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Abstract: Platycodon grandiflorus (balloon flower), used as a food reserve as well as in traditional
herbal medicine, is known for its multiple beneficial effects. In particular, this plant is widely used as
a vegetable in Republic of Korea. We examined the ameliorative effects of P. grandiflorus on alloxan-
induced pancreatic islet damage in zebrafish. The aerial part treatment led to a significant recovery in
pancreatic islet size and glucose uptake. The efficacy of the aerial part was more potent than that of the
root. Eight flavonoids (1–8) were isolated from the aerial part. Structures of two new flavone glyco-
sides, designated dorajiside I (1) and II (2), were elucidated to be luteolin 7-O-α-L-rhamno-pyranosyl
(1 → 2)-(6-O-acetyl)-β-D-glucopyranoside and apigenin 7-O-α-L-rhamnopyranosyl (1→ 2)-(6-O-
acetyl)-β-D-glucopyranoside, respectively, by spectroscopic analysis. Compounds 1, 3, 4 and 6–8
yielded the recovery of injured pancreatic islets in zebrafish. Among them, compound 7 blocked KATP

channels in pancreatic β-cells. Furthermore, compounds 3, 4, 6 and 7 showed significant changes with
respect to the mRNA expression of GCK, GCKR, GLIS3 and CDKN2B compared to alloxan-induced
zebrafish. In conclusion, the aerial part of P. grandiflorus and its constituents conferred a regenerative
effect on injured pancreatic islets.

Keywords: Platycodon grandiflorus; aerial part; flavonoid; pancreatic islet; antidiabetes; KATP channels;
zebrafish

1. Introduction

Platycodon grandiflorus A. DC., a perennial plant belonging to the Campanulaceae
family, is widely distributed and/or cultivated throughout Republic of Korea, Japan, China
and Russia [1,2]. The root of P. grandiflorus (PgR), a well-known traditional herbal medicine
(Platycodi Radix) and food reserve, has been used to treat coughs, sore throats, bronchitis
and purulent diseases. It has been used more often for foodstuffs including vegetables than
for medicinal purposes in Republic of Korea [2,3]. Previously published phytochemical
investigations of P. grandiflorus revealed the presence of various triterpenoidal saponins,
together with flavonoids, phenolic acids, polyacetylenes and sterols [3,4]. Platycodi Radix
and its constituents are known to have various pharmacological effects including anti-
inflammatory, immunostimulatory, apophlegmatic, antitussive, antioxidant, antitumor, an-
tidiabetic, antiobesity, hepatoprotective and cardiovascular system support activities [3,4].

Diabetes mellitus is characterized by hyperglycemia following defects in insulin
secretion or insulin action. Insulin is synthesized in pancreatic islets (PIs) under the
regulation of KATP channels and voltage-gated Ca2+ channels in pancreatic β-cells. When
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KATP channels are shut, insulin is secreted, and when they are open, insulin is inhibited [5].
The opening and shutting of KATP channels involve the cellular utilization of glucose by
various tissues, and KATP channels help regulate blood glucose levels [6]. Glimepiride
(GLM), a sul-fonylurea, closes the KATP channels of pancreatic β-cells and permits Ca2+

inflow, inducing insulin secretion [7]. Furthermore, in pre-diabetic and diabetic states, it is
known that diazoxide inhibits insulin secretion by opening KATP channels [8]. Regarding
insulin secretion and pancreatic development, genome-wide association studies (GWAS)
revealed genes that are related to diabetes mellitus [9].

The antidiabetic activities of Platycodi Radix, which mainly contains triterpenoidal
saponins, have been reported [4]. A Platycodi Radix extract shows a hypoglycemic effect in
streptozotocin-induced diabetic mice [10]. However, the antidiabetic activity of extracts
from the aerial part of P. grandiflorus (PgA) has not been previously described. Accordingly,
we investigated the antidiabetic activity of P. grandiflorus aerial parts in alloxan-induced
diabetic zebrafish. Eight flavonoids including two new flavone glycosides were isolated
from the aerial part of P. grandiflorus by means of activity-guided fractionation and isolation.
Their structures were determined from spectroscopic data, and the antidiabetic efficacy
of isolated compounds was examined in the diabetic zebrafish model. We confirmed
pancreatic islet recovery following treatment with the extract and solvent fractions from the
aerial part with isolated compounds and investigated the effect of the isolated compounds
on KATP channels by diazoxide as a KATP channel opener. Furthermore, the effect of the
isolated compounds on GCK, GCKR, GLIS3 and CDKN2B mRNA expressions in alloxan-
induced zebrafish was confirmed using real-time qPCR.

2. Materials and Methods
2.1. General Experimental Procedures

The melting point was taken using an Electrothermal 9300 (Electrothermal Engineering
LTD). UV spectra were obtained from a Hewlett-Packard HP8453 diode array spectrometer.
NMR experiments were carried out with a Bruker AVANCE III 700 spectrometer (Ettlingen,
Germany). Chemical shifts (δ) are reported in parts per million (ppm), referencing the
solvent used. ESIMS data were obtained on a Waters Acquity Ultra Performance LC-MS
system LCA 048 (Milford, MA, USA). LRFABMS and HRFABMS spectra were obtained on a
JMS-700 M Station Mass Spectrometer (JEOL Ltd., Tokyo, Japan). Column chromatography
and MPLC were performed on Sephadex LH-20 (25–100 µm, Sigma-Aldrich, St. Louis,
MO, USA) and Biotage Isolera One equipped with Biotage® SNAP ULTRA C18 Cartridges
(Uppsala, Sweden), respectively. Thin-layer chromatography was conducted on TLC Silica
gel 60 F254 and TLC Silica gel 60 RP-18 F254S (Merck, Darmstadt, Germany). Fluorescence
microscopy was carried out with an Olympus 1X70 microscope (Japan). Image J (NIH,
Bethesda, MD, USA) and Focus Lite (Focus Co., Seoul, Republic of Korea) were used for
image analysis.

