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Abstract: Ganoderma lucidum (G. lucidum) has been widely used for its health benefits as an edible
and traditional medicinal mushroom for thousands of years in Asian countries. It is currently used
as a nutraceutical and functional food owing to its major bioactive compounds, polysaccharides and
triterpenoids. G. lucidum exhibits a broad range of hepatoprotective impacts in various liver disor‑
ders, such as hepatic cancer, nonalcoholic fatty liver disease (NAFLD), alcohol‑induced liver disease,
hepatitis B, hepatic fibrosis, and liver injury induced by carbon tetrachloride (CCl4) and α‑amanitin.
G. lucidum protects the liver through a broad range of mechanisms that include the modulation of
liver Phase I and II enzymes, the suppression of β‑glucuronidase, antifibrotic and antiviral actions,
the regulation of the production of nitric oxide (NO), the maintenance of hepatocellular calcium
homeostasis, immunomodulatory activity, and scavenging free radicals. G. lucidum could signify
an encouraging approach for the management of various chronic hepatopathies, and its potential
mechanisms make it a distinctive agent when used alone or with other drugs and applied as a func‑
tional food, nutraceutical supplement, or adjuvant to modern medicine. This review summarizes
the hepatoprotective properties of G. lucidum with its various mechanisms of action on different
liver ailments. Biologically active substances derived from G. lucidum are still being studied for their
potential benefits in treating different liver ailments.

Keywords: hepatoprotective; nutritional constituents; mechanisms; cancer; NAFLD; alcohol

1. Introduction
G. lucidum is a substantial source of nutritionally and pharmacologically important

potential constituents. It has been used as an herbal cure for many years in traditional
Japanese and Chinese medicine [1,2]. The possible pharmacologically active components
and nutritional composition of this traditional treatment have captivated the curiosity of
scientists and researchers wishing to investigate its usefulness [3]. It has been claimed
that the mushroom species G. lucidum can prolong one’s life and improve health. As a
source of distinctive bioactive metabolites, which grants it a number of attributes, it has
been demonstrated to be efficient in the treatment and management of a variety of dis‑
eases [4]. G. lucidum has demonstrated potent anticancer [5,6], anti‑inflammatory [7], hep‑
atoprotective [8], antidiabetic [9], cardioprotective [10], immunomodulatory [11], antioxi‑
dant [12], and antiaging [13] activities. Due to its distinct potential as a medicine, there is

Nutrients 2023, 15, 1874. https://doi.org/10.3390/nu15081874 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu15081874
https://doi.org/10.3390/nu15081874
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0003-0573-4129
https://orcid.org/0000-0001-6948-4582
https://orcid.org/0000-0002-9433-1913
https://orcid.org/0000-0003-1854-2679
https://doi.org/10.3390/nu15081874
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu15081874?type=check_update&version=1


Nutrients 2023, 15, 1874 2 of 22

increased demand in the food sector for it to be used as a significant source for nutrient
supplements [14]. According to reports, the comprehensive immunomodulatory and an‑
tioxidant actions of this substance are primarily responsible for its wide range of medicinal
and pharmacological effects [4,14].

The term “liver diseases” is used to describe a broad range of illnesses that prevent
or impair the liver’s ability to operate. Recent studies have found that G. lucidum has a
variety of hepatoprotective effects on liver illnesses, including alcoholic liver disease [15],
viral hepatitis [16], NAFLD [4], fibrosis [17], hepatic cancer [8], CCl4 and amanitin‑induced
liver injury, etc. [18]. The prevalence of liver illnesses is currently increasing globally, ne‑
cessitating the urgent development of preventive and treatment strategies. Therefore, a
natural alternative with fewer side effects is needed. The biologically active constituents
of G. lucidum are a promising approach to surmount such challenges and provide a poten‑
tial natural hepatoprotective agent [17].

2. Materials and Methods
For the present comprehensive review, we collected evidence through diverse

databases that included Science Direct, Saudi Digital Library, Scopus, Google Scholar and
PubMed. The following keywords were used: G. lucidum, G. lucidum triterpenoids,
G. lucidum polysaccharides (GPLS), β‑glucans, D‑glucans, ganoderic acids, ganoderic acid
A, ganoderic acid B, ganoderic acid C1, G. lucidum triterpenoids extracts, hepatic fibrosis,
hepatic cancer, hepatitis and hepatitis B. The following phrases were included: “G. lucidum
hepatoprotective effects”, “Effect of G. lucidum in hepatic cancer”, “Effect of G. lucidum in
hepatic fibroris”, “Effect of G. lucidum in NAFLD”, “Effect of G. lucidum in CCl4 induced
hepatic injury”, “Effect of G. lucidum in hepatitis B”, “Effect of G. lucidum in formaldehyde
induced hepatic injury”, “Effect ofG. lucidum in α‑Amanitin induced liver injury” and “Ef‑
fect of G. lucidum in alcohol‑induced hepatic injury”. Articles published in English were
chosen to study the hepatoprotective effects of G. lucidum in our literature survey.

