries, are the
most abundant food sources of phenolic acids that have the strongest associations with CVD risk.
We found that the gut microbiome, particularly the genus 5-7N15, partially mediates the negative
association between urinary (poly)phenols and cardiovascular risk, supporting a key role of the gut
microbiome in the health benefits of dietary (poly)phenols.

Keywords: urinary metabolites; gut microbiome alpha diversity; genus; cardiovascular risk score

1. Introduction

(Poly)phenols are a large and broad group of plant secondary metabolites widely
abundant in our diet [1]. Based on the number of carbon rings and other structural
characteristics, (poly)phenols can be classified into several categories, including flavonoids,
phenolic acids, stilbenes, lignans, ellagitannins, and other (poly)phenols. They exist broadly
in the plant kingdom and are present in almost all plant-based foods and beverages,
especially tea, coffee, red wine, fruits, and vegetables [2]. Growing evidence suggests
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that (poly)phenols play a role in reducing the risk of multiple chronic diseases such as
cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) [3].

Although the mechanisms of action of (poly)phenols in the cardiovascular system are
not fully understood, (poly)phenols have been shown to modulate the nitric oxide (NO)
pathway to maintain homeostasis in the vascular system [4]. In addition, the inhibition of
platelet aggregation, reduction of inflammation, limitation of LDL-C (low-density lipopro-
teins) oxidation, and improvement of the lipid profile might also contribute to the positive
effects of (poly)phenols on cardiometabolic health. Observational and intervention studies
have found evidence that (poly)phenols are associated with a decrease in CVD mortality [5],
an increase in flow-mediated dilation (FMD), and a reduction in blood pressure (BP) [6].

The absorption, distribution, metabolism, and excretion (ADME) of (poly)phenols
have been extensively studied during the last decade [7]. The majority of (poly)phenols
are not absorbed in the small intestine but travel to the colon, where they are metabolized
by the gut microbiota into simpler and easily absorbed low molecular weight phenolic
compounds [7,8]. The effects of (poly)phenol exposure vary among individuals, which can
be partially explained by the fact that their absorption partly relies on the metabolism by
the gut microbiota [9]. In this bi-directional relationship between (poly)phenols and gut
microbiota, the (poly)phenol-induced effects on human health may also be mediated by
the antibacterial properties of (poly)phenols [10,11]. (Poly)phenols have been shown to
promote the abundance of good bacteria, a prebiotic effect, and can inhibit the growth of
certain bacteria, thus affecting the overall composition of the gut microbiota [8].

Research has shown that the high concentration of (poly)phenols inhibits detrimen-
tal species growth, for instance, Enteropathogens Staphylococcus aureus and Salmonella ty-
phimurium have been reported to have a high sensitivity to fruit-derived (poly)phenols [12].
Interventional studies have shown that the consumption of (poly)phenol-rich foods modu-
lates the composition of an individual’s beneficial bacterial community, such as increasing
the abundance of Bifidobacterium, Lactobacillus, Bacteroides, and Anaerostipes with the con-
sumption of red wine [13,14], berries [15–17], or cocoa [18]. Cohort studies have also found
an association between gut microbial alpha diversity and red wine consumption, with
20% of the reverse association between body mass index (BMI) and red wine consumption
mediated by the effect of red wine consumption on gut microbiota alpha diversity [19]. The
composition and diversity of the gut microbiota are strongly correlated with host health and
metabolic homeostasis [20]. The beneficial effect of (poly)phenols on host health, therefore,
might be triggered by the bi-directional relationship with gut microbiota, including the
(poly)phenol metabolising capacity of gut microbes and the impact of (poly)phenols on gut
microbiota composition and diversity.

Here we assess whether gut microbial diversity and abundance partially mediates the
effect of habitual consumption of dietary (poly)phenols, measured by a validated UHPLC-
MS method in urine samples and food frequency questionnaires (FFQs) in 100 female pairs
of twins from the TwinsUK cohort.

