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Abstract: Iron (Fe) metabolism and concentrations change during a sports season. Fe deficiency
affects a significant number of women athletes. The aims of the present study were: (i) to analyze
changes in hematological parameters of Fe status and (ii) to analyze changes in Fe concentrations in
different biological matrices (serum, plasma, urine, erythrocytes, and platelets) during a sports season.
Twenty-four Spanish semi-professional women’s soccer players (23.37 ± 3.95 years) participated
in the present study. Three assessments were performed throughout the sports season (beginning,
middle and end of the season). Nutritional intake was evaluated and female hormones, hematological
parameters of Fe status and Fe concentrations in plasma, serum, urine, erythrocytes and platelets
were determined. There were no differences in Fe intake. Hemoglobin and mean corpuscular
hemoglobin concentrations increased at the end of the season compared to initial values (p < 0.05).
There were no significant changes in extracellular Fe concentrations (plasma, serum, and urine).
However, erythrocyte Fe concentrations were lower at the end of the season (p < 0.05). Hematological
parameters of Fe status and intracellular Fe concentrations change throughout the sports season in
women’s soccer players.

Keywords: mineral elements; football; nutrition; erythrocytes

1. Introduction

Interest in women’s soccer has grown exponentially in recent years. The number of
federated women players in 2019 was 13.3 million, and is estimated to increase to 60 million
by 2026 [1]. The increase in the number of players is paralleled by an increase in the number
of scientific publications on women’s soccer [2]. New research has made it possible to study
the physical and physiological demands of women’s soccer players.

Regular physical training and soccer matches induce important physiological changes
that should be evaluated. Monitoring these changes allows the coaching staff of soccer
teams to adjust training loads [3]. A wide variety of physiological markers have been used
for long-term monitoring of soccer players [4,5]. In particular, hematological markers have
been considered important indicators of the body’s adaptation in response to different
training loads [6]. Control of training intensity and volume could be responsible for changes
in hematological values and iron (Fe) stores [7].

Fe deficiency is the most frequent nutritional deficiency [8,9], being more prevalent
among women [8], and also affecting a large number of athletes [10–12]. Fe deficiencies
have been reported in both individual [13,14] and team sports [8,15,16]. Athletes are at
increased risk of Fe deficiency due to various mechanisms generated by physical training
(hemolysis, Fe losses through sweating, gastrointestinal bleeding, etc.) [17]. Fe deficiency
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leads to impaired performance and early detection is crucial to prevent Fe deficiency and
anemia [9].

Normally, Fe status is assessed indirectly by hematological parameters such as erythro-
cytes, hemoglobin, hematocrit, ferritin, and transferrin [13,18,19] or by direct assessment of
serum Fe. Indirect assessment of Fe through other markers may have certain limitations in
athletes [20]. For example, ferritin levels could only indicate the magnitude of Fe reserves
and not its functional reserve [21]. Detection of Fe deficiency based on ferritin assessment
is limited in athletes as physical training could induce inflammatory responses, especially
in the acute phases, influencing ferritin concentrations [21]. Likewise, hemoglobin assess-
ment might not be adequate since a low hemoglobin level might be due to an expansion
of plasma volume [22]. Due to the limitations, according to previous authors it seems
necessary to develop and implement standard protocols for the evaluation and treatment
of Fe deficiency in women athletes [22]. Regarding the direct assessment of serum Fe, it
is known to have a high diurnal variability. Morning Fe values are higher compared to
values obtained in the afternoon [23]. Therefore, it could be an unreliable measure. Due to
the different limitations of previous markers of Fe status, previous authors recommended
using different markers and compartments to obtain a complete Fe status assessment [24].

Studies that have analyzed Fe status during the sports season, or at a specific time
of the season, have used indirect hematological markers (erythrocytes, hemoglobin, and
ferritin) [8,9,25]. However, to the best of our knowledge, no studies have been found
analyzing hematological markers of Fe status together with Fe concentrations in various
compartments. Therefore, the objectives of the present study were (i) to analyze changes in
hematological parameters of Fe status and (ii) to analyze changes in Fe concentrations in
different biological matrices (serum, plasma, urine, erythrocytes, and platelets) in women’s
soccer players during a sports season.

