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Abstract: The fruit of Morus alba L. (MAF) has been consumed as a food worldwide. MAF has
also been widely used in traditional medicine for thousands of years in East Asia, and its diverse
bioactivities have been reported in numerous publications. However, no prokinetic activity has been
reported for MAF or its components. In the present study, therefore, we investigated the effects of
MAF on gastrointestinal motor function by measuring the intestinal transit rate (ITR) of Evans blue
in mice in vivo. The ITR values accelerated by MAF were significantly higher than those accelerated
by cisapride or metoclopramide, suggesting that MAF has potential as a new prokinetic agent to
replace cisapride and metoclopramide. We also investigated the effects of MAF on myogenic and
neurogenic contractions in human intestinal smooth muscles by measuring spontaneous contractions
of smooth muscle strips, smooth muscle contractions induced by neural stimulation, and migrating
motor complexes from intestinal segments in the human ileum and sigmoid colon in situ. MAF
increased both myogenic and neurogenic contractions to enhance ileal and colonic motility in the
human intestine. Taken together, these results indicate that MAF enhanced intestinal motility by
increasing both myogenic and neurogenic contractions, thereby accelerating the ITR.

Keywords: intestinal transit; Morus alba; mulberry fruit; myogenic contraction; neurogenic contraction;
prokinetic; smooth muscle

1. Introduction

Morus alba L., known as white mulberry or silkworm mulberry, is a deciduous tree
widely cultivated in many regions of the world, including East Asia [1–3]. Due to its
chemical composition and pharmacological activities, various parts of M. alba, such as the
leaves, root barks, branches, and fruits, have been used in traditional oriental medicine
for thousands of years [4,5]. Among them, the fruit of M. alba (abbreviated as “MAF” in
this paper) is commonly eaten fresh, dried, or processed into wine, fruit juice, jam, and
canned food due to its delicious taste, pleasing color, low-calorie content, and high nutrient
content [1,6]. In East Asia, MAF has also been used for a long time as a traditional medicine
to alleviate hyperglycemia, hypertension, fever, and sore throat; protect the liver and kidney
from damage; improve eyesight; strengthen the joints; facilitate the discharge of urine;
moisten dryness; and treat other disorders [1,7–9]. Modern researchers have validated
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many potential health benefits of MAF and/or its bioactive ingredients, such as antho-
cyanins, flavonoids, polyphenols, alkaloids, and polysaccharides, which showed a variety
of bioactive functions in vitro and in vivo, including antioxidant [10,11], antiatheroscle-
rosis [12,13], immunomodulatory [14,15], anticancer [16,17], antihyperglycemic [18,19],
hypolipidemic [20,21], and neuroprotective [22] activities. Although the effects of MAF
and/or its components on the gastrointestinal (GI) tract have been reported mainly for their
anti-inflammatory activity [23,24], little is known about their effects on GI motility. Only a
few studies have been reported for the effects of different parts of M. alba (i.e., leaves and
root barks) on GI motor functions [25,26], but prokinetic (or GI motility-related) activity
has not been reported for MAF or its components.

The term “prokinetic” refers to a drug or its action that enhances GI motility by
increasing the frequency or strength of contractions. Unlike cancers or cardiovascular
diseases, GI motility disorders are not immediately fatal to health. However, these diseases
causing daily discomfort often severely reduce the quality of life in the current era of
well-being. Although significant advances have been made in recent basic and clinical
research in the field of GI motility, causal treatment of motility disorders remains largely
unresolved. Moreover, the most effective prokinetic agents were withdrawn from the
market or restricted from use due to their significant side effects. Cisapride, the best-selling
prokinetic in the late 1900s, was withdrawn from the market in 2000 due to its fatal cardiac
side effects [27]. Similarly, in 2014, the use of metoclopramide and domperidone, other
popular prokinetic agents comparable to cisapride, were restricted for functional GI tract
disorders [28].