2. Methods
2.1. Study Population

This cross-sectional study includes 200 healthy female twins aged 62.0 ± 10.0 (monozy-
gotic twin pairs (MZ) = 45, dizygotic twin pairs (DZ) = 55) from the TwinsUK cohort. This
is a national research of voluntary female twins without specific screening criteria to inves-
tigate the genetics and heritability of diseases with higher prevalence rate in women [21].
Participants completed spot urine and faecal sample collection, cardiovascular measure-
ment, and FFQ data collection. Informed written consent was provided by all twins. The
ethical approval for this study was given by the NHS Research Ethics Committee at the
Department of Twin Research and Genetic Epidemiology, King’s College London (the
Healthy Ageing Twin Study (H.A.T.S) 07/H0802/84) and the NRES Committee London-
Westminster (Flora Twin Study reference 12/LO/0227).
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2.2. Analysis of (Poly)phenol Metabolites in Urine Using UHPLC-MS

The 200 spot urine samples were processed and analysed following a validated
method using micro-elution solid phase extraction coupled with ultra-high-performance
liquid chromatography–triple quadrupole mass spectrometry (UHPLC-Q-q-Q MS) and
114 (poly)phenol metabolites were identified and quantified by authentic standards [21].
Briefly, the urine samples were diluted with HPLC water Sigma-Aldrich, Steinheim, Ger-
many) to reach 5-fold dilution before they were acidified with 4% phosphoric acid acidified
(85% HPLC grade, Yorlab, Fluka, York, UK) in the equivalent volume. Acidified samples
(600 µL) were loaded onto the Oasis 96-well reversed-phase HLB µ-SPE plate (Waters,
Eschborn, Germany) and washed with HPLC water and 0.2% acetic acid (200 µL each)
(glacial HPLC grade, Thermo Fisher Scientific, Loughborough, UK)) before being eluted
with 90 µL of methanol (HPLC grade, Sigma-Aldrich, Steinheim, Germany) containing
0.1% formic acid and 10 nM ammonium formate (HPLC grade, Sigma-Aldrich, Steinheim,
Germany). A SHIMADZU 8060 UHPLC-Q-q-Q MS was used to analyse the urine samples
for (poly)phenol metabolites (Shimadzu, Kyoto, Japan). An aliquot of 5 µL of sample was
injected through a 2.1 × 50 mm, 1.8 µm Raptor Biphenyl Column paired with a 5 × 2.1 mm,
2.7 m guard column (Restek, Bellefonte, PA, USA). With the mobile phases made up of
water (phase A) and acetonitrile (phase B), both of which were acidified with 0.1% formic
acid, the reverse-phase chromatography was carried out at a flow rate of 0.5 mL/min. The
detailed parameters of MS and UPLC followed the published method [21]. A pooled urine
sample was made and loaded onto two wells of the µ-SPE plate, of which one was fortified
with a mix of target analytes. The pooled and fortified pooled samples were applied as
quality controls and helped to calculate the recovery rate. The LabSolutions software
(SHIMADZU, Kyoto, Japan) was used for raw data analysis and calculation. The urinary
creatinine levels were measured by Affinity Biomarker Labs (London, UK) using the Jaffe
method and the concentrations of the metabolites (nM) were adjusted by the creatinine
levels (mg/L) into mmol/g creatinine.

2.3. Dietary (Poly)phenol Intake Assessment via FFQs

Participants completed the validated European Prospective Investigation into Diet
and Cancer (EPIC) Norfolk FFQ [22] (available n = 198). The online open access Phenol-
Explorer database [23], USDA database, and several published papers [24–46] were used to
establish a home database in order to estimate the (poly)phenol intake from each food item
listed in the FFQ. Data from the normal phase high performance liquid chromatography
(HPLC) methods, chromatography and chromatography after hydrolysis, were selected.
(Poly)phenol content data of compounds with sugar moiety were transformed into the
corresponding amount of aglycones to be summarized with data from other sources. The
procyanidin data analysed by normal phase HPLC were applied first, and the data from
chromatography were applied when no data from the normal phase HPLC method were
available. As for cooked foods, if only the raw data food source was available, the processed
yield factor from Phenol-Explorer database multiplied by the unprocessed raw food content
was applied to determine the (poly)phenol content of cooked processed foods. If no yield
factor was available, a factor of a similar food item or similar processing method of the
same item was applied instead. The calculation of each (poly)phenol content (mg/d)
was calculated by the food intake (g/d) multiplied by the corresponding (poly)phenol
intake from the home database (mg/100 g) and divided by 100. Total and subclasses
of (poly)phenols, followed by the classification of Phenol-Explorer, were calculated by
summing up all compounds within the group.

2.4. Gut Microbiome Analysis

Faecal samples from volunteers were analysed using 16s rRNA sequencing [3]. Faecal
samples were transported to Cornell University on dry ice for DNA amplification after be-
ing taken to a clinical appointment or posted in sealed ice packs at −80 ◦C. Illumina MiSeq
platform was used for the sequence of amplicons. Operational taxonomic units (OTUs)
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were obtained from the 16s rRNA gene sequencing as described [47]. Alpha diversities
were quantified as observed OTU numbers and Shannon diversity after standardized with
mean as 0 and SD as 1.