3. Nutritional and Bioactive Constituents
Polysaccharides and triterpenoids are two of the main biologically potent components

of G. lucidum. Several monomers—for instance, galactose, glucose, xylose, mannose, fu‑
cose, rhamnose and arabinose—in the composition ofG. lucidum polysaccharide have been
described as significantly contributing to its antioxidant, immunomodulatory, antitumor,
and antibacterial characteristics [19,20]. It is well known that polysaccharides, particu‑
larly D‑glucans, can inhibit angiogenesis and also have immunomodulatory effects on tu‑
mors [8]. Additionally, polysaccharides defend against free radicals and lessen the injuries
that mutagens inflict on cells. In general, polysaccharides of G. lucidum, particularly β‑
glucans, synergistically improve immune system functioning and potentiate immune cells’
anticancer activities and cytokine production, whereas G. lucidum triterpenes inhibit the
cancer cells growth, proliferation and invasion [21–23]. Generally, mushroom polysaccha‑
rides serve as an essential component of the cell walls of fruiting bodies, mycelia and other
portions. They exhibit potent bioactivities in hepatoprotection and anti‑inflammatoryprop‑
erties [24,25]. The majority of mushroom polysaccharides have been discovered to be low
in toxicity to the liver and even have no major side effects, which makes them a scientific
hotspot in the field of natural remedies as well as in the functional food and nutraceutical
industries, particularly for their hepatocellular protection [26,27].

Triterpenes, which include ganoderic acids (GAs), ganodermic acid, lucinedic acids,
ganoderols and lucidones, are the most prevalent terpenes and have been linked to a vari‑
ety of potential benefits against cancer, inflammation, hepatitis, hypoglycemia, microbes
and HIV‑1 [28–30]. Numerous studies have been conducted on G. lucidum’s phenolic
composition, with phenolic acids emerging as the most significant class. These acids in‑
clude chlorogenic, gallic, cinnamic, protocatechuic, p‑coumaric, p‑hydroxybenzoic and p‑
coumaric acids. Anti‑inflammatory, antibacterial, antityrosinase and antioxidant activities
have been linked to these compounds [31–33]. In addition to all of these bioactive sub‑
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stances, the nutritional profile of G. lucidum indicates a high potential for its application as
a functional food and nutraceutical in various forms, such as tablets, pills and capsules [33].
Other complex compounds that have been reported in various research studies include
alkaloids, germanium, nucleotides, glycoproteins, pro‑vitamin D2, coumarins, lysozyme,
flavonoids, enzymes, long‑chain fatty acids, essential amino acids, sterols and different
minerals, such as iron, copper, selenium, magnesium, zinc, potassium, phosphorus and
calcium with vitamins [34,35].

Triterpenoids and polysaccharide‑rich G. lucidum may influence the efficiency of its
hepatoprotective effects by reducing the overabundance of free radicals and preserving
cells from oxidative stress [36]. Through its antioxidant property, G. lucidumwater extract
prevented hepatic damage in mice subjected to acute hepatic injury induced by cadmium
or amanitin [20,37]. Triterpenoids exhibited preventative effects against liver damage in
mice that was caused by D‑galactosamine, amanitin and CCl4. These triterpenoids’ hep‑
atoprotective mode of action has also been proven [37,38]. Different formulas ofG. lucidum,
such as spore oil, sporoderm‑breaking spores and spore powder have proven to be effec‑
tive against hepatic ailments [15,39–41]. Various triterpenoids isolated fromG. lucidum can
be seen in Figure 1.
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4. Potential Mechanisms of Action
G. lucidum iswidely regarded as a potentially valuable, conventional healing approach

for various types of hepatic disorders. G. lucidum is a medicinal mushroom that is also
considered an edible mushroom. G. lucidum possesses immunomodulators and anticancer
activities through various mechanisms of action, demonstrating profound impacts against
various types of cancer and other diseases as well as hepatoprotective activity [11,42]. Im‑
munomodulatory attributes of G. lucidum have been reported in a wide range of diseases
due to its multifaceted mechanism of action. G. lucidum polysaccharide (GLPS) illustrates
immunomodulatory characteristics through the enhancing action of the mononuclear
phagocyte system and antigen‑presenting cells, along with cellular and humoral immu‑
nity. β‑glucans obtained from G. lucidum are predicted to exhibit an immune reaction
via pathogen‑associated molecular patterns (PAMPs) [43]. β‑glucans through the binding
Dectin‑1 receptor existing on various cells, such as monocytes, macrophages, dendritic
cells and neutrophils, generate signal transduction, resulting in activated T cells, mitogen‑
activated protein kinases and nuclear factor‑κB, as well as increasing the production of
cytokines and enhancing immunological response [44,45]. Additionally, there are numer‑
ous arguments in favor of compounds derived fromG. lucidum that demonstrate anticancer
properties through a variety of mechanisms, including host immune response activation,
cytotoxic action on cancer cells, the suppression of angiogenesis, the downregulation of
uPA and uPA receptor expression in cancerous cells and the induction of cell differentia‑
tion [46,47]. The various mechanisms of action exhibited by G. lucidum against different
liver disorders can be seen in Figure 2.