The discovery of new prokinetic agents is very important as no potent alternative
to cisapride has yet been developed. In addition, a new drug should have a favorable
safety profile as well as a well-proven efficacy. Because MAF has been eaten as a food for
thousands of years, its safety has already been secured. In the present study, therefore,
our aims were to investigate the effects of MAF on GI motor function. To do so, first, the
intestinal transit rate (ITR) of Evans blue dye was measured in mice in vivo. The effect of
MAF on the ITR was examined and compared with that of cisapride or metoclopramide.
Spontaneous contractions of smooth muscle strips, smooth muscle contractions induced by
neural stimulation, and the migrating motor complexes (MMCs) from intestinal segments
were then recorded in the human ileum and sigmoid colon in situ, and the effects of MAF on
myogenic and neurogenic smooth muscle contractions in human intestine were examined.

2. Materials and Methods
2.1. Drugs and Reagents

Catechin, cisapride, Folin–Ciocalteu reagent, metoclopramide hydrochloride, Nω-nitro-
L-arginine (L-NNA), and quercetin were purchased from Sigma-Aldrich Co. (St. Louis, MO,
USA). Evans blue and methylcellulose (MC) were purchased from Shanghai Aladdin
Bio-Chem Technology Co., Ltd. (Shanghai, China). MRS 2500 tetraammonium salt was
purchased from Tocris Bioscience (Ellisville, MO, USA). The other reagents used in this
study were of analytical grade or better and were used without further purification.

2.2. Preparation and Quantitative Analysis of MAF

Fresh fruits of mulberry tree, Morus alba, were purchased from a farmhouse in Wanju,
Korea, and lyophilized at −50 ◦C for 24 h using a freeze-drier (FDT-8612; Operon Co.,
Ltd., Gimpo, Republic of Korea) to obtain MAF in the form of dry powder. To assure
consistent quality of MAF, total polyphenols and flavonoids in MAF were determined
by the Folin–Ciocalteu method and the aluminum chloride calorimetric assay [29,30],
respectively, with minor modifications. Catechin was used as a standard material for the
content analysis of total polyphenols in MAF. A total of 0.5 g of MAF was soaked in 30 mL
of 80% ethanol with shaking for 20 min and the suspension was ultrasonicated at 70 ◦C for
1 h and centrifuged (Centrifuge 5804R, Eppendorf AG, Hamburg, Germany) at 4000 rpm
for 15 min. A total of 1 mL of the filtered supernatant (MAF-E80) or a standard solution of
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catechin was mixed with 1 mL of 1 N Folin–Ciocalteu reagent and 8 mL of distilled water
followed by addition of 1 mL of 15% Na2CO3 solution. The mixture was then allowed to
stand for 2 h at room temperature and the absorbance was measured at 760 nm using a
UV-1800 Spectrophotometer (Shimadzu, Kyoto, Japan). The amount of total polyphenols
was calculated and expressed as catechin equivalent (i.e., mg of cathechin/100 g of MAF).
For the content analysis of total flavonoids in MAF, quercetin was used as a standard
material. A total of 0.5 mL of MAF-E80 (or a standard solution of quercetin) was added
to 2 mL of distilled water followed by addition of 0.15 mL of 5% NaNO2, 0.15 mL of 10%
AlCl3·6H2O, and 1 mL of 1 M NaOH solutions. The mixture was then stirred for 5 min
and allowed to stand for 15 min at room temperature, and the absorbance was measured
against prepared reagent blank at 510 nm. The amount of total flavonoids was expressed
as quercetin equivalent (i.e., mg of quercetin/100 g of MAF).

2.3. Animals

Five-week-old male ICR mice were obtained from Samtako Bio Korea Co., Ltd. (Osan,
Republic of Korea). All animals were housed individually in clear plastic cages at Core-
Facility Center for Tissue Regeneration, Dong-eui University (Busan, Republic of Korea).
The animals were maintained under conditions of controlled temperature (22 ± 2 ◦C),
humidity (55 ± 5%), and illumination (light on 7 a.m. to 7 p.m.). All animal experiments
conducted in this study were performed in accordance with guidelines established by the
Institutional Animal Care and Use Committee of Dong-eui University and approved by
the committee (approval number: R2022-002). All mice were acclimated to the housing
conditions with ad libitum access to a commercial diet and tap water for at least two
weeks. The animals were then deprived of food with free access to tap water for 20 h
before experimentation. At the onset of the experiment, mice weighed 25–35 g. All animal
experiments were conducted between 10 a.m. and 5 p.m.