2.2. Plant Material

The aerial parts and roots of P. grandiflorus were obtained from a farm (Bongsan-
myeon, Yesan-gun, Chungcheongnam-do, Republic of Korea) in October 2014. Voucher
specimens (root, SKKU-Ph-14-011; aerial part, SKKU-Ph-14-012) were deposited in the
School of Pharmacy, Sungkyunkwan University.

2.3. Extraction and Isolation

The roots and aerial parts of P. grandiflorus were cut into small pieces and lyophilized
at −50 ◦C for 48 h. Dried roots (1.0 kg) and aerial parts (0.82 kg) were extracted twice with
ethanol (EtOH) at room temperature and once with EtOH at 60 ◦C. Each EtOH extract was
concentrated on a vacuum evaporator to obtain roots (PgR-EtOH, 77.7 g) and aerial parts
(PgA-EtOH, 56.0 g) extracts. The root EtOH extract was subjected to solvent partitioning
to yield dichloromethane (PgR-CH2Cl2 Fr., 2.55 g), ethyl acetate (PgR-EtOAc Fr., 2.80 g),
n-butanol (PgR-BuOH Fr., 13.72 g) and water (PgR-H2O Fr., 52.23 g) fractions (Figure 1A).
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The EtOH extract of aerial parts was suspended in H2O (800 mL) and then sequentially
fractionated with dichloromethane, ethyl acetate and n-butanol. Each solvent fraction
evaporated under reduced pressure to give dichloromethane (PgA-CH2Cl2 Fr., 3.36 g),
ethyl acetate (PgA-EtOAc Fr., 1.25 g), n-butanol (PgA-BuOH Fr., 3.91 g) and water (PgA-
H2O Fr., 72.16 g) fractions (Figure 1B). Among solvent fractions of the aerial part, BuOH
and EtOAc solubles were subjected to activity-guided chromatographic separation. The
BuOH fraction was chromatographed on a Sephadex LH-20 column eluting with MeOH
to yield subfractions B-1 to B-10. Further chromatography of fraction B-7 by RP-18 MPLC
(0.1% formic acid (FA) in MeCN/0.1% FA in H2O = 5:95 to 40:60, gradient elution) afforded
compounds 1 (5.7 mg) and 3 (45.2 mg). Fraction B-5 was rechromatographed on RP-18
MPLC (0.1% FA in MeCN/0.1% FA in H2O = 10:90 to 50:50, gradient elution) to yield
compounds 2 (3.8 mg) and 4 (18.9 mg). Compound 6 (93.1 mg) was obtained by the
recrystallization of fractions B-8 and B-9. The EtOAc fraction was further fractionated on
a Sephadex LH-20 column (MeOH only) to yield six subfractions (E-1 to E-6). Fraction
E-5 was rechromatographed over RP-18 MPLC using 0.1% trifluoroacetic acid (TFA) in
MeCN–0.1% TFA in H2O (5:95 to 25:75, gradient elution) as the eluent to obtain compounds
5 (10.5 mg), 6 (86.6 mg) and 7 (43.2 mg). Fraction E-6 was applied over RP-18 MPLC (0.1%
FA in MeCN/0.1% FA in H2O = 10:90 to 60:40, gradient elution) to yield compound 8
(212.4 mg).
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Figure 1. Extraction and solvent partition schemes of the root and aerial part of P. grandiflorus.
(A) Extraction and fractionation scheme of the root; (B) extraction and fractionation scheme of the
aerial part.

2.4. Chemicals and Reagents

Alloxan, glimepiride (GLM) and sea salts were procured from Sigma Chemical Co. (St
Louis, MO, USA), while 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose
(2-NBDG) was obtained from Invitrogen (Waltham, MA, USA). Furthermore, Diazoxide
(DZ) was obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

2.5. Zebrafish Care and Embryo Collection

Wild-type zebrafishes were kept in a zebrafish S type system ((W) 1500 X (D) 400 X
(H) 2050 mm) (Genomic Design Bioengineering Co., Seoul, Republic of Korea). Spawning
cages were prepared by placing 2 pairs of zebrafish females and males overnight. On
the following day, zebrafish embryos were collected during the light period at 3 h post-
fertilization (hpf) and incubated in Petri dishes with a 0.03% sea salt solution. Embryos



Nutrients 2023, 15, 1798 4 of 16

were maintained in an incubator at 28.5 ◦C in 14 h light: 10 h dark cycles. The animals
under study were subjected to standardized zebrafish protocols that were approved by
the Animal Care and Use Committee of Kyung Hee University, in adherence with ethical
guidelines for animal experimentation.