2. Materials and Methods
2.1. Participants

Twenty-four semi-professional women’s soccer players from a Spanish second-division
team participated in the study. The characteristics of the team are shown in Table 1. All
participants trained and played home matches in the city of Caceres (Spain). The partici-
pants were informed of the objectives of the study by means of a signed informed consent
form. The protocol detailed below was approved by the Biomedical Ethics Committee of
the University of Extremadura (code 135/2020). The technical staff provided information
on the equipment.

Table 1. Participants and training characteristics.

Women’s Soccer Players

N 24
Age (years) 23.37 ± 3.95

Experience (years) 14.51 ± 4.94
Training (weeks) 39

Training sessions (n) 133 ± 25
Training (min) 10,578 ± 3227

Matches played (n) 36
Injuries (nº) 8

Absence from training (days) 14 ± 10

To participate in the study, the women’s soccer players had to meet the following
inclusion criteria: (i) being resident in the same city one month before and during the
study; (ii) not suffering from any type of chronic disease; (iii) not taking medication or
supplementation that included EMT during the study period or the month prior to the
first evaluation; (iv) not smoking or consuming drugs; (v) more than 5 years’ experience
competing in soccer; (vi) not modifying nutritional and physical activity habits during
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the study; (vii) not going more than 30 days without training with the team; (viii) having
regular menstrual cycles for at least six months prior to the start of the study and during
the study; (ix) not suffering from problems related to the menstrual cycle; and (x) not using
hormonal contraceptive methods.

Days before the start of the study, the participants completed a questionnaire to report
on the characteristics of their menstrual cycle [26]. The questionnaire included general
menstrual cycle questions (cycle length, duration of bleeding, age of onset, regularity, and
pain). A researcher was available to assist the participants (Table 2).

Table 2. Menstrual cycle characteristics.

Women’s Soccer Players

Age of first appearance (years) 13.5 ± 1.15
Regular menstruation (%) 100.00

Duration of bleeding (days) 4.77 ± 1.47

Amount of bleeding (%)
Light 11.11

Moderate 77.77
Heavy 11.11

Menstrual cycle (days) 27.93 ± 2.78

Cessation of menstruation (%)
Never 88.88

Sometimes 12.22

2.2. Study Design

The study design was similar to that reported by Toro-Román et al. [26]. The duration
of the study was eleven months, and three assessments were performed: assessment 1 (first
week of training (August)), assessment 2 (mid-season, end of the first regular round (Jan-
uary)) and assessment 3 (last week of training (May–June)). In each assessment, nutritional
intake was evaluated and hematological parameters, female hormones and Fe concentra-
tions in plasma, serum, urine, erythrocytes, and platelets were determined. All assessments
were performed in the same week of each month, in the morning at approximately the
same time and in the same order. At the beginning of the study, to characterize the samples,
anthropometry, body composition and physical condition were evaluated.

2.3. Nutritional Intake

Three days before each assessment, the participants completed a nutritional ques-
tionnaire. A document was provided indicating the amount and frequency of food intake
during the three days prior to the assessments. The nutritional composition of each food
was evaluated [27] and a conversion was carried out to estimate consumption [26]. Intake
of energy, macronutrients, B12, folic acid and Fe were evaluated.

2.4. Blood and Urine Sample Collection

The techniques for obtaining blood and urine samples were similar to those reported
by Toro-Román et al. [26] and Grijota et al. [24].

The participants were summoned at 8:00 a.m. in a fasting state. The players came with
the first urine of the morning collected in 9 mL BD Vacutainer® (Franklin Lakes, NJ, USA)
tubes which were frozen at −80 ◦C until analysis.

Regarding blood samples, 15 mL was drawn using a 20 mL plastic syringe (Injekt,
Braun, Melgunsen, Germany) and a sterile needle (Mirage Pic Solution, Trieste, Italy). Of
the total, 5 mL were collected in Vacutainer® tubes (Franklin Lakes, NJ, USA) with clot
activator to determine hematological and hormonal parameters. The remaining 10 mL
were extracted to determine Fe in different biological compartments.