2.4. Measurement of ITR of Evans Blue

The effect of MAF on intestinal propulsion was assessed by measuring the intestinal
transit of an Evans blue solution (5%, w/v, in DW) in mice in vivo, according to a previous
method [31] with minor modifications. Cisapride and metoclopramide were selected
as drugs for positive control groups. Twelve mice were tested for each dose of a test
drug. An aqueous suspension of 0.5% MC was used as a vehicle. A 0.5% MC suspension
containing each test drug (i.e., MAF, cisapride, or metoclopramide) was administered orally
at each dose to conscious mice through an orogastric tube at a volume of 10 mL/kg body
weight, and 30 min later, 0.1 mL of the Evans blue solution was administered orally to
the mice through an orogastric tube. The animals were then sacrificed at 30 min after the
administration of the Evans blue solution, and the intestinal transit of the Evans blue during
the 30 min period was determined by measuring the distance that Evans blue migrated
in the intestine from the pylorus to the most distal point of the intestine. Intestinal transit
was expressed as intestinal transit rate (ITR), the percentage of the distance traveled by
Evans blue divided by the total length of the small intestine (i.e., from the pylorus to the
ileal end).

2.5. Acquisition and Preparation of Human Intestinal Tissues

Human bowel specimens were obtained from patients who underwent non-obstructive
bowel cancer surgery at Seoul National University Hospital (SNUH). Ileum and sigmoid
colon specimens were obtained from right hemicolectomy and anterior resection, respec-
tively [32]. This study was approved by the Institutional Review Board (IRB) of the Clinical
Research Institute of the SNUH (IRB approval No. H-0603-071-170). The study protocol
was performed in accordance with the guidelines and regulation of the SNUH IRB. Written
informed consent was obtained from all patients prior to operations. After resection of the
ileum and sigmoid colon, the specimens were immediately transferred to preoxygenated
Krebs-Ringer bicarbonate (KRB) solution containing (in mM) 15.5 NaHCO3, 120.4 NaCl,
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5.9 KCl, 11.5 glucose, 2.5 CaCl2, 1.2 NaH2PO4, and 1.2 MgCl2. This solution was suffi-
ciently oxygenated with 97% O2 and 3% CO2 and adjusted to pH 7.3–7.4 as described
previously [33,34].

2.6. Tension Recordings of Smooth Muscle Strips

Contractions of smooth muscle strips were recorded in human ileum and sigmoid
colon in situ, according to a previous method [33] with minor modifications. After removing
the mucosal and submucosal layer of ileum and sigmoid colon, muscle layer was cut into
strips of 5–6 mm in length and 2–3 mm in width. The muscle strips were mounted to an
isometric force transducer (Biopac Systems, Inc., Goleta, CA, USA) and suspended in 10 mL
organ bath containing aerated (97% O2 and 3% CO2) and warmed (36.5 ± 0.5 ◦C) KRB
solution. The muscle strips were stabilized for 60 min without a force and equilibrated for
60 min after stretching the strips to 1 mN, in the presence of L-NNA (100 µM) and MRS
2500 (1 µM) to eliminate inhibitory responses. Electrical field stimulation (EFS; 10 Hz, 10 s,
100 V, 0.3 ms pulse) was applied to evoke neural response using a Grass S88 stimulator
(Grass instruments, Warwick, RI, USA).

2.7. Tension Recordings of Bowel Segments

MMCs from intestinal segments were recorded in human ileum and sigmoid colon
in situ, according to a previous method [34] with minor modifications. Ileal or colonic
specimens with intact mucosal and submucosal layer were cut longitudinally in segments
of 5–6 cm in length and 2 cm in width. Tension of circular muscle in each segment was
recorded at 3 sites (proximal, middle, and distal sites, 2 cm apart) via perpendicular traction
using sutures placed at each site (see Figure S1). Sutured muscle was connected to an
isometric force transducer (Biopac Systems, Inc., Goleta, CA, USA) using threaded micro
serrefines (Fine Science Tools, Forster City, CA, USA). The segments were equilibrated for
at least 2 h before experiments after stretching the segments to 10 mN. Aerated (97% O2
and 3% CO2) and warmed (36.5 ± 0.5 ◦C) KRB solution was perfused continuously into
the tissue chamber.