2.6. Evaluation of Pancreatic Islets Recovery and Glucose Uptake

The assessment of alloxan-induced pancreatic islet damage in zebrafish was conducted
using a previously established protocol [11]. Five-day post-fertilization (dpf), wild-type
zebrafishes were carefully transferred into 24-well plates and exposed to 100 µM alloxan for
15 min, followed by replacement with a 0.03% sea salt solution. Following a 6 h incubation
period, alloxan-induced zebrafish larvae were treated with GLM, PgA-EtOH, PgR-EtOH
and solvent fractions (PgA-CH2Cl2, PgA-EtOAc, PgA-BuOH, PgA-H2O, PgR-CH2Cl2,
PgR-EtOAc, PgR-BuOH and PgR-H2O) or isolated compounds at various concentrations
for 12 h. After the completion of treatment, zebrafish larvae were stained with 40 µM
2-NBDG for 30 min and rinsed with a 0.03% sea salt solution for 20 min. Fluorescence
microscopy was used to capture the pancreatic islet of zebrafish, and subsequently, the
pancreatic islet size and fluorescence intensity were evaluated using Focus Lite (Focus Co.,
Daejeon, Republic of Korea) and Image J software (version 1.50i, National Institutes of
Health, Bethesda, MD, USA)

Glucose uptake was defined as glucose transport across cell membranes into the
cytosol. We analyzed glucose uptake according to the following equation: relative 2-NBDG
glucose uptake = sample (pancreatic islet size × 2-NBDG fluorescence intensity)/normal
(pancreatic islet size × 2-NBDG fluorescence intensity).

2.7. Action of Diazoxide (DZ) on the Efficacy of Isolated Compounds in Alloxan-Induced
Diabetic Zebrafish

The present study employed wild-type zebrafish larvae at five days post-fertilization
(dpf), which were distributed across 24-well plates and organized into 16 groups. The
groups were as follows: normal, normal treated with DZ or alloxan, alloxan-induced
diabetic zebrafish treated DZ, 1, 1 + DZ, 3, 3 + DZ, 4, 4 + DZ, 6, 6 + DZ, 7, 7 + DZ, 8 and
8 + DZ. The following dosages were used: isolated compounds (1, 3, 4 and 6–8) at 10 µM
each and DZ at 25 µM. The zebrafish larvae were treated with a 100 µM concentration of
alloxan for 15 min and then exposed to a 0.03% sea salt solution for 6 h. Alloxan-induced
zebrafish larvae were treated (or co-treated) with each compound for 12 h. After the
completion of treatment, pancreatic islet images were stained with 40 µM 2-NBDG for
30 min and captured using fluorescence microscopy as described above.

2.8. Evaluation of mRNA Expression Using RT-qPCR

The total RNA was extracted from alloxan-induced zebrafish larvae after treatment
with or without compounds 3, 4, 6 and 7 using a TRIzol reagent (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s instructions. The quantified total RNA was
synthesized to complementary DNA (cDNA) using the Rever Aid First Strand cDNA
Synthesis Kit (Thermo Fisher Scientific Korea Ltd., Seoul, Republic of Korea). SYBR Green
Master mix (Applied Biosystems, Thermo Fisher Scientific Korea Ltd., Seoul, Republic
of Korea) and specific primer pairs (Table 1) were used for RT-PCR, which was carried
for 45 cycles of 95 ◦C for 15 s, 60 ◦C for 15 s and 72 ◦C for 20 s. The data were analyzed
according to the equation of the −2∆∆Ct method [12], and Beta-actin (β-actin) was used as
the endogenous control.
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Table 1. Primer sequences for RT-PCR.

Gene Forward Primer Reverse Primer

GCK 5′-ATCCTCATGGTGGACCAA-3′ 5′-ATCACCAACCTCGGAGC-3′

GCKR 5′-CTGTGAAAGGGCTCTACTGA-3′ 5′-AGCAAGAGTACAGCCACACT-3′

GLIS3 5′-ATACACTCACACTGCCCTTC-3′ 5′-GGACAGTGGATTCTGACAAC-3′

CDKN2B 5′-CGGAGTGAATGCCAATCTG-3′ 5′-CTGTTCCAGCAGCACAAGAG-3′

β-actin 5′-CGAGCTGTCTTCCCATCCA-3′ 5′-TCACCAACGTAGCTGTCTTTCT-3′

2.9. Statistical Analyses

The statistical analysis was executed using GraphPad Prism (version 5). The data
were presented as the mean ± standard error of the mean (SEM). To determine statistical
significance, repeated one-way analysis of variance (ANOVA) followed by Tukey’s test was
conducted. A significance level of p < 0.05 was considered statistically significant.

3. Results
3.1. Efficacy of PgA-EtOH, PgR-EtOH and Their Solvent Fractions in Alloxan-Induced
Diabetic Zebrafish

In this study, we aimed to induce pancreatic islet damage in zebrafish via the ad-
ministration of alloxan, a well-established diabetogenic chemical that has been shown to
decrease β-cell mass in pancreatic islets [13]. In a previous investigation, we reported the
use of alloxan-induced zebrafish as a type 1 diabetes model with decreased pancreatic
islet and β-cell size [11]. To visualize glucose uptake by pancreatic islets, we employed
Image J software to generate a histogram that represented pixel intensity (green color)
levels ranging from 0 to 255. The average size of pancreatic islets in 5-day-old zebrafish
was approximately 1109.89 ± 200.13 µm2. However, in zebrafish with alloxan-induced
pancreatic islet damage, the size of pancreatic islets was significantly reduced by 33.2%
(p = 0.0001) compared to the control group. When compared to the alloxan-induced group,
the pancreatic islet size in both the GLM-treated and PgR-EtOH extract-treated groups
significantly increased by 29.4% (p = 0.0019) and 18.0% (p = 0.0147), respectively. The islet
size also increased significantly in the PgR-CH2Cl2 and PgR-EtOAc fraction-treated groups
(26.7%, p = 0.0066, and 28.4%, p = 0.0053, respectively). The PgR-BuOH and PgR-H2O
fraction-treated groups showed no pancreatic islet recovery after alloxan damage. The
PgA-EtOH extract-treated pancreatic islet size significantly increased by 25.5% (p = 0.0093).
The PgA-EtOH treatment led to a 6.0% greater increase in pancreatic islet size than the
PgR-EtOH treatment. Furthermore, the PgA-CH2Cl2, PgA-EtOAc and PgA-BuOH fraction-
treated groups showed significantly increased pancreatic islet size (27.6%, p = 0.0063; 22.4%,
p = 0.0491; and 29.2%, p = 0.0056, respectively). The pancreatic islet size of the PgA-H2O
fraction-treated group increased by 4.5% compared to the alloxan group (Figure 2A,C).