For plasma, 5 mL of blood were collected in 4 mL BD Vacutainer® tubes with sodium
citrate and centrifuged at 1800 rpm for 8 min. After centrifugation, platelet-rich plasma
and erythrocytes were separated. The platelet-rich plasma was transferred into a 4 mL BD
Vacutainer® tube without additives and centrifuged at 3000 rpm for 10 min to separate the
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plasma from the platelets. The plasma was then transferred into 1.5 mL Eppendorf tubes
and allowed to stand in the freezer until analysis. Then, 1 mL of pure water was added
to the platelets adhering to the bottom of the tube after plasma collection, and they were
vortexed (Cole-Parmer™, Stuart™, Vernon Hills, IL, USA) for dilution. After dilution, the
contents were transferred to Eppendorf tubes and stored cold. Finally, the erythrocytes
remaining after the first centrifugation were washed twice with 1 mL of 0.9% sodium
chloride. After that, they were also collected in Eppendorf tubes and stored at −80 ◦C
until analysis.

2.5. Determination of Hematological Parameters of Iron Status, Female Hormones and Serum Iron

Hematological parameters of Fe status and serum Fe were determined using spec-
trophotometric techniques (Coulter Electronics LTD, Model CPA; Northwell Drive, Luton,
UK). Female hormones were determined by ELISA (enzyme-linked immunosorbent assay),
also with a spectrophotometer. The determination was performed by an external clinical
analysis laboratory.

2.6. Determination of Fe in Plasma, Urine, Erythrocytes and Platelets

The technique was similar to that reported by Grijota et al. [24]. The method was
developed entirely by the research support service of the University of Extremadura using
inductively coupled plasma mass spectrometry (ICP-MS) (7900; Agilent Tech., Santa Clara,
CA, USA). The linearity of the calibration curves for indium in plasma, serum, urine,
erythrocytes, and platelets was greater than 0.985. The equipment was calibrated with
several standards prepared from commercial multi element solutions of certified standards.

For plasma, serum and urine samples, the reagents used were nitric acid (HNO3) 69%
Trace select from Fluka and ultrapure water obtained from a Milli-Q system manufactured
by Millipore (Burlington, MA, USA). A Rhodium solution of 400 µgL−1 was used as
internal standard.

For erythrocyte and platelet samples, the reagents used were 69% HNO3, hydrogen
peroxide, both from Fluka’s Trace Select and ultrapure water obtained from a Milli-Q
system manufactured by Millipore (USA). A 400 µg/L Yttrium and Rhodium solution was
used as internal standard.

The limits of detection (LOD) and limits of quantification (LOQ) of Fe in the different
matrices throughout the investigation were (in µg/L): plasma and serum (LOD = 0.706;
LOQ = 7.06), urine (LOD = 0.630; LOQ = 6.30), erythrocytes (LOD = 0.100; LOQ = 1.00) and
platelets (LOD = 0.190; LOQ = 1.90).

2.7. Anthropometry, Body Composition and Physical Fitness Tests

In the first evaluation, after blood samples were drawn and a free breakfast was eaten,
anthropometry, body composition and physical condition were assessed (Table 3). The
protocol was similar to the study by Toro-Román et al. [26].

Table 3. Anthropometry, body composition and physical fitness characteristics.

Women’s Soccer Players

Height (m) 1.65 ± 0.06
Weight (kg) 59.58 ± 7.17

Σ6 skinfolds (mm) 94.62 ± 18.54
Fat (%) 18.16 ± 2.74
SJ (s) 0.539 ± 0.045

CMJ (s) 0.569 ± 0.055
Incremental test time (min) 9.18 ± 1.12

VO2max (mL/min/kg) 39.72 ± 6.22
VO2max (L/min) 2.28 ± 0.40

Σ: summatory; SJ: squat jump; CMJ: countermovement jump; VO2max: maximum oxygen uptake.
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Height, body weight and skinfolds (abdominal, suprascapular, subscapular, tricipital,
thigh and calf) were evaluated. A wall stadiometer (Seca 220. Hamburg, Germany), a
balance (Seca 769. Hamburg, Germany) and a Holtain© 610ND skinfold compass (Holtain©
610ND) (Holtain© Crymych, UK) were used. Assessments were performed following the
guidelines of the Spanish Group of Kinanthropometry [28]. Fat percentage was estimated
using the Yuhasz formula [29].