2.8. Data Acquisition and Analysis for Contractility in Human Intestinal Smooth Muscles

The mechanical responses were recorded and digitized using Acknowledge software
(Biopac Systems, Inc., Goleta, CA, USA). Data were analyzed offline using Clampfit (version
10.2. Molecular devices, San Jose, CA, USA). Area under the curve (AUC), amplitude, and
frequency for 5 min were analyzed for spontaneous contractions. AUC and amplitude for
10 s were analyzed for EFS-induced contractions. AUC for 10 min was analyzed for ileal
or colonic MMCs. The contractility before MAF administration was adopted as a control
value, and the change in contractility after MAF administration was calculated as a relative
value (i.e., % of control) for comparison [33,34].

2.9. Statistical Analysis

All data of each experimental group are expressed as the mean ± standard error of
the mean (SEM). Statistical analysis was performed using Prism 9.0 (GraphPad, Boston,
MA, USA). Data were evaluated by one-way analysis of variance, followed by a Dunnett’s
post hoc test, if appropriate. Statistical significance was considered when the p-value was
less than 0.05.

3. Results and Discussion
3.1. Contents of Total Polyphenols and Flavonoids in MAF

In order to assure the consistency of the quality of the MAF used in the present
study, the contents of the total polyphenols and flavonoids were measured in the MAF.
The amounts of the total polyphenols and flavonoids in 100 g of MAF were calculated
to be 1016.70 ± 48.03 mg of catechin (n = 3) and 550.39 ± 13.97 mg of quercetin (n = 3),
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respectively, suggesting a fairly good consistency in the quality of MAF in terms of the
contents of total polyphenols and flavonoids.

3.2. Effect of MAF on ITR in Mice

The ITRs (%) of the Evans blue during the 30 min period in mice are shown in Figure 1.
The ITR for the mice with the treatment of only 0.5% MC as a vehicle (i.e., control group)
was 55.33 ± 3.13%. The ITR was significantly accelerated when cisapride was adminis-
tered orally at a dose of 10 or 20 mg/kg. The ITR value at a cisapride dose of 10 mg/kg
(70.84 ± 4.60%, p < 0.01, compared to the control value) was higher than that of 20 mg/kg
(68.55 ± 4.11%, p < 0.05) or 5 mg/kg (62.35 ± 4.34%, p > 0.05), suggesting that a maximally
effective oral dose of cisapride might be around 10 mg/kg (Figure 1A). The ITR values in
the metoclopramide-treated group also showed a similar pattern to those in the cisapride-
treated group (i.e., 58.92 ± 3.33% (p > 0.05), 67.26 ± 3.89% (p < 0.05), and 66.21 ± 3.86%
(p < 0.05), respectively, for 10, 20, and 40 mg/kg doses of metoclopramide). Thus, a maxi-
mally effective oral dose of metoclopramide might be around 20 mg/kg (Figure 1A). In
comparison, the ITR values for the MAF at doses of 0.5, 1, and 2 g/kg were 81.58 ± 3.74,
89.81 ± 2.99, and 87.69 ± 3.66%, respectively. The ITR was increased significantly by the
MAF at all doses (p < 0.001) compared to the control value (i.e., 55.33 ± 3.13%), and a
maximally effective oral dose of MAF might be around 1 g/kg (Figure 1A). Moreover, in
terms of the ITR, the efficacy of MAF was much higher than that of cisapride or metoclo-
pramide with statistical significance (Figure 1B,C), implying that MAF has potential as a
new prokinetic agent to replace cisapride and metoclopramide.Nutrients 2023, 15, x FOR PEER REVIEW 6 of 13 
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Figure 1. Effects of cisapride, metoclopramide, and MAF on ITR in mice in vivo. The ITR (%)
of Evans blue during a 30 min period following oral administration of an Evans blue solution
30 min after pretreatment with each test drug at each dose in mice (n = 12 for each bar). Data were
evaluated by one-way analysis of variance, followed by a Dunnett’s post hoc test, if appropriate.
(A) Significant difference (* p < 0.05, ** p < 0.01, and *** p < 0.001) compared with control, (B) significant
difference (** p < 0.01) compared with C10 (ITR in the cisapride-treated group at a dose of 10 mg/kg),
(C) significant difference (* p < 0.05 and *** p < 0.001) compared with M20 (ITR in the metoclopramide-
treated group at a dose of 20 mg/kg).
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3.3. Effects of MAF on Spontaneous Contractions of Smooth Muscle Strips in Human Intestine