The use of G. lucidum could be a good approach to protecting against a wide range
of hepatic disorders. The mechanisms of G. lucidum’s hepatoprotective impacts are widely
undefined. Nevertheless, substantial evidence suggests a number of mechanisms which
include radical‑scavenging behavior, antioxidant properties, the modulation of hepatic en‑
zymes, β‑glucuronidase inhibition, antiviral and antifibrotic activity, hepatocellular cal‑
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cium maintenance, homeostasis, the production of nitric oxide and the impacts of im‑
munomodulation. Its molecular mechanisms as well as bioactive constituents should be
researched to further enhance the management of hepatic diseases and chemically induced
hepatic complications [17,37,48–50]. The various activities that G. lucidum exhibits against
different hepatic disorders are compiled in Table 1.
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Table 1. Hepatoprotective actions of G. lucidum in different liver disorders.

Hepatic Injury Different Form of
Constituents Hepatoprotective Effects References

Hepatic injury induced
by alcohol

G. lucidum
ethanol extract

• Inhibits high levels of serum TG, TC,
low‑density lipoprotein cholesterol (LDL‑C),
AST and ALT

• Decreases the level of MDA and lactate
dehydrogenase (LDH)

• Increases the levels CAT, GSH, and SOD as well
as alcohol dehydrogenase

[51]

Carbon tetrachloride
(CCl4)‑induced liver injury

G. lucidum
polysaccharides

• Boosts cell survival and prevents an increase in
the marker enzymes GPT, GOT and LDH
caused by CCl4

• Effectively increases the levels of superoxide
dismutase

• It significantly reduces liver weight, total
bilirubin, interleukin (IL)‑1, IL‑18, IL‑6, TNF,
MDA, IL‑1 in serum, IL‑1 and MDA in
liver tissue

[18,52]

Crude polysaccharides
extract

• The contents of MDA, ALT and AST are greatly
reduced by the G. lucidum extract, whereas the
amounts of SOD and CAT are
markedly elevated

• The histopathology of liver tissue, such as
hydropic degeneration and necrosis,
is also improved

[40]

G. lucidum
sporoderm‑breaking
spores

• Significantly decreases the deposition of hepatic
collagen in CCl4‑induced hepatic fibrosis rats

• Reduces TGF‑1 and TIMP‑1 expression,
prevents the synthesis of collagen, and boosts
the decomposition of collagen

[50]

G. lucidum Spores oil
• In CCl4‑induced liver injury model mice, AST

and ALT activity dramatically decrease [39]

Concanavalin A
(CON A)‑induced immune
liver injury

Broken G. lucidum
spores powder

• When compared to the model group, the mice
exposed to broken G. lucidum spore powder
have significantly lower serum levels of ALT
and AST, as well as a significantly lower the rate
of liver inflammatory cell degeneration
and necrosis

[41]

Galactosamine‑induced
liver fibrosis effects

G. lucidum
triterpene extract
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Improves antioxidant ability

[53,54]

Hepatic fibrosis

Ganoderma applanatum
(triterpenoids)
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acid A, C, F

Inhibits the proliferation of hepatic stellate
cells (HSCs) [55]



Nutrients 2023, 15, 1874 9 of 22

Table 1. Cont.

Hepatic Injury Different Form of
Constituents Hepatoprotective Effects References

G. lucidum
spores powder
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G. lucidum spore
polysaccharide

• GLSP triggers macrophages and boosts the
discharge of a range of inflammatory mediators
and cytokines

• GLSP triggers macrophages to block H22 tumor
cells in the G2/M phase as well as PI3K/AKT
signaling pathways to influence the
mitochondrial apoptotic pathway and increase
tumor cell death

[57]

α‑Amanitin Induced
Liver Injury

G. lucidum
aqueous extracts

• Lowers the elevated levels of ALT and AST
• Significantly reduces MDA content in liver [37,58]

Ganoderic acid C2
• Considerably reduces the DNA fragmentation

and decreases caspase 3,‑8 and 9 actions [37]

Non‑alcoholic fatty
liver disease

Fudan‑Yueyang
G. lucidum (FYGL)

• Decreases TC and TG levels in hepatocytes
• Increases the action of enzymes acetyl‑CoA

carboxylase (ACC) and AMP‑activated protein
kinase (AMPK)

• Prevents steatosis induced by the oxidation of
fatty acids by increasing the expression of
carnitine palmitoyl transferase‑1 (CPT‑1)

• FYGL decreases ROS and MDA and boosts total
antioxidant capacity and SOD

• GLPP considerably recovers NAFLD through
the regulation of the synthesis of bile acid
dependent on FXR‑SHP/FGF pathway

[59,60]

Hepatitis B Ganoderic acids • Inhibits the replication of hepatitis B virus [61]

Drug induced liver
injury (Cisplatin)

G. lucidum
mushroom (GLM)

• Decreases ALT, AST and total bilirubin, as well
as oxidative stress markers MDA and H2O2

• Inhibits HMGB‑1/NF‑kB and caspase‑3
• Increases hepatic GSH and SOD

[62]

Formaldehyde (FA) induced
liver fibrosis

G. lucidum
ethanol extract

• Decreases TNF, IL‑1 and IL‑6
• Lowers MDA and hydrogen peroxide levels
• Boosts the GSH and antioxidant enzymes
• Maintains normal range of

myeloperoxidase formation

[17,63]
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Table 1. Cont.