Glucose uptake was evaluated in zebrafish treated with PgR-EtOH and PgA-EtOH
extracts and associated solvent fractions by detecting the uptake of 2-NBDG fluorescence
within the pancreatic islets. After alloxan induction, the uptake of 2-NBDG in pancreatic
islets significantly decreased (p < 0.0001) compared to the normal group. Glucose uptake by
the GLM-treated group was significantly higher (p = 0.0024) than that of the alloxan-treated
group (negative control). The PgR-CH2Cl2 and PgR-H2O fraction-treated groups also
demonstrated significantly greater glucose uptake (p = 0.0026 and p = 0.0176, respectively)
compared to the alloxan group. However, the PgR-EtOH extract-treated group and PgR-
EtOAc and PgR-BuOH fraction-treated groups showed no significant difference. The
glucose uptake of the PgA-EtOH extract-treated group and the PgA-CH2Cl2 and PgA-
BuOH fraction-treated groups was significantly greater than that of the alloxan-treated
group (p = 0.0012, p = 0.0252 and p = 0.0014, respectively). The PgA-EtOAc and PgA-H2O
fraction-treated groups showed no significant difference. PgA-EtOH led to a significant
increase in glucose uptake (31.2%) over PgR-EtOH (Figure 2B).
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Figure 2. Effect of extracts and solvent fractions from the aerial part and root of P. grandiflorus on an
alloxan-induced diabetic zebrafish. (A) Change in pancreatic islet size caused by GLM, PgR-EtOH
and PgA-EtOH extracts (10 µg/mL) and their solvent fractions (10 µg/mL); (B) relative 2-NBDG
uptake in pancreatic islet caused by GLM, PgR-EtOH and PgA-EtOH extracts and their solvent
fractions; (C) fluorescent microscopic images of the pancreatic islet (### p < 0.001; compared to NOR)
(* p < 0.05, ** p < 0.01; compared to AX) (+ p < 0.05). Scale bar = 100 µm.

3.2. Efficacy of PgA-EtOAc and PgA-BuOH Fractions in Alloxan-Induced Diabetic Zebrafish

To evaluate the dose-dependency of PgA-EtOAc and PgA-BuOH fractions, we treated
alloxan-induced zebrafish larvae with the fractions at concentrations of 0.1, 1, 10, 50 and
100 µg/mL for 12 h. The PgA-EtOAc fraction at 1 µg/mL had the greatest increase in
pancreatic islet size (54.13%, p = 0.0031) and glucose uptake (p = 0.0004); the effect gradually
decreased at higher concentrations (Figure 3). Treatment with the PgA-BuOH fraction
caused dose-dependent increases between 0.1 and 100 µg/mL; at 100 µg/mL, the pancreatic
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islet size increased by 97.7% (p = 0.0008) compared to the alloxan group, and glucose uptake
was also significantly higher than that of the negative control group (p = 0.0018) (Figure 4).
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(A) Change in pancreatic islet size caused by the GLM and PgA-BuOH fraction; (B) relative 2-NBDG
uptake in pancreatic islet caused by GLM and PgA-BuOH; (C) fluorescent microscopic images of
the pancreatic islet. Scale bar = 100 µm (### p < 0.001; compared to NOR) (* p < 0.05, ** p < 0.01,
*** p < 0.001; compared to AX). Scale bar = µm.
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3.3. Isolation and Identification of Compounds 1–8

The EtOH extract of the aerial part of P. grandiflorus was successively partitioned
between water and organic solvents (CH2Cl2, EtOAc and n-BuOH). The n-BuOH and EtOAc
solubles, which showed stronger activity than the other fractions, were fractionated by
Sephadex LH-20 column chromatography. Selected fractions were rechromatographed by
using RP-18 MPLC to yield compounds 1–8. Six known flavonoids (3–8) were identified as
luteolin 7-O-β-D-neohesperidoside (lonicerin, 3) [14], apigenin 7-O-β-D-neohesperidoside
(rhoifolin, 4) [15–17], luteolin 7-O-(6”-O-acetyl)-β-D-glucopyranoside (5) [18,19], luteolin 7-
O-β-D-glucopyranoside (6) [19,20], apigenin 7-O-β-D-glucopyranoside (7) [21] and luteolin
(8) [14,22] by comparing their spectroscopic data with values from the literature (Figure 5).
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Dorajiside I (1): yellowish amorphous powder; mp 167–168 ◦C; UV (MeOH) λmax (log
ε) 255 (4.33), 266sh (3.88), 350 (4.54); ESIMS (positive ion mode) m/z 637 [M + H]+; FABMS
(positive ion mode) m/z 637 [M + H]+; HRFABMS (positive ion mode) m/z 637.1770
[M + H]+ (calcd for C29H33O16, 637.1769); 1H NMR (700 MHz, CD3OD) and 13C NMR
(176 MHz, CD3OD) data are presented in Table 2.