2.5. Measurements of Cardiovascular Risk Scores

The ASCVD risk score was used to estimate the CVD risk of the participants aged
40–79, with the algorithms including sex, ethnicity, age, smoking status, TC, BP, and
history of diabetes calculated by the online ASCVD risk estimator (http://tools.acc.org/
ASCVD-Risk-Estimator-Plus/ (accessed on 15 February 2023)). The score is categorized
into four levels: low risk; low, borderline risk, intermediate risk, and high risk (<5%;
5–7.4%; 7.5–19.9%, and ≥20%) [48]. This score estimates the risk of developing hard
ASCVD (coronary heart disease (CHD) death, nonfatal myocardial infarction, fatal or
nonfatal stroke) in the following ten years [49].

The HeartScore was also used to estimate the 10-year risk of fatal and nonfatal cardio-
vascular disease events, with the algorithms including sex, age, SBP, TC, HDL, and smoking
status calculated by the online HeartScore estimator (https://www.heartscore.org/en_GB/
(accessed on 15 February 2023)). Before calculation, participants are required to choose
from the four European risk regions, which are based on age- and sex-standardized CVD
mortality rates, from which the United Kingdom of Great Britain is categorized into the
low-risk European region. A risk prediction algorithm known as the Systematic COronary
Risk Evaluation (SCORE) model is used in this score. To date, SCORE2 (an updated pre-
diction model) [50] and SCORE2-OP (SCORE2-Older Persons) [51] projects are the latest,
updated versions of the SCORE model. SCORE2 and SCORE2-OP aim to estimate 10-year
fatal and nonfatal CVD risk in individuals in Europe without previous CVD or diabetes
aged 40 to 69 years (SCORE2) and aged over 70 years (SCORE2-OP) [50,51].

2.6. Assessment of Covariates

The analysis was adjusted for the following covariates: family relatedness, age, body
mass index (BMI kg/m2), daily energy (kcal/day), and fibre intake (g/day). Information on
family relatedness and age were collected from the self-report lifestyle questionnaire [52].
The weight and height of the participants were measured to calculate BMI (weight in
kilogram/height meter2) following the harmonized protocols conducted by trained nurses
at the clinical visits [52]. Daily energy (kcal/d) and fibre intake (g/d) were derived from
the FFQ with the FFQ EPIC and Nutrition Tool for Analysis (FETA) software.

2.7. Statistical Analysis

Statistical analysis was implemented using R version 3.6.2 [53]. Data distribution was
explored graphically and normalized by log transformation for the required parameters in
the statistical analysis. The association between dietary (poly)phenol (measured from FFQs
or urine samples), the gut microbiome (alpha diversity and genera), and cardiovascular
risk scores were explored using linear mixed models (‘lme4’ package in R) with family
relatedness as a random intercept. Analyses were adjusted for (i) age, BMI, energy, and
fibre intake for the association between (poly)phenol measured from urine and FFQs
(explanatory variables) and cardiovascular risk scores (response variables); (ii) age, BMI,
energy, and fibre intake for the association between urinary (poly)phenol (explanatory
variables) and gut microbiome (response variables); (iii) age, BMI, and fibre intake for the
association between the gut microbiome (explanatory variables) and cardiovascular risk
scores (response variables).

Mediation analysis (‘mediation’ package in R) was further assessed to explore the po-
tential mediation effects of the gut microbiome (alpha diversity and genera) on the urinary
(poly)phenol metabolites on cardiovascular risk scores. The mediation model quantified
both the direct effect of dietary (poly)phenol on cardiovascular scores independent of
the gut microbiome (alpha diversity and genera) and the indirect (mediated) effects of
(poly)phenol that were mediated by its association with gut microbiome (alpha diversity

http://tools.acc.org/ASCVD-Risk-Estimator-Plus/
http://tools.acc.org/ASCVD-Risk-Estimator-Plus/
https://www.heartscore.org/en_GB/


Nutrients 2023, 15, 1900 5 of 17

and genera) (Figure 1). The mediation proportion, calculated by the ratio of indirect-to-total
effect, quantifies the significance of the mediator variance and the mediation effect of the
microbiota [54]. All analyses were adjusted for multiple testing (Benjamini and Hochberg
False Discovery Rate (FDR) < 0.1) [55].
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Figure 1. Potential mediation model on the effects of (poly)phenols on cardiovascular risk scores
by alpha diversity or genera. (1) Association between circulating (poly)phenol metabolites and
cardiovascular scores, adjusted for family relatedness, age, BMI, energy intake, and fibre intake;
(2) association between circulating (poly)phenol metabolites and gut microbiome (alpha diversity
or genera), adjusted for family relatedness, age, BMI, energy intake, and fibre intake; (3) association
between the gut microbiome (alpha diversity or genera) and cardiovascular scores, adjusted for
family relatedness, age, BMI, and fibre intake. DE indicates direct effects; IE indicates indirect effects.