Hepatic Injury Different Form of
Constituents Hepatoprotective Effects References

Obstructive jaundice G. lucidum
polysaccharide

• Reduces the aberrant levels of bilirubin, protein
carbonyl, MDA, thiol and GSH in the plasma
and liver of the common bile duct‑ligated rat

[64]

5. Potential Hepatoprotective Effects
5.1. Protective Effects against Liver Fibrosis

Fibrosis is a condition defined by the excessive accumulation of extracellular matrix
components which can cause organ failure and death. Up to 45% of all fatalities in affluent
countries are caused by fibrosis [65]. Through the TLR4/NF‑kB/MyD88 signaling pathway,
GLPS drastically reduces hepatic fibrogenesis and inflammation in rats. It has also been
shown that GLP strongly suppresses hepatic stellate cells’ activation in mice and in TGF‑
1‑induced HSC‑T6 cells, which can be shown by decreasing the expressions of collagen
I and α‑SMA. RNA‑sequencing has revealed that apoptosis, inflammation, the cell cycle,
ECM–receptor interactions, and the TGF‑β/Smad and TLR4/NF‑κB signaling pathways are
repressed by the administration of GLP. GLP elicits anti‑fibrotic activities that have all been
linked with apoptosis, the inhibition of the cell cycle, the induction of S‑phase arrest in vitro
and the regression of ECM–receptor interaction‑related molecular expression, specifically
integrins ITGA6 and ITGA8 expression [6].

G. lucidum extract (GLE) exhibits potential preventive as well as therapeutic results
in studies of formaldehyde (FA)‑induced liver fibrosis [63]. G. lucidum’s hepatoprotective
effectiveness against hepatic fibrosis induced by FA was assessed by measuring aspartate
aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP).
ALT is a crucial enzyme for liver fibrosis, which leads to catalyzing the transamination
process. Liver fibrosis is directly influenced by the increase in enzyme activity [17,66].
These enzyme levels were noticeably greater in the FA group, but they were also noticeably
lower after treatment with G. lucidum. The pathogenesis of liver fibrosis is significantly
impacted by TNF, IL‑1 and IL‑6. TNF is primarily a group of pro‑inflammatory cytokines
that are known to be crucial in causing liver fibrosis. During hepatotoxic fibrosis, the liver
releases IL‑1, IL‑6 and TNF into the blood. When FA was given to the rats, it was noted
that FA significantly increased the amounts of these cytokines in their livers. The group
that received 100 mg/kg of G. lucidum had significantly lower cytokine levels than those
of the control group. These results provided evidence for the hepatoprotective properties
of G. lucidum [63]. G. lucidum, through lowering malondialdehyde (MDA) and hydrogen
peroxide levels, boosting glutathione (GSH) and antioxidant enzymes, and maintaining
normal ranges of nitrite and myeloperoxidase formation in FA‑treated rats, exhibits liver‑
protective effects [63].

Comprehensive research was conducted on hepatic fibrosis induced by
D‑galactosamine (D‑GalN), and the effects of G. lucidum triterpenes on hepatic fibrosis
were evaluated [53]. The serum marker enzyme (ALT and AST) function, levels of liver
superoxide dismutase (SOD), MDA, and GSH activity were significantly increased in D‑
GalN‑induced liver fibrosis. These parameters were maintained at their usual levels in
mice pretreated with G. lucidum total triterpene extracts. The ideal hepatoprotective out‑
come for the total triterpene extract from G. lucidumwas found at an amount of 180 mg/kg,
based on biological indicators and a liver histopathology investigation [53,54]. These find‑
ings could imply that the obtained G. lucidum triterpenoids had a potent efficacy against
D‑GalN‑induced hepatic fibrosis. The activity of enzymes that neutralize free radicals,
thereby increasing antioxidant potential, may be associated with the hepatoprotective ef‑
ficacy of G. lucidum triterpenoid extract. Ganoderma of other species was also found to be
effective against hepatic fibrosis. Triterpenoids inGanoderma applanatumm such as ganoap‑
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planic acid A, ganoapplanic acids C and F, and ganoapplaniates D, inhibited the prolifer‑
ation of hepatic stellate cells (HSCs) [55].

5.2. Protective Effects against Alcohol‑Induced Liver Injury
Due to the fact that alcohol is one of the most popular psychoactive constituents, al‑

cohol abuse and dependency are progressively becoming a crucial issue on a global scale.
About 2.5 million people each year die as a result of frequent and excessive alcohol con‑
sumption [23]. One of the major dangers in the emergence of many liver illnesses is alcohol‑
induced liver damage. Abuse of alcohol is a pathogenic factor in 10–35% of cases of alco‑
holic hepatitis and 10% of cases of liver cirrhosis [67]. G. lucidum has a number of amazing
advantages for lipid metabolism and liver health. It has been found thatG. lucidum ethanol
extract (high in GAs) exhibits a defensive effect against liver injury induced by alcohol
in mice [68]. In addition to significantly protecting the liver from excessive hepatic lipid
accumulation and pathological changes caused by alcohol, G. lucidum ethanol extract in‑
hibits anomalous upsurges in total cholesterol (TC), serum triglyceride (TG), low‑density
lipoprotein cholesterol, ALT and AST. Additionally, GLE diet interventions significantly
reduce MDA and lactate dehydrogenase (LDH) levels in the liver and increase catalase
(CAT), GSH, alcohol dehydrogenase (ADH) and SOD levels, which all help to combat
alcohol‑induced oxidative stress [51]. In addition, the composition of liver metabolites
in mice consuming excessive amounts of alcohol was examined using liver metabolomics
profiling, and it was found that GLE interventions significantly regulated the amounts of
some biochemical parameters related to primary bile acid biosynthesis, the metabolism
of riboflavin and tryptophan, unsaturated fatty acid biosynthesis, and the metabolism of
fructose and mannose [60]. In addition, a diet with GLE dramatically controlled the levels
of mRNA for important genes linked to fatty acid metabolism, the breakdown of ethanol
and the inflammatory response in the liver. These results suggest that G. lucidum ethanol
extract has the potential to be helpful in reducing alcohol‑induced liver injury [51].