Before the physical fitness tests, a general warm-up consisting of hip and knee joint
mobility followed by isometric squats was performed. Afterwards, participants ran for
10 min at 7 km/h.

Vertical jump tests were performed using an infrared platform (Optojump, Mycrogate,
Mahopac, NY, USA). Participants performed two types of vertical jump: the squat jump (SJ)
and countermovement jump (CMJ). For the SJ, participants initiated the movement from
a position with their knees at a 90◦ angle and their arms resting on their hips. They then
performed the vertical jump at the highest possible intensity. For the CMJ, participants
began the execution from an upright position with their hands resting on their hips. Subjects
performed a knee flexion-extension followed by a jump at maximum intensity. In both
jumps, two attempts were performed with 30 s rest between jumps. The best jump was
chosen for analysis.

To assess maximal aerobic capacity, a maximal incremental test was performed on a
treadmill (Ergofit Trac Alpin 4000, Pirmasens, Germany), equipped with a gas analyzer
(Geratherm Respiratory GMBH, Ergostik, Ref 40.400, Corp, Bad Kissingen, Germany).
Participants ran in 1 min stages until exhaustion. The test started at 7 km/h and increased
by 1 km/h every minute at a constant gradient of 1%. The above values were carried out in
assessment 1 and used as descriptive values for the sample.

2.8. Statistical Analysis

A value of p < 0.05 and a value of p < 0.01 were considered significant and highly
significant differences, respectively. The IBM SPSS 25.0 Statistics program (IBM Corp.,
Armonk, NY, USA) was used. A one-way ANOVA was used to determine differences
during assessment. The Bonferroni post hoc test was used to determine specific differences.
The F value was also determined. Figures were created using GraphPad Software 8 Inc.
(Boston, MA, USA). Results are expressed as mean ± standard deviation.

3. Results

Table 4 shows the results of the nutritional intake of the research participants. No
significant differences were observed in any of the parameters analyzed.

Table 4. Nutritional intake.

Women’s Soccer Players F p

Energy
(kcal/day)

Assessment 1 1578.1 ± 316.2

1.188 0.307Assessment 2 1681.5 ± 427.3

Assessment 3 1697.3 ± 386.1

Proteins (g/day)

Assessment 1 90.4 ± 21.6

0.841 0.473Assessment 2 96.2 ± 18.3

Assessment 3 92.6 ± 20.4

Lipids (g/day)

Assessment 1 48.3 ± 12.3

1.467 0.219Assessment 2 55.6 ± 15.3

Assessment 3 60.3 ± 20.6
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Table 4. Cont.

Women’s Soccer Players F p

Carbohydrates
(g/day)

Assessment 1 206.1 ± 81.3

1.956 0.156Assessment 2 241.5 ± 56.1

Assessment 3 235.8 ± 61.7

Folic acid
(µg/day)

Assessment 1 521.4 ± 61.8

1.145 0.391Assessment 2 511.6 ± 49.1

Assessment 3 500.8 ± 61.8

B12 (µg/day)

Assessment 1 5.8 ± 1.7

0.378 0.550Assessment 2 6.1 ± 1.9

Assessment 3 6.4 ± 2.1

Fe (mg/day)

Assessment 1 12.5 ± 2.5

0.247 0.713Assessment 2 12.6 ± 1.8

Assessment 3 12.7 ± 2.6
Fe: iron.

Table 5 shows the evolution of progesterone and estradiol-17β concentrations through-
out the study. There were no significant differences.

Table 5. Concentration of female hormones.

Women’s Soccer Players F p

Progesterone
(ng/mL)

Assessment 1 2.65 ± 3.88

0.052 0.998Assessment 2 2.38 ± 3.21

Assessment 3 2.31 ± 2.89

Estradiol-17β
(pg/mL)

Assessment 1 74.04 ± 45.30

0.165 0.894Assessment 2 71.32 ± 39.25

Assessment 3 68.30 ± 40.93

Table 6 presents the evolution of hematological parameters of Fe status throughout
the sports season. There were significant differences throughout the study in erythrocyte,
hemoglobin and mean corpuscular hemoglobin (MCH) values (p < 0.05).