3. Results
3.1. Population Characteristics

The demographic, alpha diversity, and cardiovascular risk score characteristics of
200 female participants are shown in Table 1. The average age of the participants was
62.0 (SD 10.0) years. Nearly all the subjects were white (99%), with an average BMI
of 26.2 kg/m2 (SD 4.7). Average fibre and energy intakes were 19.4 g/d (SD 7.0) and
1782.5 kcal/d (SD 545.7), respectively. Alpha diversity was 5.2 (SD 0.7) for Shannon diver-
sity and 336.9 (SD 106.2) for the observed OTU number. On average, their average ASCVD
risk score showed an intermediate risk. The contribution of the phyla of this population
is described in Supplemental Figure S1. The most abundant phyla included Proteobacteria
(240 taxa), Firmicutes (194 taxa), Bacteroidetes (69 taxa), and Actinobacteria (66 taxa), which
constituted 81.6% of the total gut microbiota.

Table 1. Demographic Characteristics of the Study Population.

Characteristics TwinsUK

n (%)
MZ 45 (45%)
DZ 55 (55%)

White 198 (99%)
Mean (SD)

Age, yrs 62.0 (10.0)
BMI, kg/m2 26.2 (4.7)

Fibre intake, g/d 19.4 (7.0)
Energy intake, kcal 1782.5 (545.7)

Measurements of alpha diversity
Shannon Diversity 5.2 (0.7)

Observed OTUs number 336.9 (106.2)
Cardiovascular risk scores

ASCVD risk score 8.1 (9.9)
HeartScore 9.3 (7.5)

MZ, monozygotic; DZ, dizygotic; BMI, body mass index; Observed OTUs number, observed operational taxonomic
units number; ASCVD risk score, atherosclerotic cardiovascular disease risk score.
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3.2. Urinary (Poly)phenol Metabolites and (Poly)phenol Intake Measured from FFQs

(Poly)phenol intakes estimated from FFQs and urinary (poly)phenol metabolites are
presented in Figure 2. The urinary concentration of 114 individual metabolites and the total
and subtotal levels of (poly)phenols from different groups are shown in Supplemental Table S1.
The average total (poly)phenol metabolite level in the spot urine samples was 7.82 × 106

(SD 1.71 × 107) mmol/g creatinine. The average total (poly)phenol intake measured from
FFQs was 2128.9 (SD 961.7) mg/d. Phenolic acids were a major class of (poly)phenols
consumed by our population (contributing 49.7% to total (poly)phenol intake measured
from FFQs) (Figure 2a), and were the most abundant class of metabolites excreted in urine
(Figure 2b), representing 70.6% of the total urinary (poly)phenol metabolites.
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3.3. Urinary (Poly)phenol Metabolites and Gut Microbiome Diversity and Composition

The association between urinary (poly)phenol metabolites and alpha diversity is listed
in Supplemental Table S2. Alpha diversity, including Shannon diversity and observed OTU
numbers, was positively associated with phenolic acids, lignans, and stilbenes. The phenolic
acids class associated with five metabolites showed the highest number of associations,
followed by four metabolites from lignans, three metabolites from other (poly)phenols, and
two metabolites from flavonoids and stilbenes (all FDR-adjusted p < 0.05).

The association with the genera is shown in Supplemental Figures S3 and S4.
Supplemental Figure S3 exhibits the association between the class and subclass of metabo-
lites and genera. A total of 22 classes and subclasses of metabolites were positively asso-
ciated with 34 different genera, of which 14 were from the Firmicutes phylum. Thus, the
associations between genera in Firmicutes and each metabolite were further explored and
are shown in Supplemental Figure S4. The class of phenolic acids with 42 metabolites asso-
ciated with Firmicutes ranked highest in the number of significant associations, followed
by flavonoids with 17 metabolites, other (poly)phenols with 14 metabolites, lignans with
seven metabolites, and stilbenes with five metabolites (all FDR-adjusted p < 0.05).