In addition, a study found that GA supplementation significantly reduced abnormally
elevated liver indices, serum lipid parameters, AST, ALT and lipid accumulation in mice
exposed to alcohol [68]. In a specific study on ganoderic acid (GA)‑A, it was reported
that it showed a substantial regulatory effect on liver metabolites’ composition in alcohol‑
exposed mice, particularly biomarker levels linked in the metabolic pathways of riboflavin,
serine, glycine, pyruvate metabolism, unsaturated fatty acid biosynthesis, the metabolism
of ketone bodies, mannose and fructose. Furthermore, dietary supplementation with GA‑
A significantly controlled the mRNA levels of genes involved in lipid metabolism and the
inflammatory response in the liver [69]. In addition, GA interventions controlled the liver’s
mRNA levels of genes involved in metabolism, oxidative stress, bile acid production, and
the metabolism of fatty acids, alcohol and other substances. These findings show that GA
interventions can considerably reduce the effects of alcoholism on the liver, emerging as a
promising novel functional nutrient for alcoholism prevention [69].

5.3. Protective Effects against Non‑Alcoholic Fatty Liver Disease
NAFLD is the term used to describe hepatic steatosis that is not linked to increased al‑

cohol intake or other obvious hepatotoxic factors [70]. The metabolic syndromes of obesity,
diabetes, insulin resistance (IR), hypertension, atherosclerosis, dyslipidemia, systemic in‑
flammation and others are most frequently linked with NAFLD, which is a clinicopatholog‑
ically defined entity. According to studies by Pappachan JM et al. (2014) and Fazel Y et al.
(2016), NAFLD affects 30% of the general population in developed nations and can reach
70% in type 2 diabetic patients or 90% in people who are severely obese. NAFLD refers to
a group of pathologic alterations that start with steatosis and develop into steatohepatitis
(NASH), cirrhosis and hepatocellular cancer [71,72].

Effective drugs against NAFLD are needed. Fudan‑Yueyang G. lucidum (FYGL), a hy‑
perbranched proteoglycan (a composition of lipophilic protein and hydrophilic polysac‑
charide) isolated from G. lucidum, inhibits the steatosis caused by palmitic acid (PA) in
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HepG2 hepatocytes [60]. FYGL significantly reduces TC and TG levels in hepatocytes by
increasing the activity of the enzymes’ acetyl‑CoA carboxylase (ACC) and AMP‑activated
protein kinase (AMPK), which in turn suppresses the expression of the enzymes’ sterol
regulatory element‑binding protein 1 (SREBP1) and fatty acid synthase. Furthermore, this
prevents steatosis induced by the oxidation of fatty acids by increasing the expression of
carnitine palmitoyl transferase‑1 (CPT‑1). In the meantime, FYGL can reduce reactive oxy‑
gen species (ROS) and MDA as well as boost overall antioxidant capacity and SOD [59].
These findings show that FYGL may have the ability to protect hepatocytes from lipid
buildup, oxidative stress and apoptosis, acting as a possible NAFLD treatment.

However, other Ganoderma species, such Ganoderma amboinense, have also demon‑
strated efficacy against liver disease. This species has shown potential action in liver disor‑
ders. According to earlier studies, Ganoderma amboinense polysaccharide (GAP) has protec‑
tive effects on the liver [73]. In one research study, GAP was administered to high‑fat‑diet
(HFD) mice for 8 weeks in order to assess GAP’s potential to prevent NAFLD and investi‑
gate its mode of action. The findings demonstrated that GAP effectively delayed the onset
of NAFLD while also lowering blood lipid levels, liver weight, body weight and liver mass.
By controlling the phosphatidylcholine content in the serum and metabolomics analysis,
it was discovered that GAP increases fat transfer in the liver [74]. Simultaneously, GAP
also controlled certain metabolic pathways as well as protects HFD mouse liver cells’ mito‑
chondrial function, which led to rapid lipid catabolism. These outcomes showed that GAP
could be applied as a potent preventive as well as therapeutic agent, alone or in combina‑
tion with other therapeutic agents for the management of NAFLD [74]. Its multifaceted
mechanisms are depicted in Figure 3.

5.4. Protective Effects against Hepatic Carcinoma
Cancer has become a growing global public health concern. In developed nations, it is

the most common cause of death [75]. G. lucidum chemical compounds have anticancer ac‑
tivities primarily through multiple pathways, such as host immunomodulators, cytotoxic
properties, the induction of metabolizing enzymes, etc. Among the numerous composi‑
tions of GLPS and triterpenoids, G. lucidum is being studied extensively due to numerous
studies in which it has shown effects on cancer [6,8].