Table 6. Hematological parameters of Fe status.

Women’s Soccer Players F p

Erythrocytes
(millions)

Assessment 1 4.37 ± 0.22

3.767 0.028Assessment 2 4.19 ± 0.27 **

Assessment 3 4.35 ± 0.27

Hemoglobin
(gr%)

Assessment 1 12.79 ± 0.92

13.414 <0.001Assessment 2 12.29 ± 0.93

Assessment 3 13.82 ± 0.95 ++ˆˆ

Hematocrit (%)

Assessment 1 36.34 ± 2.43

2.371 0.101Assessment 2 34.89 ± 2.61

Assessment 3 35.88 ± 2.43
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Table 6. Cont.

Women’s Soccer Players F p

MCV (fL)

Assessment 1 87.01 ± 3.48

0.184 0.832Assessment 2 86.55 ± 3.22

Assessment 3 87.04 ± 3.17

MCH (Pg)

Assessment 1 29.90 ± 1.39

12.507 <0.001Assessment 2 31.43 ± 1.45 **

Assessment 3 31.75 ± 1.38 ++

Platelets (miles)

Assessment 1 196.00 ± 38.01

2.631 0.079Assessment 2 219.08 ± 34.19

Assessment 3 204.39 ± 31.52

B12 (pg/mL)

Assessment 1 447.95 ± 137.16

0.249 0.780Assessment 2 443.28 ± 103.48

Assessment 3 466.34 ± 96.96

Folic acid
(ng/mL)

Assessment 1 5.24 ± 2.08

0.968 0.385Assessment 2 6.15 ± 2.16

Assessment 3 5.72 ± 1.67

Ferritin (mcg/L)

Assessment 1 32.26 ± 15.31

1.452 0.241Assessment 2 21.62 ± 7.80

Assessment 3 28.00 ± 13.23

Transferrin
(mcg/L)

Assessment 1 270.82 ± 37.92

1.003 0.372Assessment 2 273.16 ± 36.60

Assessment 3 259.08 ± 26.93
** p < 0.01 assessment 1 vs. assessment 2; ++ p < 0.01 assessment 1 vs. assessment 3; ˆˆ p < 0.01 assessment 2 vs.
assessment 3; F: MCV: mean corpuscular volume; MCH: mean corpuscular hemoglobin.

Specifically, there were differences in erythrocyte concentrations between assessment 1
and assessment 2 (p < 0.01), hemoglobin between assessments 1 and 3 (p < 0.01) and
assessments 2 and 3 (p < 0.01), and MCH between assessments 1 and 2 (p < 0.01) and
assessments 1 and 3 (p < 0.01).

Figures 1 and 2 show the extracellular and intracellular Fe concentrations. There
were no significant differences in extracellular Fe concentrations throughout the season
(Figure 1). However, there were significant differences in erythrocyte Fe concentrations,
being lower at the end of the season compared to the initial values (p < 0.01) (Figure 2).

Figure 1 shows the extracellular Fe concentrations during the sports season.
Figure 2 shows the erythrocyte and platelet Fe concentrations during the sports season.
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relative to the number of platelets; ** p < 0.01 assessment 1 vs. assessment 2; ++ p < 0.01 assessment 1
vs. assessment 3; ˆˆ p < 0.01 assessment 2 vs. assessment 3.
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4. Discussion

The objectives of the research study were (i) to analyze changes in hematological pa-
rameters of Fe status and (ii) to analyze changes in Fe concentrations in different biological
matrices (serum, plasma, urine, erythrocytes and platelets) in women’s soccer players
during one season. Different hematological parameters have been used to analyze Fe
status in women’s team sports [8,30,31]. However, to the best of our knowledge, this is the
first study to evaluate Fe concentrations in different compartments (plasma, serum, urine,
erythrocytes and platelets) together with hematological parameters of Fe status. The Fe
concentrations obtained in each compartment, by ICP-MS, were within the ranges reported
in other investigations with similar techniques [32–34].