3.4. Circulating (Poly)phenol Metabolites and Cardiovascular Risk Scores

The associations between urinary metabolites and cardiovascular risk scores are
shown in Figure 3. Negative associations were observed between ASCVD risk score
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and five urinary phenolic acid metabolites: 3-(3,5-dihydroxyphenyl)propanoic acid, 3-(2,4-
dihydroxyphenyl)propanoic acid, 3-(3,4-dihydroxyphenyl)propanoic acid, 3,5-dihydroxy-
benzoic acid, and 2-hydroxycinnamic acid, 3-hydroxyphenylethanol-4-sulfate, 4-hydroxy-
phenylethanol-3-sulfate, and daidzein (stdBeta (95% CI): −0.05 (−0.09, −0.01) to −0.04
(−0.08, −0.003), FDR-adjusted p-values < 0.1). As for HeartScore, negative associations
were found with 3,4,5-trihydroxybenzoic acid, 2-hydroxycinnamic acid, daidzein, and
total isoflavonoids (stdBeta (95% CI): −0.06 (−0.09, −0.02) to −0.04 (−0.07, −0.003), FDR-
adjusted p-values < 0.1).
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Since the average (poly)phenol intake of this population is 2063.20 mg, which is much
higher than the previously estimated intake in the UK or other European countries [56–58],
we divided the population into high and low (poly)phenol intake groups cut at the median
estimated (poly)phenol intake (2063.20 mg), with an average total (poly)phenol intake of
1409.63 ± 478.83 mg and 2862.82 ± 753.66 mg, in the low and high intake group, respectively.
In the low (poly)phenol intake group, significant associations were shown between ASCVD
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risk score and five phenolic acid metabolites (stdBeta (95% CI): −0.07 (−0.12, −0.01) to
−0.06 (−0.11, −0.001), all FDR-adjusted p < 0.1). No associations were observed in the high
(poly)phenol intake group. Negative associations were also found in HeartScore and three
phenolic acid metabolites (stdBeta (95% CI): −0.09 (−0.16, −0.02) to −0.07 (−0.12, −0.01),
all FDR-adjusted p < 0.1).

There were no significant associations between (poly)phenol intake measured from
FFQs and cardiovascular risk scores (Supplemental Figure S2).

3.5. Urinary Metabolites, Gut Microbiome Composition, and Cardiovascular Risk Score

The metabolites that were significantly associated with cardiovascular risk scores in
the whole group in Figure 3 were selected to test their associations with alpha diversity and
genera. No significant associations were found between these metabolites and alpha diver-
sity. The genera with significant associations with urinary (poly)phenols after adjusting
for family relatedness, age, BMI, energy, and fibre intake are shown in Figure 4, including
19 genera with positive associations (FDR-adjusted p < 0.05). Among the 19 genera, 5-7N15
in the Bacteroidetes showed the highest levels and numbers of associations with the metabo-
lites, including all three phenylpropanoic acids (3-(3,5-dihydroxyphenyl)propanoic acid,
3-(2,4-dihydroxyphenyl)propanoic acid, and 3-(3,4-dihydroxyphenyl)propanoic acid), and
two tyrosol metabolites (3-hydroxyphenylethanol-4-sulfate and 4-hydroxyphenylethanol-3-
sulfate) (stdBeta (95% CI): 0.23 (0.09, 0.36) to 0.28 (0.15, 0.42), FDR-adjusted p < 0.05). There
were 27 genera negatively associated with the metabolites, and the phylum Proteobacteria
with 11 genera accounted for the highest among all phyla (all FDR-adjusted p < 0.05).
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The genera showing significant associations with urinary (poly)phenol metabolites (in
Figure 4) were selected to test the associations with cardiovascular risk scores. The genera
with significant negative associations after adjusting for family relatedness, age, BMI, and
fibre intake are shown in Table 2, including (i) 5-7N15, which has the potential ability of
the cellulose and hemicellulose [59,60] and (ii) Scardovia, one of the seven genera in the
Bifidobacteriaceae family with high acidogenic and aciduric potential [61]. No significant
negative associations were found between the genera in Figure 4 and HeartScore.

Table 2. Cardiovascular score—genera association.