Dorajiside II (2): yellowish amorphous powder; mp 183–184 ◦C; UV (MeOH) λmax
(log ε) 267 (4.30), 335 (4.55); ESIMS (positive ion mode) m/z 621 [M + H]+; FABMS (pos-
itive ion mode) m/z 621 [M + H]+, 643 [M + Na]+; HRFABMS (positive ion mode) m/z
621.1818 [M + H]+ (calcd for C29H33O15, 621.1819); 1H NMR (700 MHz, DMSO-d6) and 13C
NMR (176 MHz, DMSO-d6) data are presented in Table 2.
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Table 2. 1H and 13C NMR data of compounds 1 and 2.

C/H
Dorajiside I 1 Dorajiside II 2

δH (J in Hz) δC δH (J in Hz) δC

2 - 167.0 - 164.4
3 6.63s 104.4 6.81 s 103.2
4 - 184.2 - 182.0
5 - 163.2 - 161.6
6 6.49 d (2.0) 101.0 6.30 d (2.1) 99.4
7 - 164.4 - 162.3
8 6.74 d (1.8) 96.2 6.68 d (2.2) 94.5
9 - 159.0 - 157.0

10 - 107.2 - 105.5
1′ - 123.6 - 120.9
2′ 7.42 brs 114.4 7.87 d (8.8) 128.6
3′ - 147.3 6.87 d (8.8) 116.1
4′ - 151.4 161.2
5′ 6.93 d (8.1) 116.9 6.87 d (8.8) 116.1
6′ 7.44 brd (8.1) 120.6 7.87 d (8.8) 128.6

Glc 1′ ′ 5.20 d (7.7) 99.8 5.20 d (7.7) 97.6
2′ ′ 3.73 t (8.2) 79.1 3.47 dd (9.1, 7.8) 76.2
3′ ′ 3.67 t (8.8) 79.1 3.72 m 76.9
4′ ′ 3.40 t (9.4) 71.9 3.13 m 69.9
5′ ′ 3.79 brt (8.4) 75.6 3.43 brt (8.5) 73.8
6′ ′ 4.23 dd (11.9, 7.4) 64.9 4.28 dd (11.9, 1.9) 63.3

4.48 brd (11.2) 3.99 dd (12.0, 7.4)
Ac C=O 172.9 170.2

CH3 2.09 s 20.9 1.94 s 20.6
Rha 1′ ′ ′ 5.32 d (1.2) 102.7 5.05 d (1.5) 100.6

2′ ′ ′ 3.97 m 72.3 3.63 brs 70.4
3′ ′ ′ 3.64 dd (9.5, 2.3) 72.3 3.27 m 70.5
4′ ′ ′ 3.45 t (9.6) 74.1 3.15 m 71.9
5′ ′ ′ 3.99 m 70.2 3.69 m 68.4
6′ ′ ′ 1.38 d (6.2) 18.4 1.14 d (6.2) 18.1

1 Spectra were taken in CD3OD; 2 spectra were taken in DMSO-d6.

Compound 1 was obtained as a yellowish amorphous powder. The molecular C29H32O16
formula of 1 was deduced with HRFABMS data (Figures S1–S3). The UV spectrum revealed
absorption maxima at 255 and 350 nm, suggestive of a flavone structure. The 1H NMR
spectrum of 1 (Figure S4) showed signals for a 5,7,3′,4′-tetrahydroxyflavone (luteolin) at
δH 6.49 (d, J = 2.0 Hz), 6.63 (s), 6.74 (d, J = 1.8 Hz), 6.93 (d, J = 8.1 Hz), 7.42 (brs) and 7.44
(brd, J = 8.1 Hz). Additionally, signals at δH 5.20 (d, J = 7.7 Hz) and 5.32 (d, J = 1.2 Hz)
were assigned to anomeric protons for two sugars; signals at δH 1.38 (d, J = 6.2 Hz) and
2.09 (s) were matched with rhamnose methyl and acetyl groups, respectively. The 13C
NMR spectrum of 1 (Figure S5) exhibited signals for a 5,7,3′,4′-tetrahydroxyflavone (δC 96.2,
101.0, 104.4, 107.2, 114.4, 116.9, 120.6, 123.6, 147.3, 151.4, 159.0, 163.2, 164.4, 167.0 and 184.2),
two sugars (δC 18.4, 64.9, 70.2, 71.9, 72.3, 72.3, 74.1, 75.6, 79.1, 79.1, 99.8 and 102.7) and
an acetyl group (δC 20.9 and 172.9). The 13C NMR data for the two sugars and the acetyl
group suggested the presence of 6-O-acetyl neohesperidose, and the data fitted well with
values from the literature [23]. All proton and carbon signals of 1 were interpreted based
on 2D-NMR data (Figures S6–S8). The locations and connectivity of the two sugars and the
acetyl group were determined from HMBC correlations (Figure S8) and are summarized in
Figure 6. The acetate group, glucose and rhamnose units were assigned to C-6 of glucose,
C-7 of luteolin and C-2 of glucose, respectively, because of their HMBC correlations: glucose
H-6/C=O of Ac; glucose H-1/luteolin C-7; and rhamnose H-1/glucose C-2 and glucose
H-2/rhamnose C-1 (Figure 6). In addition, anomeric configurations for sugar units were
determined as β-glucosyl and α-rhamnosyl from the coupling constants of anomeric
protons (glucose H-1, J = 7.7 Hz; rhamnose H-1, J = 1.2 Hz). Thus, the structure of 1 was