The spontaneous contractions of smooth muscle strips were recorded in situ in the
human ileum (Figure 2) and sigmoid colon (Figure 3) and their AUC, amplitude, and fre-
quency for 5 min were analyzed (Table 1). The AUC and frequency for the ileal spontaneous
contractions increased significantly after the administration of MAF in a dose-dependent
manner, whereas the amplitude showed a slight increase with no statistical significance
after the MAF administration at any dose, suggesting that the MAF-induced increase in
the total contractility in the ileum was primarily due to an increase in the frequency rather
than the amplitude of the spontaneous contractions. For the colonic spontaneous contrac-
tions, in comparison, the administration of MAF increased all three parameters (i.e., AUC,
amplitude, and frequency) significantly in a dose-dependent manner, suggesting that the
MAF-induced increase in the total contractility in the sigmoid colon was due to increases
in both the amplitude and frequency of the spontaneous contractions.
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dependent manner (25–150 µg/mL). Arrows indicate the points of MAF administration. Summarized
graphs showing the effects of MAF on (B) AUC, (C) amplitude, and (D) frequency of spontaneous
contractions. Significant difference (* p < 0.05, ** p < 0.01, and *** p < 0.001) compared with control.
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Figure 3. Effects of MAF on spontaneous contractions of smooth muscle strips in human sigmoid
colon in situ. (A) Representative raw traces showing that MAF increased spontaneous contractions
in a dose-dependent manner (25–150 µg/mL). Arrows indicate the points of MAF administration.
Summarized graphs showing the effects of MAF on (B) AUC, (C) amplitude, and (D) frequency of
spontaneous contractions. Significant difference (* p < 0.05, ** p < 0.01, and *** p < 0.001) compared
with control.

Spontaneous contractions are caused by slow waves generated by the pacemaker
interstitial cells of the Cajal (ICC) in the GI tract [35]. Because the spontaneous contractions
occur without neural input in the smooth muscle layer, they are referred to as myogenic
contractions [36]. In this study, the pattern by which MAF increased the myogenic con-
tractions was somewhat different in the ileum and sigmoid colon, as described above.
Nevertheless, MAF increased the myogenic contractions in both the ileum and sigmoid
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colon, implying that MAF directly affects smooth muscle cells or the ICC. Next, we investi-
gated whether MAF affects neurogenic contractions that indirectly activate smooth muscle
cells by stimulating enteric nerves.

Table 1. Relative values of AUC, amplitude, and frequency (% of control) for spontaneous contractions
after treatment with each dose of MAF in human ileal and colonic smooth muscle strips in situ.

Segment Parameter (n)
Dose of MAF (µg/mL)

25 50 100 150

Ileum
AUC (8) 132.00 ± 6.77 190.88 ± 13.46 ** 255.57 ± 20.04 *** 293.00 ± 34.65 ***
Amplitude (9) 115.11 ± 6.86 132.10 ± 13.17 128.89 ± 10.67 130.11 ± 11.27
Frequency (6) 143.67 ± 20.95 243.00 ± 39.94 * 333.60 ± 30.17 *** 425.00 ± 55.38 ***

Sigmoid colon
AUC (7) 131.29 ± 9.55 181.29 ± 15.53 ** 227.86 ± 21.08 *** 266.43 ± 27.88 ***
Amplitude (6) 133.50 ± 12.49 176.00 ± 13.01 ** 191.17 ± 15.96 *** 229.83 ± 25.33 ***
Frequency (6) 158.80 ± 18.69 185.80 ± 21.98 * 214.00 ± 27.52 ** 224.80 ± 31.98 **

Data are expressed as the mean ± SEM (% of each control). * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. each control.