Genera Cardiovascular Score stdBeta (95% CI) FDR-Adjusted
p-Value

5-7N15 ASCVD risk score −0.05 (−0.09, −0.01) 0.02
Scardovia ASCVD risk score −0.04 (−0.08, −0.004) 0.02

A mediation analysis was further conducted to explore the indirect effect of the genera
on the relationship between urinary metabolites and ASCVD risk score (Figure 5). The
result showed that the genus 5-7N15 in the phylum of Bacteroidetes acted as a potential
partial mediator in the negative association between ASCVD risk score and the phenolic
acid metabolite 3-(3,4-dihydroxyphenyl)propanoic acid (proportion mediated 23.8%, FDR-
adjusted p < 0.01).
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4. Discussion

This work aimed to investigate the associations between circulating (poly)phenol
metabolites, the gut microbiome, and cardiovascular disease risk in a subset of women from
the TwinsUK cohort. We identified a number of (poly)phenol metabolites that positively
correlate with 34 genera, mainly Firmicutes and Bacteroidetes. Phenolic acid metabolites were
the (poly)phenol class that showed the highest levels and numbers of associations with al-
pha diversity and genera in Firmicutes, with five and 42 metabolites associated, respectively.
Five phenolic acid metabolites, two tyrosol metabolites, and daidzein showed negative
associations with the cardiovascular score. Genus 5-7N15 from the Bacteroidetes phylum was
positively associated with three phenylpropanoic acid metabolites and two tyrosol metabo-
lites, and negatively associated with the ASCVD score. Genus 5-7N15 showed a potential
mediation effect with the (poly)phenol metabolite 3-(3,4-dihydroxyphenyl)propanoic acid
on the ASCVD score. Our findings suggest the interaction between (poly)phenols and
the gut microbiome might be a potential mechanism on how (poly)phenols can improve
cardiovascular health.
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Phenolic acids are a major class of dietary (poly)phenols widely abundant in the
plant kingdom and our diet [62]. Coffee, tea, red wine, and several vegetables and fruits,
especially berries, are the most abundant food sources of phenolic acids [62]. Furthermore,
phenolic acids are gut microbial metabolites of nearly all classes of (poly)phenols, for
instance, flavonoids [63]. Clearly, phenolic acids are the highest source of (poly)phenols
in this study, assessed by FFQs and urine samples. They are hydroxylated derivatives of
benzoic, cinnamic, phenylacetic, and phenylpropanoic acids in chemical structure, and
evidence suggests they have cardioprotective and anti-atherosclerotic properties [64]. The
ASCVD [65] and HeartScore [50,51] risk scores were associated with several subclasses
of phenolic acid metabolites, i.e., cinnamic acids (2-hydroxycinnamic acid), benzoic acids
(3,5-dihydroxybenzoic acid, 3,4,5-trihydroxybenzoic acid), and three phenylpropanoic
acids: (3-(3,5-dihydroxyphenyl)propanoic acid, 3-(2,4-dihydroxyphenyl)propanoic acid,
and 3-(3,4-dihydroxyphenyl)propanoic acid). However, these negative associations were
only found with the low (poly)phenol intake group, and not in the high intake group,
assessed using FFQs. The high intake group had an average total (poly)phenol intake of
2862.82 ± 753.66 mg/d, which is much higher than the estimated intake from the UK or
other European countries [56–58].

In recent years it has become clear that there is a two-way interaction between
(poly)phenols and the gut microbiota. The gut microbiota plays a key role in the biotrans-
formation of (poly)phenols into low-molecular-weight metabolites, while (poly)phenols
modulate the gut microbiota by favouring beneficial bacteria growing over pathogenic
ones [66]. As only around ten percent of dietary (poly)phenols are absorbed in the small
intestine, the microorganisms in the colon transform the remaining (poly)phenols into
smaller phenolic acids, including hydroxycinnamic acids, benzoic acids, and phenylpropi-
onic acids [66], which are absorbed and can exert health benefits. In this study, 42 phenolic
acid metabolites were associated positively with 32 different genera in the Firmicutes phy-
lum and five with two alpha diversity indexes. Benzoic acids in diets may increase intestinal
microbiota diversity and promote effective microorganisms, such as Lactobacillus and Bifi-
dobacterium [67]. Cinnamic acids have shown a microbiota-modulating effect in simulated
colonic fermentation and animal models [68]. Here, compared with other classes, phenolic
acid metabolites, especially benzoic, cinnamic, and phenylpropanoic acid metabolites, ex-
hibited the closest link with alpha diversity and Firmicutes, for instance, Christensenellaceae
and Lactobacillaceae. This is in line with previous research in our lab [17,69]. The favourable
effect of phenolic acids on cardiovascular risk scores and the gut microbiome found in this
study points to a significant health effect for optimal human health.