Hepatocellular carcinoma (HCC) is one of the world’s most dangerous cancers [76].
Chemoembolization and systemic therapies for HCC remain ineffective due to chronic
liver infection and inflammation. Several studies have discovered an upsurge in CD4+
CD25+ regulatory T cells (Tregs) in both peripheral blood and the tumor microenviron‑
ment in HCC patients, which coincides with a poor prognosis [38,77]. Tregs impair the
anti‑tumor immune reaction and assist tumor cells in evading cellular immunity [78]. Man‑
aging the number and performance of Tregs may therefore be a valuable and successful
HCC therapeutic strategy. The effect of GLPS on the balance of regulatory T cells (Treg)
and effector T cells (Teff) in hepatoma‑bearing mice has been studied. In hepatoma‑bearing
mice, GLPS significantly inhibits tumor growth, which is associated with an increase in
the ratio of Teffs to Tregs. Furthermore, GLPS inhibits Treg’s suppression of Teff’s prolif‑
eration while increasing IL‑2 secretion. A GLPS treatment of T lymphocytes reduced the
expression of FoxP3 and Notch1 by increasing miR‑125b expression [79].

The effects of G. lucidum fruiting body dry extract on peripheral blood lymphocytes
and human liver tumor cells (HepG2/C3A) were assessed. It was discovered that fruiting
body dry extract exhibited toxic effects to tumor cells, reducing their viability by causing
DNA damage and boosting their production of ROS. In contrast, fruiting body dry extract
was hazardous to lymphocytes only at high doses and reduced their viability, whereas at
low quantities, it improved lymphocyte viability. Furthermore, G. lucidum fruiting body
dry extract only caused primary DNA damage at the highest measured dose. As a result,
G. lucidum exhibits cytotoxic and genotoxic activity as well as possible anticancer effects
on malignant liver cells [8]. In order to alter the tumor microenvironment, G. lucidum
spore polysaccharide (GLSP) activates macrophages, controls their polarization and en‑
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courages the discharge of numerous inflammatory mediators and cytokines [8]. Addition‑
ally, it has been discovered that GLSP activates macrophages to block H22 tumor cells in
the G2/M phase as well as PI3K/AKT signaling pathways to influence the mitochondrial
apoptotic pathway and increase tumor cell death. Apoptosis and autophagy are signifi‑
cant molecular developments that preserve organismal and cellular homeostasis, respec‑
tively. Although autophagy preserves cellular homeostasis by recycling specific intracel‑
lular organelles and chemicals, apoptosis performs its function by destroying diseased or
undesirable cells [80]. Therefore, GLSP, a naturally occurring vitamin, has the ability to
change macrophage polarity and potentially affect the activity of the tumor microenviron‑
ment [57,81].
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Moreover, the anti‑invasion impact of GLE on human hepatoma HepG2 cells was as‑
sessed [82]. HepG2 cell invasion caused by both phorbol‑12‑myristate‑13‑acetate (PMA)
and the production of matrix metalloproteinase (MMP)‑9 was prevented by GLE manage‑
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ment in a dose‑dependent manner. GLE inhibited ERK1/2 and the phosphorylation of
protein kinase B in the cytoplasm, along with nuclear factor‑κB and activator protein‑1 lev‑
els in the nucleus of HepG2 cells, which all contributed to the inhibitory effects of GLE on
MMP‑9 production [56]. The suppression of the dosage response in terms of tumor size,
volume and weight on average was observed in a human tumor xenograft model after the
oral administration of GLE. The oral treatment of GLE considerably reduced the quantity
of mice with metastatic tumors, the quantity of affected organs, the number of tumor foci,
and the MMP‑2 and ‑9 actions in mouse serum. These findings indicate that the highly
invasive hepatoma cells’ tumorigenesis and metastasis could be prevented by lucidenic
acid‑rich GLE [56,82]. The mechanisms are depicted in Figure 4.
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5.5. Protective Effect against Carbon Tetrachloride
The CCl4 metabolite trichloromethyl free radical is the major cause of hepatotoxicity.

It binds with tissue macromolecules and then encourages membrane lipid degradation and
finally damages the membrane. It is expected that such progress tends toward lipid peroxi‑
dation [83–85]. According to Sancheti et al. (2013), the liver’s metabolism of CCl4 produces
free radicals, which in turn cause oxidative stress, a combined pathogenic mechanism that
progresses liver damage [86,87]. Hepatocytes undergo apoptosis, necrosis, inflammation
and the development of liver fibrogenesis and fibrosis [88]. In response, oxidative stress
triggers the release of inflammatory cytokines [88,89]. It has been reported that the levels
of MDA, SOD, H2O2 content, GSH and CAT were restored after treatment with GLE, pre‑
serving the enzymes [90]. G. lucidum is a potent antioxidant that significantly inhibits the
elevated MDA level and demonstrates substantial free radical scavenging activity [91,92].