Fe is an essential mineral for numerous processes such as oxygen transport and energy
production [35]. Women athletes tend to experience a higher incidence of Fe deficiency [36],
possibly as a result of increased demand to compensate for menstruation [8]. Low energy
intake, vegetarian diets, and endurance exercise have also been proposed as factors affecting
Fe stores [36]. In relation to the above, it is important that an athlete’s Fe status is routinely
monitored, and that appropriate action is taken if correction of a deficiency is required.

Monitoring the menstrual cycle is important in studies assessing Fe status because
fluctuations in female sex hormones during the menstrual cycle could influence hematologic
markers of Fe status [37]. Previous studies found reduced levels of serum Fe, ferritin, during
the follicular phase compared to other phases of the menstrual cycle [38,39]. Therefore,
in the present investigation, the characteristics of the menstrual cycle of the participants
were qualitatively studied and two female hormones were determined, with no significant
changes throughout the investigation. Like Fe, other mineral elements could vary their
concentrations throughout the menstrual cycle [40]. Therefore, based on the results, the
assessments were performed at approximately the same phase of the menstrual cycle.

Fe is the most abundant mineral element in the body [41]. When the intake and reserve
of Fe is deficient, physical and cognitive performance decreases [42]. Individuals do not
have mechanisms to restore Fe losses. Therefore, adequate dietary intake is essential for
athletes during periods of intense training [43]. Fe intake was higher than the reference
dietary intake (9–11 mg/day) [44]. Women tend to have lower total dietary intake and, in
turn, lower Fe intake compared to men [45]. Previous authors reported in 16 international
women’s soccer players a mean Fe intake of 12.1 mg/day [46]. On the other hand, mean Fe
intakes of 8.8 mg/day were reported in 41 professional Polish women’s soccer players [47].
Therefore, the Fe intake in the present study was higher than reported studies.

Soccer players exposed to a demanding schedule during a competitive period may be
predisposed to Fe deficiency that could compromise their performance and metabolic health
toward the end of the season [48]. Accumulated fatigue and inadequate recovery time
during a competitive period may predispose soccer players to alterations in Fe status [10].

Athletes often have out-of-range hematological parameters due to various factors
such as regular physical training, physiological and psychological stress, or environmental
conditions, among others [49]. A wide variety of physiological markers have been used
for long-term monitoring of athletes [3]. In particular, hematological markers have been
considered important indicators of the body’s adaptation in response to different training
loads [50]. In the present study, different hematological parameters related to Fe status
were analyzed. The hematological values reported in the present study were lower than
those reported in 28 first- and second-division women players [51] and in 25 elite Korean
women players [25]. In men, no significant changes in hemoglobin, hematocrit, and mean
corpuscular volume (MCV) concentrations were observed over a season [52]. However,
there was an increase in erythrocyte concentrations compared to baseline values. In men’s
soccer players, after 45 days of training, there were decreases in hemoglobin and hematocrit
values [53]. Regarding ferritin and transferrin values, Gropper et al. [54] reported lower
concentrations in 17 university women’s soccer players compared to the present study. On
the other hand, Fallon et al. [55] reported higher ferritin and transferrin concentrations in
Australian women’s soccer players compared to the present study.
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Normally, endurance training causes a decrease in erythrocytes, hemoglobin, and
hematocrit [56]. This could be due in part to the expansion of plasma volume [57] resulting
from an increase in aldosterone production accompanied by osmotically active plasma
proteins. Although not analyzed in the present investigation, previous authors have ob-
served increases in plasma volume along with a decrease in hemoglobin and hematocrit
in soccer players [53], similar to what occurred in the first two assessments in the present
study. Additionally, it is known that physical exercise causes an increase in the rate of
hemolysis as a result of trauma, oxidative damage due to elevated superoxide produc-
tion, or osmotic changes that induce changes in red blood cell volume, increasing their
fragility [14]. Exercise-induced hemolysis has been associated with exercise intensity [58].
During activities involving running or jumping, red blood cells in the capillaries of the
sole of the foot are destroyed by the mechanical forces experienced upon impact with the
ground. These mechanisms may explain why both exercise duration and intensity are
negatively associated with hemoglobin, hematocrit, and serum ferritin concentrations in
highly trained athletes [7]. In relation to the above, Peeling et al. [59] reported a consider-
able influence of physical training on hemolysis, stating that frequent hemolytic episodes
induced by physical training could negatively influence Fe stores.