Nutrients 2023, 15, 1798 10 of 16

confirmed as luteolin 7-O-α-L-rhamnopyranosyl (1→ 2)-(6-O-acetyl)-β-D-glucopyranoside,
and it was designated as dorajiside I.
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Compound 2, a yellowish amorphous powder, was assigned the C29H32O15 molecular
formula on the basis of HRFABMS data (Figures S9–S11). The UV absorption maxima (267
and 335 nm) of 2 supported the existence of the flavone skeleton. The 1H and 13C NMR
data of 2 (Figures S12 and S13) were similar to those of 1 except for the H/C signals for
the B-ring of the flavone structure. The 1H and 13C NMR spectra of 2 exhibited signals
for a 5,7,4′-trihydroxyflavone (apigenin) at δH 6.30 (d, J = 2.1 Hz, H-6), 6.68 (d, J = 2.2 Hz,
H-8), 6.81 (s, H-3), 6.87 (d, J = 8.8 Hz, H-3′, 5′) and 7.87 (d, J = 8.8 Hz, H-2′, 6′); and δC
94.5 (C-8), 99.4 (C-6), 103.2 (C-3), 105.5 (C-10), 116.1 (C-3′, 5′), 120.9 (C-1′), 128.6 (C-2′, 6′),
157.0 (C-9), 161.2 (C-4′), 161.6 (C-5), 162.3 (C-7), 164.4 (C-2) and 182.0 (C-4). The NMR data
(Figures S12–S16) implied the presence of an acetyl group, and a glucose and a rhamnose
units. The configurations for the glucose and rhamnose units were determined as β- and
α-anomeric configurations, respectively, from a large coupling constant (J = 7.7 Hz) for
glucose H-1 at δH 5.20 and a small coupling constant (J = 1.5 Hz) for rhamnose H-1 at δH
5.05. The HMBC correlations (H-1′ ′/C-7, H-2′ ′/C-1′ ′ ′, H-6′ ′/acetyl C=O and H-1′ ′ ′/C-2′ ′)
revealed that 2 had the same connectivity for the disaccharide and acetyl group as that of 1
(Figure 6 and Figure S16). Therefore, the structure of compound 2 was determined to be an
apigenin 7-O-α-L-rhamnopyranosyl (1→ 2)-(6-O-acetyl)-β-D-glucopyranoside and was
named dorajiside II.

3.4. Effect of Compounds Isolated from the PgA-EtOAc and PgA-BuOH Fractions on
Alloxan-Induced Diabetic Zebrfish

To evaluate the efficacy of isolated compounds, we treated alloxan-induced zebrafish
larvae with each compound at 0.1 and 1 µM for 12 h. In alloxan-induced diabetic zebrafish,
pancreatic islets decreased by 41.3% (p = 0.0002) compared to the normal group, and
pancreatic islets in GLM-treated zebrafish increased by 59.5% (p = 0.0001) compared with
the alloxan group. Compound 1 caused significant recovery at 1 µM (67.4%, p = 0.0019),
while compound 2 at 0.1 µM increased pancreatic islets by 28.0% (p = 0.1032), but this
did not reach the level of significance. Compound 3 significantly increased islets at all
concentrations, with the largest increase at 1 µM (77.9%, p = 0.0002). Compound 4 potently
increased islets by 87.5% (p < 0.0001) at 1 µM. The group treated with 5 was not meaningfully
different compared to the alloxan group. The groups treated with compounds 6 and 7
each had significantly increased islets at 1 µM by 72.2% (p = 0.0015) and 41.5% (p = 0.0235),
respectively. Compound 8 showed strong efficacy at 1 µM (42.9%, p = 0.0160) (Figure 7).
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Figure 7. Efficacy of compounds 1–8 on alloxan-induced diabetic zebrafish: changes in pancreatic
islet size caused by GLM and compounds 1–8 (### p < 0.001; compared to NOR) (* p < 0.05, ** p < 0.01,
*** p < 0.001; compared to AX).

3.5. Effect of Isolated Compounds on KATP Channels in Alloxan-Induced Diabetic Zebrafish

The involvement of KATP channels in the regulation of pancreatic β-cell function was
investigated by utilizing DZ as a KATP channel opener. The pancreatic islet size of the
DZ-treated normal group was significantly reduced (by 28.8%, p = 0.0256) compared to
the normal group without DZ, providing evidence for the action of KATP channels in this
process. In contrast, there was no significant difference in the alloxan group after treatment
with DZ. Compounds 1, 3, 4, 6 and 8 were found to be unrelated to KATP channels, as there
was no significant difference observed following the DZ treatment. However, the group
treated with compound 6 and DZ (25 µM) showed a weak recovery of pancreatic islets
compared to compound 6 alone. Co-treatment with compound 7 and 25 µM DZ resulted in
a significantly smaller pancreatic islet size (by 35.7%, p = 0.0141) compared to the group
treated with compound 7 alone (Figure 8).
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Figure 8. Effect of the isolated compounds for KATP channel on alloxan-induced diabetic zebrafish:
the action of diazoxide (DZ) in the efficacy of compounds 1, 3, 4 and 6–8 (# p < 0.05, ## p < 0.01;
compared to NOR, (* p < 0.05, ** p < 0.01, *** p < 0.001; compared to AX) (+ p < 0.05, ++ p < 0.01).
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3.6. Effect of Isolated Compounds on mRNA Expression of GCK, GCKR, GLIS3 and CDKN2B in
Alloxan-Induced Diabetic Zebrafish

The mRNA expressions of GCK, GCKR, GLIS3 and CDKN2B, known to be related
to diabetes mellitus, were examined by RT-PCR. As shown in Figure 9, alloxan-induced
zebrafish larvae (AX) significantly decreased upon GCK and CDKN2B mRNA expression
and increased upon GCKR and GLIS3 mRNA expression compared with the normal group
(NOR). In contrast, most, if not all, sample treatments showed the opposite tendency to
the mRNA expression in alloxan-induced zebrafish. In particular, compound 3 showed
significant changes in GCK, GCKR and GLIS3 mRNA expression compared to alloxan-
induced zebrafish.