3.4. Effects of MAF on EFS-Induced Contractions in Human Intestinal Smooth Muscles

EFS-induced contractions of smooth muscle strips were recorded in situ in the human
ileum (Figure 4) and sigmoid colon (Figure 5) and their AUC and amplitude for 10 s were
analyzed (Table 2). The AUC and amplitude increased significantly by the administration of
MAF in a dose-dependent manner for both ileal and colonic contractions. It is well-known
that the EFS applied in the present study (i.e., 10 Hz, 10 s, 100 V, and 0.3 ms pulse) can evoke
neural responses in GI smooth muscle strips, indicating that the administration of MAF
significantly increased the neurogenic contractions in both the human ileal and colonic
smooth muscles. These results suggest the potential for MAF to increase nerve-mediated
mass contractions in the real human intestine. Therefore, we examined the effects of MAF
on neurally mediated contractions occurring in human intestinal segments (see Section 2.7).
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Figure 4. Effects of MAF on EFS-induced contractions of smooth muscle strips in human ileum in
situ. (A) Representative raw traces showing that MAF increased electrically evoked contractions
by neural stimulation in a dose-dependent manner (50–150 µg/mL). Dots and arrows indicate the
points of EFS application and MAF administration, respectively. Summarized graphs showing the
effects of MAF on (B) AUC and (C) amplitude of contractions. Significant difference (* p < 0.05 and
*** p < 0.001) compared with control.
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Figure 5. Effects of MAF on EFS-induced contractions of smooth muscle strips in human sigmoid
colon in situ. (A) Representative raw traces showing that MAF increased electrically evoked contrac-
tions by neural stimulation in a dose-dependent manner (50–150 µg/mL). Dots and arrows indicate
the points of EFS application and MAF administration, respectively. Summarized graphs showing
the effects of MAF on (B) AUC and (C) amplitude of contractions. Significant difference (** p < 0.01
and *** p < 0.001) compared with control.

Table 2. Relative values of AUC and amplitude (% of control) for EFS-induced contractions after
treatment with each dose of MAF in human ileal and colonic smooth muscle strips in situ.

Segment Parameter (n)
Dose of MAF (µg/mL)

50 100 150

Ileum
AUC (5) 121.40 ± 4.58 * 133.80 ± 5.95 *** 148.60 ± 8.76 ***
Amplitude (5) 118.20 ± 3.97 * 129.80 ± 4.75 *** 143.00 ± 6.76 ***

Sigmoid colon AUC (6) 106.00 ± 3.32 110.29 ± 2.56 123.14 ± 4.73 ***
Amplitude (6) 108.33 ± 2.08 119.83 ± 3.54 ** 139.50 ± 5.94 ***

Data are expressed as the mean ± SEM (% of each control). * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. each control.

3.5. Effects of MAF on MMCs in Human Intestinal Segments

MMCs are cyclic propulsive contractions observed in the GI tract and mediated by
neural activities [37,38]. These contractions are also referred to as “propagating contractile
complexes” or “peristalsis” [39]. Mass contractions, such as MMCs, move luminal contents
distally, which is a very important contractile pattern in the digestive and defecating
functions of the GI tract. In this study, MMCs from bowel segments were recorded in
situ at 3 different sites (i.e., proximal, middle, and distal sites, 2 cm apart) in the human
ileum (Figure 6) and sigmoid colon (Figure 7) and their AUC for 10 min was analyzed
(Table 3). The AUC for both the ileal and colonic MMCs at all three different sites increased
significantly by the administration of MAF in a dose-dependent manner, which was slightly
more evident in the ileum than in the sigmoid colon at all three different sites. Interestingly,
unlike the pattern of the ileal myogenic contractions (Figure 2A,C), the amplitude of the
ileal MMCs increased apparently after the MAF administration (Figure 6A), implying that
the MAF-induced increase in the ITR might be primarily related with the ileal MMCs rather
than the ileal myogenic contractions.
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tion. Dotted lines indicate the baseline tension. (B–D) Summarized graphs showing the effects of 