Flavonoids, another major class of (poly)phenols [62], also demonstrated beneficial
associations with the cardiovascular risk score and the gut microbiome. The chemical struc-
ture of daidzein, a phytoestrogen isoflavone, is similar to mammalian estrogens, which
enables its protective effect on diseases associated with estrogen control, i.e., cardiovas-
cular disease [70]. In this work, isoflavonoids, particularly daidzein, showed a negative
association with the ASCVD score and HeartScore. Interestingly, the main gut microbial
metabolites of daidzein, the equol phase II metabolites, were not associated with CVD risk
scores. It is well known that there is a high inter-individual variability in equol production
and this can affect the health benefits of isoflavone consumption [71]. However, it was not
possible to distinguish between equol producers and nonproducers in this study due to its
observational nature. We can speculate that other important gut microbial metabolites of
daidzein, not investigated in this study, such as ODMA derivatives, may play a role in the
association of isoflavones with the CVD risk scores.

Intact circulating flavonoids not metabolized by the gut microbiota may still interact
with the gut microbiota and promote gut health by modulating the composition of the gut
microbiota, inhibiting pathogens and increasing beneficial genera such as Bifidobacterium
and Lactobacillus [72]. In this research, flavonoids also showed a positive link with nine
different genera in Firmicutes, for instance, Lactobacillaceae and commensal bacteria Chris-
tensenellaceae. Other potential effects of intact flavonoids include protection of the intestinal
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barrier function, modulation of the immune system, and modulation of the production of
other gut microbial metabolites, such as short-chain fatty acids [73].

Other (poly)phenols were also found with favourable associations, including tyrosol
metabolites that were negatively associated with ASCVD risk score, and benzene diols and
triols, which were positively associated with Shannon diversity and 19 different genera
in Firmicutes. The close link between gut microbiota and benzene diols and triols was
in line with a previous study in our lab [69]. Moreover, research evidence has shown
that hydroxytyrosol, commonly found in olive oil, has anti-inflammatory effects and can
improve endothelial function [74]. As for lignans and stilbenes, no links with cardiovascular
scores were found. However, the positive association between stilbenes and alpha diversity
was in line with a previous gut microbiome study with a subgroup of participants from the
same cohort (TwinsUK) [3].

Firmicutes and Bacteroidetes are the dominant bacterial phyla covering more than
90% of the human gut community [75]. The Firmicutes phylum ranked highest in the
number of associations with urinary (poly)phenols, with 14 taxa positively associated with
the level of 14 different total classes and subclasses of (poly)phenol metabolites. Among
the significant taxa associated with urinary (poly)phenol metabolites, Lachnospiraceae and
Ruminococcaceae are abundant families from the Clostridiales order that may promote gut
health through the production of butyrate, a fermentation product in the colon associated
with favourable effects, such as ischemic stroke and metabolic disease [76]. The increase
in Clostridium and Christensenellaceae in the Clostridiales order was positively associated
with (poly)phenol metabolites, which was in agreement with previous research from our
team [17,69]. Evidence has suggested an association between the abundance of Chris-
tensenellaceae and inflammatory bowel disease [77]. As a key player in human gut health,
Christensenellaceae has shown significant associations with nearly all (poly)phenol classes,
especially phenolic acids. Bacteroidetes can break down plant starch and fibre into shorter
molecules to provide energy to lean people [78] and contribute to the maintenance of gut
health based on their butyrate-producing ability [79]. Research has shown the interplay
between a (poly)phenol-rich aronia berry supplement and enriched taxa abundance in
the Bacteroidetes [17,69]. Similarly, red wine (poly)phenol consumption for a one-month
intervention study increased Bacteroides abundance [80]. In agreement with the findings
above, 16 classes and subclasses of (poly)phenol metabolites were positively associated
with eight different genera in the Bacteroidetes phylum.