In one study, GLPS was found to have hepatoprotective effects on common carp hep‑
atocyte injury brought on by CCl4. According to the findings, GLPS greatly boosted cell vi‑
ability, suppressed the elevations of the marker enzymes (GOT, GPT and LDH), and MDA
caused by CCl4, and dramatically increased the levels of SOD. The expression of CYP1A
and CYP3A was markedly downregulated during the GLPS treatments, along with extrin‑
sic apoptosis and the immunological inflammatory response. GLPS can prevent hepato‑
cyte injury brought on by CCl4 by decreasing lipid peroxidation, increasing the activities
of antioxidant enzymes, and suppressing apoptosis and the immunological inflammatory
response [18]. Additionally, GPLS was found to have anti‑inflammatory and hepatoprotec‑
tive properties against CCl4‑induced liver injury in Kunming mice [52]. A further similar
study also found that treatment with GA at 10 mg and 30 mg/kg for seven days signifi‑
cantly protected Kunming mice from liver damage produced by carbon CCl4 [61]. Anti‑
inflammatory and hepatoprotective effects of GLPS along with potential mechanisms have
been reported in mice with acute liver injury caused by CCl4. In mice with liver injury,
GLPS dramatically reduced the activation of the NLRP3 inflammasome and enhanced liver
function. It remarkably reduced liver weight, interleukin (IL)‑1, 18, and 6, total bilirubin,
TNF, MDA, and IL‑1 in serum, as well as MDA in liver tissue, which were all markedly
repressed by CCl4‑induced changes in ALT and AST activities in serum. While the GSH
content in hepatocytes was noticeably increased by GLPS, the expression of protein levels
in the liver, such as ASC, NLRP3 and caspase‑1, was reduced [52]. G. lucidum’s effects are
depicted in Figure 5.

5.6. Protective Effect against α‑Amanitin‑Induced Liver Injury
The majority of deadly mushroom poisonings are brought on by Amanita species;

these mushrooms contain amatoxins that cause acute liver failure. A distinguished tra‑
ditional healing mushroom, G. lucidum, exhibits hepatoprotective properties against such
toxicities [58]. G. lucidum triterpenoids’ hepatoprotective effects on liver damage by α‑
amanitin (α‑AMA) in rats were examined, and significant effects were reported through
radical scavenging and antiapoptotic properties. The mice were treated with and moni‑
tored by total or individual triterpenoids of G. lucidum, and the triterpenoids’ hepatopro‑
tective impacts were evaluated by comparing them with silibinin (SIL) [37,93]. The SIL
treatment with G. lucidum’s total triterpenoids decreased death rates by 20–40% and con‑
siderably reduced the serum levels of ALT and AST. In addition, triterpenoids and SIL dra‑
matically increased catalase and SOD activity and decreased MDA levels in the mice livers.
The treatment with GA‑C2 dramatically reduced caspase‑3, ‑8, and ‑9 activity and signifi‑
cantly suppressed DNA fragmentation. The findings showed that triterpenoids have hep‑
atoprotective effects on liver injury induced by α‑AMA, and that these benefits may be
caused by their antioxidative radical‑scavenging properties as well as their prevention of
apoptosis [37].

The effects of GLE on liver damage byα‑AMA were also examined in a similar investi‑
gation, as well as potential mechanisms for hepatoprotection linked to radical scavenging
activity. Mice were given an injection of α‑AMA made from Amanita exitialis, followed
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by the administration of GLE. A reference medicine, SIL, was used to compare GLE’s
hepatoprotective activity. The effects of α‑AMA included a considerable increase in the
serum levels of ALT and AST, as well as a substantial decline in the activities of the an‑
tioxidant enzymes’ catalase and SOD. When compared to the α‑AMA control group, the
treatments with GLE or SIL considerably reduced serum AST and ALT levels, consider‑
ably boosted the actions of CAT and SOD, and significantly diminished the MDA content
in the liver [58].
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5.7. Protective Effects against Hepatitis B Virus
Hepatitis is an inflammation of the liver, and the liver is an important organ for fil‑

tering blood [16]. It distributes nutrients and protects organisms from infections. Inflam‑
matory responses or damage to the liver can impair its function. Hepatitis can be influ‑
enced by chemical compounds, drugs, certain medical conditions and excessive alcohol
consumption. Hepatitis B is an infection caused by the hepatitis B virus (HBV), which
can result in both acute and chronic infections. Cirrhosis and liver cancer may eventu‑
ally appear, having a detrimental impact on people’s health, even though the majority of
those with HBV infections show no symptoms [94,95]. It has been established that GAs
belong to class of bioactive compounds found in G. lucidum [96], which exhibit a potential
role in inhibiting the replication of HBV. The replication of the hepatitis B virus (HBV) in
HepG2215 cells was suppressed for eight days by GA fromG. lucidum at a concentration of
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8 µg/mL. The mice were also significantly protected by GAs from liver damage caused by
M. bovis BCG and lipopolysaccharide (from Escherichia coli 0127:B8) [61,95]. Moreover, the
liquid fermentation broth of G. lucidum was tested for anti‑HBV and hepatoprotective ac‑
tion. Radix Sophorae flavescentis aqueous extract, a Chinese herbal medicine, was added to
the cultured broth. In vitro, the cultured broth exhibited anti‑HBV activity and protected
mice from hepatic injury. Additionally, it has been claimed that co‑fermenting G. lucidum
broth with Radix Sophorae flavescentis aqueous extract results in stronger therapeutic effects
than merely combining these two components [61].