Regarding extracellular Fe concentrations, no differences were observed throughout
the season in the present study. However, the trend in plasma and urine was incremental,
whereas in serum, Fe concentrations were stable. In urine, increases in Fe elimination
have been observed after strenuous exercise in normothermic and hyperthermic environ-
ments [60]. On the other hand, during 4 days of light physical exercise in older people,
increases in the percentage of people with urinary Fe losses were observed [61]. In cross-
country runners during 2 months of training, mild urinary Fe losses were reported with
no increase in Fe-deficient runners [11]. Regarding plasma concentrations, Mettler and
Zimmermann [62] reported elevated plasma Fe values in active individuals and marathon
runners. On the other hand, Ponorac et al. [63] and Sandström et al. [64] reported lower Fe
concentrations in women athletes compared to a control group.

The possible Increases in plasma and urinary Fe could be multifactorial. Hemolysis
occurring during training, specifically in soccer, could be an important factor [65,66]. The
predominant actions in soccer (jumping, sprinting, changes in direction, kicking, etc.)
could increase muscle damage and hemolysis. Elevated body temperature and metabolic
acidosis reduce the osmotic resistance of erythrocytes. Structural alterations of erythrocyte
membranes increase the susceptibility of these cells to hemolysis, leading to elevated
plasma levels of free Fe [65,66]. On the other hand, increases in urinary Fe may be related
to increases in hematuria levels. Hematuria may result from trauma to the bladder wall
during physical exercise. Fe may also be excreted in the urine due to increased rapid
intravascular hemolysis [67]. Bladder trauma in runners and intravascular hemolysis,
especially in athletes subjected to capillary trauma [68,69], have been implicated as factors
in urinary hemoglobin loss.

As for intracellular Fe concentrations, the reduction of erythrocyte Fe at the end of
the season could be due to the hemolysis produced during the regular physical training
throughout the season discussed above. The half-life of erythrocytes in athletes could be
significantly shorter than in physically inactive subjects [70]. Exercise-induced hemolysis
could be implicated in the suboptimal erythrocyte Fe status of athletes [71]. This could
trigger Fe loss as a consequence of erythrocyte membrane destruction and subsequent
release of hemoglobin and Fe to extracellular compartments [43]. The rate of erythrocyte
destruction could be altered as a consequence of repetitive physical training [72]. Regular
physical exercise causes stressful physiological situations, such as increased oxidative stress,
which may alter erythrocyte membrane properties [70].

Finally, the present study is not without limitations: (i) plasma volume was not
evaluated. During physical exercise, losses of body water can occur through sweating,
which can induce hemoconcentration; (ii) the sample size was not calculated to be able to
understand the magnitude of the sample obtained; (iii) the technical error of measurement
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in the physical condition and anthropometric assessments was not calculated; (iv) the
sample was small; and (v) other indirect markers of Fe status such as transferrin saturation
or total iron binding capacity (TIBC) were not assessed.

5. Conclusions

During a regular sports season, changes occur in the hematological parameters related
to Fe status and intracellular Fe concentrations in women’s soccer players.

Hemoglobin and MCH increase at the end of the season in relation to the initial values.
The number of erythrocytes decreases in the middle of the season and is restored at the
end of the competitive period. Erythrocyte Fe concentrations decreased at the end of the
season compared to initial values. Erythrocyte Fe reduction may increase the extracellular
Fe concentration.

Monitoring hematological parameters of Fe status and total Fe concentrations is
essential to identifying a healthy and optimal performance status. Assessment of Fe status
should not be limited to hematological markers. Moreover, the assessment of total Fe
concentrations should not be limited to plasma or serum because significant changes can
occur intracellular level.
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