Figure 6. Effects of MAF on MMCs in human ileal segments in situ. (A) Representative raw traces
showing that MAF increased MMCs in human ileum at the proximal, middle, and distal sites in a
dose-dependent manner (25–150 µg/mL). Arrows indicate the points of MAF administration. Dotted
lines indicate the baseline tension. (B–D) Summarized graphs showing the effects of MAF on AUC at
three different sites of the ileal segment. Significant difference (* p < 0.05, ** p < 0.01, and *** p < 0.001)
compared with control.
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Figure 7. Effects of MAF on MMCs in human colonic segments in situ. (A) Representative raw traces
showing that MAF increased MMCs in human sigmoid colon at the proximal, middle, and distal sites
in a dose-dependent manner (25–150 µg/mL). Arrows indicate the points of MAF administration.
Dotted lines indicate the baseline tension. (B–D) Summarized graphs showing the effects of MAF on
AUC at three different sites of the colonic segment. Significant difference (** p < 0.01 and *** p < 0.001)
compared with control.
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Table 3. Relative AUC values (% of control) for MMCs after treatment with each dose of MAF in
human ileal and colonic segments in situ.

Segment Site
Dose of MAF (µg/mL)

25 50 100 150

Ileum
Proximal 131.18 ± 11.66 168.83 ± 22.71 * 206.53 ± 26.27 ** 258.07 ± 17.70 ***
Middle 106.50 ± 3.48 154.00 ± 21.19 174.00 ± 21.74 * 230.75 ± 22.85 ***
Distal 124.00 ± 15.40 144.00 ± 13.68 195.50 ± 25.05 ** 229.75 ± 25.99 ***

Sigmoid colon
Proximal 140.40 ± 13.43 140.00 ± 12.28 186.75 ± 20.40 ** 189.25 ± 17.39 ***
Middle 106.20 ± 5.18 114.80 ± 5.06 132.00 ± 6.10 ** 133.20 ± 7.44 **
Distal 101.25 ± 4.39 108.75 ± 4.61 146.00 ± 7.08 *** 140.25 ± 3.71 ***

Data are expressed as the mean ± SEM (% of each control, n = 5 for each value). * p < 0.05, ** p < 0.01, and
*** p < 0.001 vs. each control.

4. Conclusions

In summary, the results in this study demonstrate that MAF significantly accelerated
the in vivo ITR in mice. Moreover, the potency of MAF, in terms of the ITR, was signifi-
cantly higher than that of cisapride or metoclopramide, suggesting that MAF has potential
as a potent alternative to cisapride and metoclopramide for the treatment of GI motility dis-
orders. This is particularly noteworthy because cisapride, the best-selling prokinetic agent
in the late 1900s, was withdrawn from the market due to its cardiovascular side effects. For
similar reasons, the use of metoclopramide in functional GI tract disorders was restricted
in 2014. The effects of MAF on myogenic and neurogenic smooth muscle contractions in
the human intestine were also investigated by measuring the spontaneous contractions
of smooth muscle strips, smooth muscle contractions induced by neural stimulation, and
MMCs from intestinal segments in the human ileum and sigmoid colon in situ. Both the
myogenic and neurogenic contractions were increased by MAF to enhance the ileal and
colonic motility in the human intestine. Taken together, these results indicate that MAF
enhanced intestinal motility by increasing both myogenic and neurogenic contractions,
thereby accelerating the ITR. These findings suggest that MAF could be a potential ther-
apeutic agent for constipation or other diseases related to GI motility disorders. Further
studies will be needed in regard to isolating the active component(s) from MAF, elucidating
the contractile mechanisms, and evaluating the potential as an effective prokinetic agent
for clinical application in human patients.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/nu15081889/s1, Figure S1: An experimental setup for
recording tension from a colonic segment.
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