Nutrients 2023, 15, x FOR PEER REVIEW 13 of 17 
 

 

GCK

NOR AX 3 4 6 7
0.0

0.5

1.0

1.5

2.0
*

***

**

#

R
e
la

ti
v
e
 m

R
N

A
 e

x
p

re
s
s
io

n

GCKR

NOR AX 3 4 6 7
0

1

2

3

4

*

###

R
e
la

ti
v
e
 m

R
N

A
 e

x
p

re
s
s
io

n

GLIS3

NOR AX 3 4 6 7
0.0

0.5

1.0

1.5

2.0

**

** **

#

R
e
la

ti
v
e
 m

R
N

A
 e

x
p

re
s
s
io

n

CDKN2B

NOR AX 3 4 6 7
0.0

0.5

1.0

1.5

2.0

*

#

R
e
la

ti
v
e
 m

R
N

A
 e

x
p

re
s
s
io

n

A

D

B

C

 

Figure 9. Effect of isolated compounds (3, 4, 6 and 7) on the mRNA expressions of (A) GCK, (B) 

GCKR, (C) GLIS3 and (D) CDKN2B in alloxan-induced zebrafish larvae. Values are expressed as 

means ± SD (# p < 0.05, ### p < 0.001; compared to NOR) (* p < 0.05, ** p < 0.01, *** p < 0.001; compared 

to AX); n = 3. 

4. Discussion 

The zebrafish (Danio rerio) has been widely recognized as an established model 

organism in the field of biomedical research, particularly for investigating the underlying 

pathophysiology of diverse metabolic disorders. Many methods, including genetic 

mutation, chemical induction and dietary alteration, have been used for inducing 

metabolic disease models in zebrafish [24,25]. Recently, studies on pancreas development 

and modulation in zebrafish have been applied as a model for diabetes and indicate that 

this model is closely associated with diabetes [26,27]. In addition, it was confirmed that 

the studies using zebrafish are a good animal model for diabetes research from the efficacy 

of glimepiride, a common drug for the treatment of diabetes, and it is used as a positive 

control in previous studies [13,28]. 

In this study, we determined the recovery effects of PgR-EtOH and PgA-EtOH 

extracts and their solvent fractions on damaged pancreatic islets in a diabetic zebrafish 

model. Alloxan significantly decreased the size of pancreatic islets in zebrafish. The 

measurement of cellular glucose absorption is a widely employed method in diabetes 

studies, with 2-NBDG being the commonly used fluorescent marker. Glucose uptake is a 

crucial biological process for maintaining glucose homeostasis, but it is reduced in the 

presence of pancreatic β-cell damage [29]. In this study, we utilized 2-NBDG to monitor 

glucose uptake, which is a novel fluorescent marker obtained via the modification of 

glucose with an amino group at the C-2 position [30]. To serve as a positive control, we 

employed GLM, which is known to promote insulin secretion by closing KATP channels 

Figure 9. Effect of isolated compounds (3, 4, 6 and 7) on the mRNA expressions of (A) GCK, (B) GCKR,
(C) GLIS3 and (D) CDKN2B in alloxan-induced zebrafish larvae. Values are expressed as means ± SD
(# p < 0.05, ### p < 0.001; compared to NOR) (* p < 0.05, ** p < 0.01, *** p < 0.001; compared to AX);
n = 3.

4. Discussion

The zebrafish (Danio rerio) has been widely recognized as an established model or-
ganism in the field of biomedical research, particularly for investigating the underlying
pathophysiology of diverse metabolic disorders. Many methods, including genetic mu-
tation, chemical induction and dietary alteration, have been used for inducing metabolic
disease models in zebrafish [24,25]. Recently, studies on pancreas development and modu-
lation in zebrafish have been applied as a model for diabetes and indicate that this model is
closely associated with diabetes [26,27]. In addition, it was confirmed that the studies using
zebrafish are a good animal model for diabetes research from the efficacy of glimepiride, a
common drug for the treatment of diabetes, and it is used as a positive control in previous
studies [13,28].
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In this study, we determined the recovery effects of PgR-EtOH and PgA-EtOH extracts
and their solvent fractions on damaged pancreatic islets in a diabetic zebrafish model.
Alloxan significantly decreased the size of pancreatic islets in zebrafish. The measurement
of cellular glucose absorption is a widely employed method in diabetes studies, with 2-
NBDG being the commonly used fluorescent marker. Glucose uptake is a crucial biological
process for maintaining glucose homeostasis, but it is reduced in the presence of pancreatic
β-cell damage [29]. In this study, we utilized 2-NBDG to monitor glucose uptake, which is
a novel fluorescent marker obtained via the modification of glucose with an amino group
at the C-2 position [30]. To serve as a positive control, we employed GLM, which is known
to promote insulin secretion by closing KATP channels [31,32]. The results of our study
demonstrated that both pancreatic islet size and glucose uptake were significantly higher
in the GLM-treated group when compared to the alloxan group. There have been many
reports on the chemical constituents and pharmacological activities of P. grandiflorus root,
but the aerial part of P. grandiflorus has received much less attention [4,33,34]. Accordingly,
we sought to investigate the antidiabetic activity of the aerial part. The extract of the aerial
part led to a greater increase in pancreatic islet size and glucose uptake than those of the
root portion. The EtOAc and BuOH fractions from the PgA-EtOH extract had particularly
significant regenerative effects. We found that the dosages for maximum efficacy were
1 µg/mL for PgA-EtOAc and 100 µg/mL for PgA-BuOH.