Alterations in the gut microbial community may contribute to cardiovascular dis-
ease [81]. Indeed, most established risk factors of CVD, including hypertension, heart
failure, and diabetes, are linked with gut dysbiosis [82]. The ability of gut microbes to
produce bioactive phenolic metabolites and short-chain fatty acids, including propionate
and butyrate, might have a favourable impact on the gut ecosystem, glucose homeostasis,
and vascular function [83,84]. Heart failure may also be influenced by the gut microbiota,
based on the gut–heart failure hypothesis, suggesting that reduced cardiac output and in-
creased systemic congestion leads to intestinal mucosal ischemia and causes inflammation
by elevating bacterial translocation [85]. Other factors such as bowel disease may increase
the risk of CVD due to the presence of an abnormal microbial community [82]. In the Bac-
teroidetes phylum, 5-7N15 identified a potential mediation effect on the negative association
between 3-(3,4-dihydroxyphenyl)propanoic acid and the ASCVD risk score. Bacteroidaceae,
the family of 5-7N15, seems to be involved in nearly all types of human bacterial functional
genes in the active gut microbiota. To date, 5-7N15-related research has been limited to
animal models and related to the degradation of cellulose and hemicellulose [59,60], and
further analysis of 5-7N15 in the human gut is required. Cellulose, an important part of the
wall of plant cells, is a fibre commonly found in plant-based foods, for instance, fruits and
vegetables. In this study, although the associations found were adjusted for fibre intake,
(poly)phenols represent a group of plant metabolites that are considered a good source
of dietary fibre. A (poly)phenol-rich diet might therefore indicate a plant-rich intestine
microenvironment for 5-7N15.
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Dietary assessment tools and nutritional biomarkers reflected the (poly)phenol con-
sumption level of the population. FFQ, as a dietary assessment tool, is widely used to
quantify dietary (poly)phenol in observational studies [86]. This assessment tool is prone to
misreporting bias owing to its self-reported nature, thus limiting its accuracy. A number of
(poly)phenol metabolites have been proposed as biomarkers to indicate the consumption
of specific (poly)phenols [87] and provide objective information on the exposure levels
compared to dietary assessment. Compared with phenolic acids measured from FFQs,
which showed no significant associations with cardiovascular scores, phenolic acid metabo-
lites were associated with beneficial effects on cardiovascular scores in the present study.
This result is coherent with previous evidence showing that correlations between FFQ
and urinary and plasma biomarkers of (poly)phenols were poor [88]. The discrepancies
between the two approaches are possibly due to the errors from dietary assessment and
individual variability in the absorption and metabolism of ingested (poly)phenols by the
digestive system and gut microbiota. Our results suggest that a more objective estimation
of (poly)phenol exposure by measuring levels of circulating (poly)phenol metabolites may
help to unveil more accurate relationships with health outcomes. However, concerns about
biomarkers also exist, such as the reliability of the biomarkers to reflect intake over a long
time [87]. A single assessment method would be limited to reflect (poly)phenol consump-
tion levels since each assessment tool has advantages and shortcomings [88]. More accurate
and specific tools to reflect habitual (poly)phenol exposure need to be developed.

The novelty of this study lies in the measurement of a wide range of (poly)phenol
metabolites from different classes in urine, quantified using authentic standards, which
allowed the testing of objective (poly)phenol exposures and associations with gut micro-
biome and cardiovascular scores. This study is limited by the small sample size, thus
restricting the interpretation of the conclusion. It requires further application in a much
larger sample to have adequate power. Furthermore, the generalisability of this work is
restricted to women and a population of white ethnicity. Further studies are required to
investigate the role of sex and different ethnicities in the relationship between (poly)phenol
consumption and CVD risk.

5. Conclusions

In conclusion, dietary (poly)phenols, in particular phenolic acids, may contribute to
lowering CVD risk and improving gut microbiome diversity and composition. Genus
5-7N15 in the Bacteroidetes phylum may potentially mediate the inverse association be-
tween 3-(3,4-dihydroxyphenyl)propanoic acid and the ASCVD score. Larger cohorts and
randomized controlled trials are needed to test whether dietary (poly)phenols can im-
prove cardiovascular health outcomes via the modulation of gut microbiome diversity
and composition.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu15081900/s1, Table S1: Concentration of urinary metabolites
detected by UHPLC-MS in spot urine sample (mmol/g creatinine). Table S2: Associations between
urinary (poly)phenol metabolites and alpha diversity in the TwinsUK cohort, adjusted for family
relatedness, age, BMI, energy intake, and fibre intake. Figure S1: The contribution of each phylum.
Figure S2: Associations between (poly)phenol intake measured from FFQs and cardiovascular
risk scores in the TwinsUK cohort, adjusted for family relatedness, age, BMI, energy intake, and
fibre intake. Figure S3: Associations between the class and subclass of metabolites and genera
in the TwinsUK cohort, adjusted for family relatedness, age, BMI, energy intake, and fibre intake.
Figure S4: Associations between the metabolites and genera in Firmicutes in the TwinsUK cohort,
adjusted for family relatedness, age, BMI, energy intake, and fibre intake.
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