6. Effects on Microbiota and Latest Findings
Excessive alcohol intake is one of the foremost causes of intestinal microbial ailments,

which have been meticulously linked to the pathogenesis of hepatic diseases [97]. It has
been hypothesized that consuming large amounts of alcohol has a significant impact on
the flora in the intestinal tract [98]. In mice consuming large amounts of alcohol, GLE in‑
terventions drastically altered the gut microbial ecology. An earlier study demonstrated
that GLE intervention changed the intestinal microbiota composition in mice subjected to
high‑fat diets [99]. The oral delivery of GLE could alter the intestinal microbiota compo‑
sition in mice consuming excessive amounts of alcohol, according to a hierarchical clus‑
tering study. By boosting the numbers of Faecalibaculum, Lactobacillus, Bifidobacterium and
Romboutsia and lowering the level of Helicobacter, GA intervention altered the composi‑
tion of intestinal microflora, as shown by intestinal microbiota profiling. In addition, liver
metabolomic profiling indicated that GA intervention had a notable regulatory influence
on liver metabolism after drinking too much alcohol [68]. Moreover, water‑soluble polysac‑
charide obtained from G. lucidum spores exhibited substantial effects against cancer and
altered gut microbiota caused by AOM/DSS. The spores increased goblet cells, MUC2 pro‑
duction and tight junction protein expression. They also significantly enhanced gut bar‑
rier function. In addition to reducing the expression of IL‑1, iNOS, and COX‑2, GLP ther‑
apy also prevented macrophage infiltration. Additionally, GLP reduced the inflammatory
markers in macrophage RAW264. 7, intestinal NCM460, HT‑29 cells and the activation of
mitogen‑activated protein kinases. These findings suggest that GLP is a viable prebiotic
for the management of colorectal cancer [100].

The crude polysaccharide of G. lucidum was discovered to have a defensive effect
on liver injury due to H2O2 stress in mice by enhancing oxidative status. Two different
polysaccharides purified from GLP, acidic‑glucan (GLPC2) and neutral‑glucan (GLPB2),
exhibited a stronger hepatoprotective effect against H2O2‑induced liver injury in HepG2
cells [101]. As a proven universal mechanism for cell and tissue destruction, cellular ox‑
idative damage is predominantly caused by ROS. Through enhancing the oxidative state,
GLP demonstrated a protective role against acute hepatic injury produced by constraint
stress. Hydrogen peroxide is a hazardous material that can be transformed into hydroxyl
and oxygen radicals by hepatocytes. Prior studies had revealed that polysaccharides had
hepatoprotective impacts depending on the viability, ALT and AST behavior of H2O2‑
induced HepG2 cells [102]. Hydrogen peroxide induced an upsurge in ALT and AST ac‑
tions in HepG2 cells. GLPB2 and GLPC2 significantly prevented ALT and AST activities
in a concentration‑dependent manner. Furthermore, GLPC2 had more potent inhibitory
effects than GLPB2. The presence of glucuronic acid in GLPC2 may contribute to its better
hepatoprotective effects. According to ongoing studies, polysaccharides can protect the
liver through a number of different mechanisms of action, such as regulating apoptosis
and oxidative stress. Apparently, JAK/STAT, NF‑kB, TGF‑β, MAPK, PI3K/AKT, caspase
cascade, Nrf2‑Keap1 pathways, cytochrome P450 enzymes, and lipid metabolism can be
regulated by polysaccharides [101,102]. In order to confirm the hepatoprotective activity
of GLPC2 in vivo and to understand the underlying mechanism, more research is required.
The findings established a theoretical foundation for the potential application of GPLS as
a hepatoprotective substance in the food and pharma industries [101]. Acute liver failure
is most frequently caused by drug‑induced liver damage. G. lucidum protects from drug‑
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induced hepatic injury through inhibiting HMGB‑1/NF‑kB and caspase‑3. It modulates
oxidative stress and the ensuing cross‑talk between the inflammatory and apoptotic cas‑
cades, revealing its potential contribution to drug‑induced hepatic injury. In addition, the
G. lucidummushroom also exerts hepatoprotective effects against cadmium and tert‑butyl
hydroperoxide (t‑BHP)‑induced hepatic injury [62].

7. Concluding Remarks
G. lucidum is a traditional medicinal and edible mushroom that has a significant role

in preserving human health. The demand for this mushroom is rising across the world
as a medicinal, nutraceutical and functional food. The efficient hepatoprotective action of
the naturally occurring, biologically active compounds confined toG. lucidum is promising
in the endeavor to find successful hepatoprotective substances. Novel drugs from natural
sources that can be alternatives to synthetic medicine with fewer side effects are needed. As
a result, these investigations offer insightful information and a solid foundation for devel‑
oping new medications to treat hepatic disorders from G. lucidum. Because of the global
trend of an increase in the number of people with liver ailments, there is substantial de‑
mand for effective medications that can provide potential outcomes through multifaceted
mechanisms. Moreover, research and clinical trials are in progress to determine the efficacy
of numerous compounds obtained from G. lucidum in support of hepatoprotective activ‑
ity. Studies and more research could make it easier to create medicinal and nutraceutical
formulations that could be used to treat a wide range of diseases, particularly hepatic can‑
cer, hepatitis, hepatic fibrosis and NAFLD. Additional investigations are needed through
different parameters to find out the various unrevealed compounds that could be used in
further experimental and clinical studies to eradicate hepatic disorders.
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