Two new flavone glycosides, designated as dorajisides I (1) and II (2), together with
six known flavonoids (3–8) were isolated from the aerial part of P. grandiflorus by means of
activity-guided fractionation and isolation. The new compounds were identified as luteolin
7-O-α-L-rhamnopyranosyl (1 → 2)-(6-O-acetyl)-β-D-glucopyranoside (1) and apigenin
7-O-α-L-rhamnopyranosyl (1→ 2)-(6-O-acetyl)-β-D-glucopyranoside (2) by spectroscopic
analyses. We further investigated the effect of compounds isolated from the EtOAc and
BuOH fractions on pancreatic islets in diabetic zebrafish. We focused on compounds 1, 3, 4
and 6–8 because there was evidence that they caused the recovery of damaged pancreatic
islets. The pancreatic islet is primarily composed of beta cells, which account for 70–80%
of its total cellular composition [35]. In diabetic patients, the beta cell function weakens,
and the mass of islet beta cells decreases [36,37]. Therefore, understanding the regulation
of pancreatic β-cell expansion and the role of insulin in glucose homeostasis is crucial.
Pancreatic β-cell mass or function may gradually improve when glucose homeostasis
and/or normal KATP channel activity is restored [38–40]. We assessed the impact of the
compounds on insulin secretion by controlling KATP channels. To evaluate the effects
of 1, 3, 4 and 6–8 on KATP channels, we performed co-treatment with DZ following di-
abetes induction [41,42]. DZ opens KATP channels in pancreatic β-cells, which inhibits
the secretion of insulin in diabetic mice induced by alloxan [43]. Furthermore, a previous
study demonstrated that adding coffee, trigonelline or chlorogenic acid along with DZ
reduced their beneficial effects in diabetic zebrafish [11]. We observed that co-treatment
with DZ decreased the ameliorative effect of 7. These results suggested that compound
7 acts on KATP channels and then regulates glucose uptake via the stimulation of insulin
secretion. Additionally, the expression of some genes reported to be related to diabetes
mellitus by genome-wide association studies (GWAS) [9] was evaluated using RT-PCR in
zebrafish larvae. Glucokinase (GCK) and glucokinase regulator (GCKR) were key factors
that controlled the glucose metabolism in pancreatic β cells for maintaining blood glucose
homeostasis [44]. In addition, GLIS family zinc finger 3 (GLIS3) and cyclin-dependent
kinase inhibitor 2B (CDKN2B) were associated with pancreatic development for insulin
secretion [45,46]. In this study, the alloxan-induced zebrafish (AX) showed significant
decreases in the mRNA expression of GCK and CDKN2B and increases in the mRNA
expression of GCKR and GLIS3 compared with the normal group (NOR). In contrast, most,
if not all, treatments of compounds showed the opposite tendency relative to the mRNA
expression in alloxan-induced zebrafish.

In conclusion, the EtOH extract of the P. grandiflorus aerial part and its EtOAc and
n-BuOH fractions significantly increased the size of pancreatic islets in alloxan-induced dia-
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betic zebrafish. Two new and six known flavonoids (1–8) were isolated from active fractions.
Among the isolated compounds, 1, 3, 4 and 6–8 possessed significant ameliorative effects
in alloxan-induced diabetic zebrafish. The aerial part of P. grandiflorus contained flavonoids
as antidiabetic components instead of triterpenoid saponins for the root. Furthermore, the
active compounds (1, 3, 4 and 6–8) were co-treated with DZ, indicating a relationship with
KATP channels. Compound 7 revealed a regenerative effect on injured pancreatic islets
and had blocking KATP channels. Lastly, compound 7 may act primarily by stimulating
insulin secretion, explaining the beneficial effects of the aerial portion of P. grandiflorus.
In addition, isolated compounds 3, 4, 6 and 7 had an effect that significantly changed the
mRNA expressions of GCK, GCKR, GLIS3 and CDKN2B, which are related to diabetes
mellitus in the alloxan-induced zebrafish. These results suggest that the P. grandiflorus
aerial part may have an effect on protecting the pancreatic islet and can improve glucose
uptake by blocking the KATP channel.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/nu15071798/s1. Figure S1: ESIMS (positive ion mode) spectrum of
compound 1; Figure S2: FABMS (positive ion mode) spectrum of compound 1; Figure S3: HRFABMS
(positive ion mode) spectrum of compound 1; Figure S4: 1H NMR spectrum of compound 1 (CD3OD,
700 MHz); Figure S5: 13C NMR spectrum of compound 1 (CD3OD, 700 MHz); Figure S6: 1H-1H COSY
spectrum of compound 1 (CD3OD, 700 MHz); Figure S7: HSQC spectrum of compound 1 (CD3OD,
700 MHz); Figure S8: HMBC spectrum of compound 1 (CD3OD, 700 MHz); Figure S9: ESIMS
(positive ion mode) spectrum of compound 2; Figure S10: FABMS (positive ion mode) spectrum of
compound 2; Figure S11: HRFABMS (positive ion mode) spectrum of compound 2; Figure S12: 1H
NMR spectrum of compound 2 (DMSO-d6, 700 MHz); Figure S13: 13C NMR spectrum of compound
2 (DMSO-d6, 176 MHz); Figure S14: 1H-1H COSY spectrum of compound 2 (DMSO-d6, 700 MHz);
Figure S15: HSQC spectrum of compound 2 (DMSO-d6, 700 MHz); Figure S16: HMBC spectrum of
compound 2 (DMSO-d6, 700 MHz).
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